®

Check for
updates

Glioma Segmentation
with Cascaded UNet

2(=)

Dmitry Lachinov!: , Evgeny Vasiliev'®, and Vadim Turlapov!

! Lobachevsky State University, Gagarina ave. 23, 603950
Nizhny Novgorod, Russian Federation
dlachinov@gmail.com, eugene.unn@gmail.com, vadim.turlapov@gmail.com
2 Intel, Nizhny Novgorod, Russian Federation
dmitry.lachinov@intel.com

Abstract. MRI analysis takes central position in brain tumor diagnosis
and treatment, thus its precise evaluation is crucially important. How-
ever, its 3D nature imposes several challenges, so the analysis is often
performed on 2D projections that reduces the complexity, but increases
bias. On the other hand, time consuming 3D evaluation, like segmenta-
tion, is able to provide precise estimation of a number of valuable spatial
characteristics, giving us understanding about the course of the disease.

Recent studies focusing on the segmentation task, report superior per-
formance of Deep Learning methods compared to classical computer
vision algorithms. But still, it remains a challenging problem. In this
paper we present deep cascaded approach for automatic brain tumor
segmentation. Similar to recent methods for object detection, our imple-
mentation is based on neural networks; we propose modifications to the
3D UNet architecture and augmentation strategy to efficiently handle
multimodal MRI input, besides this we introduce approach to enhance
segmentation quality with context obtained from models of the same
topology operating on downscaled data. We evaluate presented approach
on BraTS 2018 dataset and achieve promising results on test dataset with
14th place and Dice score of 0.720/0.878/0.785 for enhancing tumor,
whole tumor and tumor core segmentation respectively.

Keywords: Segmentation - BraTS - UNet - Cascaded UNet -
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1 Introduction

Multimodal magnetic resonance imaging (MRI) is a powerful tool for studying
human brain. Among it’s different applications, it is mainly used for disease
diagnosis and treatment planning. Accurate assessment of MRI results is critical
throughout all these steps. Since MRI scans are the set of multiple three dimen-
sional arrays, it’s manual analysis and evaluation is a non-trivial procedure and
requires time, attention and expertise. Lack of these resources can lead to unsat-
isfying results. Typically, these scans are analyzed by clinical experts using two
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dimensional cut and projection planes. It limits the amount of data taken into
account for decision making, thus it adds bias to the resulting evaluation. On
the other hand, accurate segmentation and 3D reconstruction is able to provide
more insights on disease progression and help a therapist to plan the treatment
better. However these methods are not widely used due to unreasonable amount
of time needed for manual labeling.

Denoting the problem of automatic glioma segmentation Brain Tumor Seg-
mentation (BraTS) challenge [1,11] was created and became an annual compe-
tition allowing participants to evaluate and compare their state of the art meth-
ods using unified framework. Participants are called to develop their algorithms
and produce segmentation labels of the different glioma sub-regions: “enhanc-
ing tumor” (ET), “tumor core” (TC) and “whole tumor” (WT). The training
data [2,3] consists of 210 high grade and 75 low grade glioma MRIs manually
labeled by experts in the field. Testing data is split into two parts: validation
set that can be used for evaluation throughout the challenge and test set for
final evaluation. Performance of the methods is measured using Dice coefficient,
Sensitivity, Specificity and Hausdorff distance.

Above-named challenge made a significant impact on the evolution of com-
putational approaches for tumor segmentation. In the last few years, a variety of
algorithms were proposed to solve this problem. Compared with other methods,
convolutional neural networks have been showing the best state of the art perfor-
mance for computer vision tasks in general and for biomedical image processing
tasks in particular.

In this paper we present cascaded variant of the popular UNet network [6,12]
that iteratively refines segmentation results of it’s previous stages. We employ
this approach for brain tumor segmentation task in the scope of BRATS 2018
challenge and evaluate it’s performance. We also compare regular 3D UNet [6]
with it’s cascaded counterpart.

2 Method

In this study we propose neural networks based approach for brain tumor seg-
mentation. Our method can be represented as a chain of multiple classifiers C; of
the same topology F' refining segmentation output of previous iterations. Every
classifier C; shares the same topology but has it’s own set of parameters W; that
is subject to optimization during training. Y; - the result of the i-th step can be
represented as Y; = F(X;,Y;_1,Y;_o, W;), where X; is the i-th input.

Described approach is illustrated in Fig. 1. Each of the basic blocks C; is a
UNet network modified with respect to the task of glioma segmentation. Com-
pared to the original UNet architecture described in [12] and extended for 3D
case in [6], we employ multiple encoders separately handling input modalities
and introduce the way to merge their output. In this paper we describe UNet
modification with multiple encoders first. Then we propose ensembling strategy
to efficiently merge segmentation results obtained on different scales.
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Fig. 1. Schematic representation of approach employed in this paper. T1, T2, Tlce,
FLAIR stands for input MRI modalities. x4, x2 indicate downsampling factor for the
network input. Dotted arrows indicate connections between networks C; that are illus-
trated as basic blocks.

