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Abstract. We propose a new adversarial network, named voxel-GAN,
to mitigate imbalanced data problem in brain tumor semantic segmen-
tation where the majority of voxels belong to a healthy region and few
belong to tumor or non-health region. We introduce a 3D conditional
generative adversarial network (cGAN) comprises two components: a seg-
mentor and a discriminator. The segmentor is trained on 3D brain MR
or CT images to learn the segmentation label’s in voxel-level, while the
discriminator is trained to distinguish a segmentor output, coming from
the ground truth or generated artificially. The segmentor and discrimina-
tor networks simultaneously train with new weighted adversarial loss to
mitigate imbalanced training data issue. We show evidence that the pro-
posed framework is applicable to different types of brain images of varied
sizes. In our experiments on BraTS-2018 and ISLES-2018 benchmarks,
we find improved results, demonstrating the efficacy of our approach.
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1 Introduction

Brain imaging studies using magnetic resonance imaging (MRI) or computed
tomography (CT) provides an important information for disease diagnosis and
treatment planning [6]. One of the major challenges in brain tumor segmentation
is unbalanced training data which the majority of the voxel healthy and only
fewer voxels are non-healthy or a tumor. A model learned from class imbalanced
training data is biased towards the majority class. The predicted results of such
networks have low sensitivity, showing the ability of not correctly predicting
non-healthy classes. In medical applications, the cost of misclassification of the
minority class could be more than the cost of misclassification of the majority
class. For example, the risk of not detecting tumor could be much higher than
referring to a healthy subject to doctors.

The problem of class imbalanced has been recently addressed in diseases clas-
sification, tumor recognition, and tumor segmentation. Two types of approaches
proposed in the literature: data-level and algorithm-level approaches.
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At data-level, the objective is to balance the class distribution through re-
sampling the data space [21], by including SMOTE (Synthetic Minority Over-
sampling Technique) of the positive class [10] or by under-sampling of the nega-
tive class [19]. However, these approaches often lead to remove some important
samples or add redundant samples to the training set.

Algorithm-level based solutions address class imbalanced problem by modify-
ing the learning algorithm to alleviate the bias towards majority class. Examples
are cascade training [8,33,36], training with cost-sensitive function [40], such as
Dice coefficient loss [12,35,38], and asymmetric similarity loss [16] that modify-
ing the training data distribution with regards to the misclassification cost.

Here, we study the advantage of mixing adversarial loss with weighted cat-
egorical cross-entropy and weighted �1 losses in order to mitigate the nega-
tive impact of the class imbalanced. Moreover, we train voxel-GAN simulta-
neously with semantic segmentation masks and inverse class frequency segmen-
tation masks, named complementary segmentation labels. Assume, Y is true
segmentation label annotated by expert and Ȳ is complementary label where
the P (Ȳ = i | Y = j), i �= j ∈ {0, 1, ..., c − 1}, and c is a number of semantic
segmentation class labels. The complementary label Ȳ is a reverse label for the
background labels. Then, our network train with both true segmentation mask
Y and complementary segmentation mask Ȳ at the same time.

Automating brain tumor segmentation is challenging task due to the high
diversity in the appearance of tissues among different patients, and in many
cases, the similarity between healthy and non-healthy tissues. Numerous auto-
matic approaches have been developed to speed up medical image segmenta-
tion [6,25]. We can roughly divide the current automated algorithms into two
categories: those based on generative models and those based on discriminative
models.

Generative probabilistic approaches build the model based on prior domain
knowledge about the appearance and spatial distribution of the different tissue
types. Traditionally, generative probabilistic models have been popular where
simple conditionally independent Gaussian models [13] or Bayesian learning [32]
are used for tissue appearance. On the contrary, discriminative probabilistic
models, directly learn the relationship between the local features of images
and segmentation labels without any domain knowledge. Traditional discrim-
inative approaches such as SVMs [2,9], random forests [23], and guided random
walks [11] have been used in medical image segmentation. Deep neural net-
works (DNNs) are one of the most popular discriminative approaches, where
the machine learns the hierarchical representation of features without any hand-
crafted features [22]. In the field of medical image segmentation, Ronneberger
et al. [37] presented a fully convolutional neural network, named UNet, for seg-
menting neuronal structures in electron microscopic stacks.

Recently, GANs [15] have gained a lot of momentum in the research frater-
nities. Mirza et al. [26] extended the GANs framework to the conditional setting
by making both the generator and the discriminator network class conditional.
Conditional GANs have the advantage of being able to provide better represen-
tations for multi-modal data generation since there is a control on the modes
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of the data being generated. This makes cGANs suitable for image semantic
segmentation task, where we condition on an observed image and generate a
corresponding output image.

