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Abstract. Automatic quantitative analysis of structural magnetic res-
onance (MR) images of brain tumors is critical to the clinical care of
glioma patients, and for the future of advanced MR imaging research. In
particular, automatic brain tumor segmentation can provide volumes of
interest (VOIs) to scale the analysis of advanced MR imaging modali-
ties such as perfusion-weighted imaging (PWI), diffusion-weighted imag-
ing (DTI), and MR spectroscopy (MRS), which is currently hindered
by the prohibitive cost and time of manual segmentations. However,
automatic brain tumor segmentation is complicated by the high het-
erogeneity and dimensionality of MR data, and the relatively small size
of available datasets. This paper extends ESPNet, a fast and efficient
network designed for vanilla 2D semantic segmentation, to challenging
3D data in the medical imaging domain [11]. Even without substantive
pre- and post-processing, our model achieves respectable brain tumor
segmentation results, while learning only 3.8 million parameters. 3D-
ESPNet achieves dice scores of 0.850, 0.665, and 0.782 on whole tumor,
enhancing tumor, and tumor core classes on the test set of the 2018
BraTS challenge [1–4,12]. Our source code is open-source and available
at https://github.com/sacmehta/3D-ESPNet.
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1 Introduction

Glioma is the most common primary brain tumor. Due to glioma’s highly het-
erogeneous appearance, extent, and shape, segmentation of brain tumors in MR
volumes is one of the most challenging tasks in neuroradiology [7]. This is com-
pounded by the sparsity of data and the heterogeneity incurred by differing
scanner models and manufacturers, imaging sites, variation in clinical standards
and protocols, and the noise introduced by the movement of patients’ heads
during scans. At every clinical visit, glioma patients generally receive standard
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of care FLAIR, post-contrast T1-weighted (T1ce), T2, and T1 MR sequences,
each of which is described by a distinct volume. These sequences give distinct
and complementary information about the tumor extent and composition.

Automated brain tumor segmentation also ranks among the most difficult
problems in medical image analysis. The notion that massive amounts of data
are required to train deep networks is widely held. Not only are MR scans scarce,
they are high dimensional (e.g. 240 × 240 × 155 × 4) and contain high class
imbalances (e.g. ≥95% background class). Thus, naive models are predisposed
to exhibit extreme background bias.

In similar biomedical domains, patchwise approaches have helped address
problems of data shortages and dimensionality. Ciresan et al. proposed a sliding-
window method to segment electron microscopic images of the brain, which both
localized the problem and exaggerated the dataset [6,14]. Ronneberger et al.’s
2D encoder-decoder network, U-Net, outperformed Ciresan’s method [14]. U-Net
is a fully convolutional network (FCN) where the traditional pooling operations
in the contracting (encoding) path are mirrored by upsampling operations in
the symmetric expanding (decoding) path. Skip connections are passed from
encoding blocks on the contracting path to same-level decoding blocks in the
expanding path.

While some success has been reached using 2D FCNs, like U-Net, these mod-
els ignore crucial 3D spatial context, which is undesirable given that most clinical
imaging data are volumetric. However, even among 3D FCNs such as DeepMedic,
a previous winner of the BraTS competition, fine spatial information is discarded
in pooling [9]. This motivates our interest in U-Net’s skip connections and, in par-
ticular, the architecture of Milletari et al.’s 3D extension of U-Net, V-Net. V-Net
benchmarked well on the “PROMISE2012” challenge, where it gave impressive
segmentations of MR prostate scans after training on only 50 examples [13].

ESPNet is a faster, more efficient take on U-Net’s encoder-decoder architec-
ture [11]. In this paper, we seek to extend and benchmark ESPNet on 3D medical
imaging data.

We outline our paper as follows. Section 2 describes our network architecture.
We report our methods in Sect. 3. Experimental results are given in Sect. 4.
Finally, we close with a discussion of limitations and future directions for our
work in Sect. 5.

2 Network Architecture

Our network is an end-to-end system consisting of 3D-ESPNet followed by pyra-
midal refinement, as shown in Fig. 1. We describe the main building block of our
architecture, the ESP module, and, later, 3D-ESPNet’s segmentation architec-
ture and pyramidal refinement.

2.1 ESP Module

The Efficient Spatial Pyramid (ESP) module, shown in Fig. 2, is an efficient
convolutional module proposed in [11]. The module is based on the RSTM
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Fig. 1. 3D-ESPNet with pyramidal refinement. 3D-ESPNet’s encoder is shown on the
left; the decoder is shown on the right with pyramidal refinement. Parentheses give the
channel dimensions of incoming and outgoing feature maps. The CBR block consists
of a convolutional block followed by batch normalization and ReLU. Light-blue feature
maps in the decoder indicate concatenation by long-range, skip connections. Light-blue
feature maps in the encoder indicate strided ESP models for downsampling. Arrows
are defined in the legend. (Color figure online)
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Fig. 2. The Efficient Spatial Pyramid (ESP) module. The blocks in blue represent 3D
convolutional layers and are denoted as (# input channels, effective receptive field, #
output channels). The ESP module takes an input feature map with M channels and
produces an output feature map with N channels, where d = N

K
and K represents the

number of parallel branches. (Color figure online)

(Reduce-Split-Transform-Merge) strategy and allows the aggregation of the
information from a large effective receptive field while learning fewer param-
eters. We extend the ESP block by replacing its spatial 2D convolutions with
volumetric 3D convolutions.