Unlike previous works on cGANs [18,27,34,36,41], we investigate the 3D MR
or CT images into 3D semantic segmentation. Summarizing, the main contribu-
tions of this paper are:

– We introduce voxel-GAN, a new adversarial framework that improves seman-
tic segmentation accuracy.

– Our proposed method mitigates imbalanced training data with biased com-
plementary labels in task of semantic segmentation.

– We study the effect of different losses and architectural choices that improve
semantic segmentation.

The rest of the paper is organized as follows: in the next section, we explain
our proposed method for learning brain tumor segmentation, while the detailed
experimental results are presented in Sect. 3. We conclude the paper and give an
outlook on future research in Sect. 4.

2 voxel-GAN

In a conventional generative adversarial network, generative model G tries to
learn a mapping from random noise vector z to output image y; G : z → y. Mean-
while, a discriminative model D estimates the probability of a sample coming
from the training data xreal rather than the generator xfake. The GAN objective
function is a two-player mini-max game like Eq. (1).

m
G

inm
D

ax V (D,G) = Ey[logD(y)]+

Ez[log(1 − D(G(z)))]
(1)

Similar conditional GAN [26]; in our proposed voxel-GAN, segmentor net-
work takes 3D multimodal MR or CT images x and Gaussian vector z, and
outputs a 3D semantic segmentation; The discriminator takes the segmentor
output S(x, z) and the ground truth annotated by an expert yseg and outputs a
confidence value D(x) of whether a 3D object input x is real or synthetic. The
training procedure is similar to two-player mini-max game as shown in Eq. (2).

Ladv ← m
S

inm
D

ax V (D,S) = Ex,yseg
[logD(x, yseg)]+

Ex,z[log(1 − D(x, S(x, z)))]
(2)

In this work, similar to the work of Isola et al. [18], we used Gaussian noise z
in the generator alongside the input data x. As discussed by Isola et al. [18], in
training procedure of conditional generative model from conditional distribution
P (y|x), that would be better to model produces more than one sample y, from
each input x. When the generator G, takes plus input image x, random vector z,
then G(x, z) can generate as many different values for each x as there are values
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of z. Specially for medical image segmentation, the diversity of image acquisition
methods (e.g., MRI, fMRI, CT, ultrasound), regarding their settings (e.g., echo
time, repetition time), geometry (2D vs. 3D), and differences in hardware (e.g.,
field strength, gradient performance) can result in variations in the appearance
of body organs and tumour shapes [17], thus learning random vector z with
input image x makes network robust against noise and act better in the output
samples. This has been confirmed by our experimental results using datasets
having a large range of variation.

To mitigate the problem of unbalanced training samples, the segmentor loss
is weighted same as Eq. (3) to reduce effect of class voxel frequencies for the
whole training dataset.

wi =

{
avg{fi}{0 < i < c}/fmax, if i is max frequency
1, otherwise

(3)

LL1(S) = Ex,z ‖ yseg − S((x ∗ w), z) ‖ (4)

The segmentor loss Eq. (4) is mixed with �1 term to minimize the absolute
difference between the predicted value and the existing largest value. Previous
studies [36,41] on cGANs have shown the success of mixing the cGANs objective
with �1 distance. Hence, the �1 objective function takes into account CNNs
feature differences between the predicted segmentation and the ground truth
segmentation and resulting in fewer noises and smoother boundaries.

The final objective function for semantic segmentation of brain tumors Lseg

calculated by adversarial loss and additional segmentor �1 loss as follows:

Lseg(D,S) = Ladv(D,S) + LL1(S) (5)

2.1 Segmentor Network

As shown in Fig. 1, the segmentor architecture is two, 3D fully convolutional
encoder-decoder network that predicts a label for each voxel. The first encoder
takes 64 × 64 × 64 of multi-modal MRI or CT images at same time as different
channel input. Last decoder outputs 3D images with size 64×64×64. Similar to
UNet [37], we added the skip connections between each layer i and layer n − i,
where n is the total number of layers in each encoder and decoder part. Each
skip connection simply concatenates all channels at layer i with those at layer
n − i. Moreover, we concatenate the bottleneck features and last convolutional
decoder to capture better feature representation.

2.2 Discriminator Network

As depicted in Fig. 1, the discriminator is 3D fully convolutional encoder network
which classifies whether a predicted voxel label belongs to right class. Similar
to the pix-to-pix [18], we use path-GAN as discriminator with setting of voxel
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Fig. 1. The architecture of the proposed voxel-GAN consists of a segmentor network
S and a discriminative network D. S takes 3D multi modal images as a condition
and generates the 3D semantic segmentation as outputs, D determines whether those
outputs are real or fake. We use two modified 3D UNet architecture as a segmentor
network in order to capture local and global features extracted in bottleneck and last
convolutional decoder. Here, D is 3D fully convolutional encoder.

to voxel analysis. More specifically, the discriminator is trained to minimize the
average negative cross-entropy between predicted and the true labels.

Then, the segmentor and the discriminator networks are trained through back
propagation corresponding to a two-player mini-max game. We use categorical
cross entropy [29] as an adversarial loss. As mentioned before, we weighted loss
to only attenuate healthy voxel impact in training and testing time.

3 Experiments

We validated the performance of our voxel-GAN on two recent medical imag-
ing challenges: real patient data obtained from the MICCAI 2018, MRI brain
tumor segmentation (BraTS) [3–5,25] and CT brain lesion segmentation chal-
lenge (ISLES-2018) [20,24].

3.1 Datasets and Pre-processing

The first experiment is carried out on real patient data obtained from BraTS2018
challenge [3–5,25]. The BraTS2018 released data in three subsets train, valida-
tion, and test comprising 289, 68, and 191 MR images respectively in four mul-
tisite modalities of T1, T2, T1ce, and Flair which the annotated file provided
only for the training set. The challenge is semantic segmentation of complex and
heterogeneously located of tumor(s) on highly imbalanced data. Pre-processing
is an important step to bring all subjects in similar distributions, we applied
z-score normalization on four modalities with computing the mean and stdev of
the brain intensities. We also applied bias field correction introduced by Nyúl
et al. [30]. Figure 2 shows an 2D slice of prepocessed images (our network takes
3D images).



326 M. Rezaei et al.

Fig. 2. The brain MR image, from Brats 2018 after pre-processing. We extracted com-
plementary mask from inverse of ground truth file annotated by medical expert, pre-
sented in the first column. Other binary masks extracted from ground truth file in
columns 2–4 respectively are whole tumor, enhanced tumor, and core of tumor which
they are used by the discriminator. The 5–8 columns are a slice of example 3D input
of the segmentor.

In second experiment, We applied the ISLES2018 benchmark which contains
94 computer tomography (CT) and MRI training data in six modalities of CT,
4DPWI, CBF, CBV, MTT, Tmax, and annotated ground truth file. The exam-
ined patients were suffering from different brain cancers. The challenging part is
binary segmentation of unbalance labels. Here, pre-processing is carried out in
a slice-wise fashion. We applied Hounsfield unit (HU) values, which were win-
dowed in the range of [30, 100] to get soft tissues and contrast. Furthermore, we
applied histogram equalization to increase the contrast for better differentiation
of abnormal lesion tissue.

To prevent over fitting, we added data augmentation to each datasets such as
randomly cropped, re-sizing, scaling, rotation between −10 and 10 degree, and
Gaussian noise applied on training and testing time for both datasets.

3.2 Implementation

Configuration: Our proposed method is implemented based on a Keras
library [7] with back-end Tensorflow [1] supporting 3D convolutional network
and is publicly available1. All training and experiments were conducted on a
workstation equipped with a multiple GPUs. The learning rate was initially set
to 0.0001. The Adadelta optimizer is used in both the segmentor and the dis-
criminator that continues learning even when many updates have been done.
The model is trained for up to 200 epochs on each dataset separately. We used
Adadelta as an optimizer for cGAN network.

1 https://github.com/HPI-DeepLearning/VoxelGAN.

https://github.com/HPI-DeepLearning/VoxelGAN
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Fig. 3. The number of pixels for each tumor classes represents how imbalanced is
training data in detail of two subsets: high and low grade glioma brain tumor on
BraTS2018.

Network Architecture: In this work, a segmentor network is a modified UNet
architecture that we designed two UNet architecture with sharing circumvent
bottlenecks and last fully convolutional layer in decoder part. The UNet archi-
tecture allows low-level features to shortcut across the network. Motivated by
previous studies on interpreting encoder-decoder networks [31], that show the
bottleneck features carried local features and fully convolutional up-sampling
encoder represented global features, we concatenate circumvent bottlenecks and
last fully convolutional layer to capture more important features.

Our discriminator is fully convolutional Markovian PatchGAN classifier [18]
which only penalizes structure at the scale of image patches. Unlike, the Path-
GAN discriminator introduced by Isola et al. [18] which classified each N N patch
for real or fake, we have achieved better results for task of semantic segmentation
in voxel level 1 × 1 × d we consider N = 1 and different d = 64, 32, 16, and 8.
We used categorical cross entropy [29] as an adversarial loss with combination
of �1 loss in generator network.

Regarding the highly imbalance datasets as shown in Fig. 3, minority voxels
with lesion label are not trained as well as majority voxels with non-lesion label.
Therefore, we weighted only non-lesion classes to be in same average of lesion or
tumor(s) classes. Tables 1 and 2 describe our achieved results with and without
weighting loss on BraTS2018.
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3.3 Evaluation

We followed the evaluation criteria introduced by the BraTS2, the ISLES3 chal-
lenge organizers.