2.2 3D-ESPNet Structure

3D-ESPNet is an encoder-decoder network that extends U-Net [14]. The primary
distinction between 3D-ESPNet and U-Net is that 3D-ESPNet employs efficient
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convolutional blocks for aggregating features instead of stacking convolution lay-
ers (with or without residual connections) after the first layer.

In the encoder stage, the network learns feature representations by perform-
ing convolutional and downsampling operations. The encoder downsamples once
with a strided convolutional layer and three subsequent times with strided ESP
modules. In downsampling ESP modules, we use convolutions with ni × ni × ni

sized kernels and stride of two, for i ∈ {1, . . . ,K}, as shown in Fig. 2. The
combination of varying receptive fields allows 3D-ESPNet to learn feature rep-
resentations at multiple scales.

In the decoder stage, we share the feature maps in the encoder with same-level
feature maps in the decoder via skip-connection concatenation. Skip-connections
allow fine details lost in downsampling in the encoder to be recovered in the
decoder, which gives the segmentation maps a granularity simple interpolation
cannot achieve. The decoder uses 3 × 3 × 3 deconvolution kernels to upsample
the encoder output once, followed by trilinear upsampling layer to return to
the resolution at the networks second level. The feature maps of the final ESP
module in the decoder are passed into the pyramidal refinement module. The
block diagram of 3D-ESPNet is shown in Fig. 1.

Pyramidal Refinement: Pyramid-based approaches sub-sample either the feature
maps or the convolutional kernel to learn global contextual information. Inspired
by the success of such approaches for segmenting complex 2D scenes, we extend
these modules for volumetric data. We call this module pyramidal refinement.
Our module combines both feature map-based and convolutional kernel-based
pooling methods in a novel fashion.

Pyramidal refinement, shown in Fig. 4, consists of three layers:

– Projection Layer: This is a standard 3 × 3 × 3 convolutional layer followed
by batch normalization and ReLU that projects the feature maps from the
previous ESP block to C-dimensional space, where C is the number of classes.

– Spatial Pyramid Pooling (SPP) Block : The input feature maps to this block
are low dimensional (C = 4). We sub-sample them using convolutional kernels
of different sizes and merge their output using sum operations. This is similar
to the ASPP block except that we do not use dilated convolutions [5].

– PSP Block: A PSP block, sketched in Fig. 3b, is based on the principle of
split-pool-transform-upsample [15]. Split: A PSP block distributes the input
feature maps across four parallel branches. Pool: Each branch downsamples
the feature maps using a different pooling rate. Transform: The downsam-
pled feature maps are transformed using point-wise convolutions. Upsam-
ple: The transformed feature maps are upsampled to the same resolution as
the input feature maps using bilinear interpolation. Merge: The upsampled
feature maps are concatenated with the input feature maps to produce the
output feature maps.
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Pyramidal refinement is followed by a classification layer. This final layer
pools the feature maps using another SPP block and then upsamples by a factor
of two using trilinear interpolation. Two convolutional layers are stacked on top
of the upsampled feature maps before a softmax.
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Fig. 3. Pooling modules used in a pyramidal refinement block. Here, a convolutional
layer is represented as (kernel size, dilation rate).

Fig. 4. Pyramidal-refinement. After the second upsampling operation in the 3D-
ESPNet decoder, the feature maps are passed through a CBR block, a spatial pyramid
pooling block (SPP), and a pyramid pooling module (PSP) at 1/4 resolution. We then
upsample to input resolution using trilinear interpolation and compress and pass the
feature maps through a softmax to obtain a prediction.

3 Methods

3.1 Data

We train on the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018
training set, which provides 285 multi-institutional pre-operative multimodal
MR tumor scans, each consisting of T1, post-contrast T1-weighted (T1ce), T2,
and FLAIR volumes [1–4,12]. Each case is annotated with the following voxel
labels: enhancing tumor, peritumoral edema, background, and necrotic core and
non-enhancing tumor. Necrotic core and non-enhancing tumor share a single
label. These data are co-registered to the standard MNI anatomical template,
interpolated to the same resolution, and skull-stripped. Ground-truth segmen-
tations are manually drawn and approved by neuroradiologists.
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3.2 Preprocessing

We used minimal preprocessing. We performed min-max normalization. We also
cropped each volume to remove any padding around the brain common in every
modality; this allowed us to double our batch size to four, which stabilized
training.

3.3 Training

To tune our model’s hyperparameters, we randomly partitioned our dataset into
a training set and a validation set using an 80:20 split (228:57). We selected the
hyperparameters that maximized the mean intersection over union (mIOU) on
the 57 withheld volumes in the validation set. We used mean intersection over
union (mIOU) for our loss function instead of cross entropy for empirical reasons
as we and others have observed [8]. We weight our mIOU loss to address the
severe class imbalance. We used data augmentation heavily including scaling and
random flips.

We implemented our model in PyTorch. We trained at full resolution on all
modalities on an NVIDIA Titan X using a batch size of four. We trained for
300 epochs. Training took less than five hours; test time evaluation takes less
than twenty seconds. We found that the optimizer Adam outperformed SGD
with momentum [10]. We experimented with learning rate decay and settled on
a learning rate of 10e−4, which we decreased to 10e−5 after 200 epochs. Code
for this adaptation of ESPNet is available at https://github.com/sacmehta/3D-
ESPNet.

4 Results

Results on the BraTS 2018 online test and validation sets are shown in Table 1.
Visual inspection reveals out model’s flexible performance on difficult cases such
as gliomas that cross the corpus callosum–so-called butterfly gliomas–shown in
Figs. 5 and 6. However, our method lacks some of the granularity present in

Fig. 5. A butterfly high-grade glioma. (a) FLAIR sequence; (b) T1ce sequence; (c)
network prediction; (d) ground truth segmentation.

https://github.com/sacmehta/3D-ESPNet
https://github.com/sacmehta/3D-ESPNet
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Fig. 6. A second butterfly high-grade glioma. (a) FLAIR sequence; (b) T1ce sequence;
(c) network prediction; (d) ground truth segmentation.

the ground truth segmentation. It is clear in the examples provided that our
network’s predictions are too smooth, especially in Fig. 5, where the predicted
non-enhancing and necrotic class is the correct size and in the correct position,
but the segmentation does not follow the sharp contours of the gyri outlined
in the ground truth. In Fig. 6, we notice that our network tends not to predict
necrotic or non-enhancing tumor outside of the tumor-enhancing ring. However,
our model is able to handle gaping holes inside tumors filled with cerebrospinal
fluid (CSF) just as a resection cavity would appear. This is shown in Fig. 8.
These cavities differ from a typical necrotic core on the T2 sequences of a tumor
as CSF shows extreme hyperintensity. This robustness is crucial for segmenting
post-operative scans which can contain large resection cavities (Figs. 7 and 9).

Table 1. Results obtained on BraTS 2018 online test set are shown in bold. Results
obtained on BraTS 2018 online validation set are shown in parenthesis. Sensitivity and
specificity results were not given for the online test set.

3D-ESPNet Dice Score Sensitivity Specificity Hausdorff95

Whole tumor 0.850 (0.883) - (0.934) - (0.990) 9.598 (5.461)

Enhancing tumor 0.665 (0.737) - (0.831) - (0.997) 5.497 (5.295)

Tumor core 0.782 (0.814) - (0.821) - (0.997) 8.668 (7.850)

Fig. 7. A sagittal view of a high-grade glioma. (a) FLAIR sequence; (b) T1ce sequence;
(c) network prediction; (d) ground truth segmentation.
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Fig. 8. Low-grade glioma showing bright CSF fluid in ventricles and tumor cavity on
the T2 sequence. (a) FLAIR sequences; (b) T2 sequence; (c) network prediction; (d)
ground truth segmentation.

Fig. 9. Low-grade glioma. (a) FLAIR sequence; (b) T1 sequence; (c) network predic-
tion; (d) ground truth segmentation.

5 Discussion

We propose a fast and efficient network for semantic brain tumor segmentation.
3D-ESPNet with pyramidal refinement achieves a respectable 0.850 dice score for
whole tumor segmentation on the 2018 BraTS online test set without substantial
pre- or post-processing, while learning only 3.8 million parameters.

Brain tumor segmentation has its place in clinic, though neuroradiologist and
neuro-oncologists usually limit its use to quantifying volumetric changes in tis-
sue types (edema, enhancing tissue, non-enhancing or necrotic tissue) between
patient visits for evaluating tumor progression [7]. However, tumor segmenta-
tion is essential to the analysis of advanced MR imaging (DWI, DTI, MRSI).
Because such segmentation is usually done manually, segmentation time and
cost prevent advanced MR imaging studies from being done at scale. Automatic
brain tumor segmentation will allow such advanced imaging studies to be done
on massive datasets and, therefore, avail themselves of strong ML analysis and
more definitive conclusions.

We plan to add pre- and post-processing techniques to our model. Histogram
equalization and N4BiasFieldCorrection might better prepare the training data,
and adding a conditional random field after the classifier may help eliminate
spurious tumor predictions. We achieved a dice score of 0.850 on the whole
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tumor class, but work remains to be done on the individual classes. Better
hyperparameter tuning and non-linear data augmentation may also improve our
performance.
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