The segmentation of the brain tumor or lesion from medical images is highly
interesting in surgical planning and treatment monitoring. As mentioned by
Menze et al. [25], the goal of segmentation is to delineate different tumor struc-
tures such as active tumor core, enhanced tumor, and whole tumor regions.

Figure 4 shows good trade-off between Dice and Sensitivities in training and
validation time which it shows success for tackling of unbalancing data.

From Table 1, the proposed voxel-GAN achieved better results in terms of
Dice compared to 2D-cGAN. One likely explanation is that the voxel-GAN archi-
tecture is trained on 3D convolutional features and the segmentor loss is weighted
for imbalanced data.

Table 1. Comparison results of our achieved accuracy for semantic segmentation by
voxel-GAN (trained model with weighted loss and complementary labels) with related
work and top ranked team, in terms of Dice, sensitivity, specificity, and Hausdorff
distance on five fold cross validation after 80 epochs while the reported results in
second and third rows are after 200 epochs. WT, ET, and CT are abbreviation of
whole tumor, enhanced tumor, and core of tumor regions respectively.

Dice Hdff Sen Spec

Methods WT ET CT WT ET CT WT ET CT WT ET CT

Voxel-GAN 0.84 0.63 0.79 6.41 7.1 10.38 0.86 0.74 0.78 0.99 0.99 0.99

cGAN [34] 0.81 0.61 0.64 7.30 9.22 12.04 0.75 0.61 0.55 0.99 0.99 0.99

Cycle-GAN [14] 0.90 0.78 0.81 2.50 4.5 5.4 0.89 0.89 0.81 0.99 0.99 0.99

Ensemble of 10
3D-Models [28]

0.91 0.82 0.86 3.9 4.5 6.8 - - - - - -

3D UNet + TTA [39] 0.87 0.75 0.78 4.5 5.9 8.0 - - - - - -

Unlike previous works [14,28,39], we start training from scratch and even
after 200 epochs our results are not as good as top ranked team. From Table 1,
two top ranked team used ensemble of pre-trained models. Ensemble networks
provides good solution for imbalanced data by modifying the training data dis-
tribution with regards to the different misclassification costs. In future we will
focus on training voxel-GAN with one segmentor from scratch and many differ-
ent pre-trained discriminators.

2 http://www.med.upenn.edu/sbia/brats2018/evaluation.html.
3 https://www.smir.ch/ISLES/Start2018.

http://www.med.upenn.edu/sbia/brats2018/evaluation.html
https://www.smir.ch/ISLES/Start2018
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Fig. 4. The achieved accuracy obtained by voxel-GAN in terms of Dice and sensitivity
at training and validation time on BraTS-2018.
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Table 2. The achieved accuracy for semantic segmentation by 3D-GAN in terms of
Dice and Hausdorff distance after 80 epochs. Here, the model trained based on 3D
UNet as segmentor and 3D fully convolution as discriminator. The WT, ET, and TC
are abbreviation of whole tumor, enhanced tumor, and the tumorous core respectively.

Label Dice-ET Dice-WT Dice-TC Hausdorff95-ET Hausdorff95-WT Hausdorff95-TC

Mean 0.438 0.633 0.481 54.2 12.9 33.70

StdDev 0.27 0.25 0.27 116.71 14.9 78.4

Median 0.48 0.73 0.57 8.76 8.0 11.70

25quantile 0.19 0.49 0.27 4.41 5.56 7.9

75quantile 0.65 0.82 0.70 20.82 14.08 19.1

Fig. 5. Visual results from our model on axial views of Brats18-2013-37-1, Brats18-
CBICA-AAC-1, and Brats18-CBICA-AAK-1 from the test set overlaid T1C modality.
The green color codes the whole tumour (WT) region, while blue and yellow represent
the enhanced tumour (ET) and the tumorous core (TC) respectively. (Color figure
online)

Table 3. The achieved accuracy for semantic segmentation on ISLES dataset by voxel-
GAN in terms of Dice, Hausdorff distance, Precision, and Recall on five fold cross
validation after 200 epochs.

Dice Hausdorff Precision Recall

voxel-GAN 0.83 9.3 0.81 0.78
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4 Conclusion

In this paper, we presented a new 3D conditional generative adversarial architec-
ture, named voxel-GAN, that mitigates the issue of unbalanced data for the brain
lesion or tumor segmentation. To this end, we proposed a segmentor network and
a discriminator network where the first segments the voxel label, and the later
classifies whether the segmented output is real or fake. Moreover, we analyzed an
effects of different losses and architectural choices that help to improve semantic
segmentation results. We validated our framework on CT ISLES2018 and MRI
BraTS-2018 images for lesion and tumor semantic segmentation. In the future,
we plan to investigate ensemble network based on voxel-GAN but with many
pre-trained discriminator networks for semantic segmentation task.
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