2.1 Multiple Encoders UNet

Traditional UNet architecture [12] extended for handling volumetric input [6]
has two stages: encoder part where network learns feature representations on
different scales and aggregates contextual information, and decoder part where
network extracts information from observed context and previously learned fea-
tures. Skip connections employed between corresponding encoder and decoder
layers enable efficient training of the deep parts of the network and comparison
of identically scaled features with different receptive fields.

This method allows to handle multimodal MRI input, however, it mixes and
processes signals of different types identically. In contrast, we propose approach
that learns feature representations for every modality separately and combines
them at later stages. This is achieved by employing grouped convolutions in the
encoder path with number of groups equals to the number of input modalities.
Resulting features are calculated as a maximum of the feature maps produced
by encoders. In order to preserve feature maps’ sizes we employ point-wise con-
volution right after max operation. Similar to the original UNet, the number of
filters is doubled with every downsampling operation and reduced by half with
every upsampling operation, ReLLU is used as activation function after every
convolution layer. Described architecture is illustrated in Fig. 2.

The network is built of basic pre-activation residual blocks [7] that consist of
two instance normalization layers, two relu activation layers and two convolutions
with kernel size 3. This basic building block is illustrated in Fig. 3.

The motivation behind this architecture is to encourage model to extract
features separately for every modality. In combination with feature maps merging
strategy and channel-out augmentation it allows to build more robust model that
can process data with one or more corrupted modalities (Fig. 4).
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Identity operation

Convolution: size 3x3x3, stride 2, pad 1
Convolution: size 1x1x1
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Fig. 2. Architecture of multiple encoders UNet. T1, T2, T1CE, FLAIR stand for input
modalities. N is a base number of filters, K is a number of filters in context feature
map obtained from lower scale models.

Feature maps
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— Convolution: size 3x3x3, pad 1
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—» Instance Normalization
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Fig. 3. Design of the residual block

Cascaded UNet. Proposed network is illustrated in Fig. 1 and consists of three
basic blocks. Each block by itself is a modified UNet network with it’s own loss
function at the end. Every next block takes downsampled volume as an input
and produces segmentation of the corresponding size. Similar to DeepMedic
[10], this architecture simultaneously processes the input image at multiple
scales and extracts scale-specific features. The feature map before the last
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convolutional layer in every block is concatenated to the corresponding feature
map of higher-scale block. It enables the context information flow between net-
works with different scales.

In UNet architecture decoder output at each scale ¢ depends on encoder out-
put at the same scale (skip connections) and decoder output of the previous
scale: df = f(el,d!_,), where d! is decoder output, and e! is encoder output at
scale i, and t is the index of the network. Expanding the first convolution of
[ we get di = g(W/ e} +W/,d}_,), where W are trainable parameters. Here
we propose to incorporate context of the lower scale networks by concatenating
corresponding network output y* (see Fig. 2, illustrated as dotted arrows) so df
becomes df = g(W} .ef + W} ,di_, + W/ y'~*). This approach fuses multiple net-
works operating at different scales together and encourages model to iteratevily
refine results of previous iterations.

The connections between networks are illustrated as dotted arrows in Fig. 1.
Each basic UNet network produces two outputs: feature map (dotted arrows) and
softmax operation over this feature map (straight arrows). The resulting proba-
bility tensor can be further used for ensembling, yet, we are interested in a final
feature map. Since it has the most meaningful information about segmentation
on the given scale, we want to propagate this feature map to higher resolution
networks. To achieve the flow of the context between classifiers of different scale
we propose to concatenate their output feature map to corresponding feature
map of the higher scale network (see Fig. 2, illustrated as dotted arrows).

By employing following ensembling strategy we are building quite deep convo-
lutional neural network. Compared to standard approach of doubling the number
of feature channels after each pooling operator, out method takes less parameters
and introduces bottlenecks between networks. Having same number of parame-
ters, presented approach performs better than models with the same depth or
the same number of parameters.

2.2 Data

In this paper we are focusing at brain tumor segmentation with deep neural net-
works. For training and evaluation purposes we are using BraTS 2018 [1-3,11]
dataset. It contains clinically acquired preoperative multimodal MRI scans of
glioblastoma and lower grade glioma obtained in different institutions with dif-
ferent protocols. These multimodal scans contain native T1, post-contrast T1-
weighted, T2-weighted, and T2 Fluid Attenuated Inversion Recovery (FLAIR)
volumes, and co-registered to the same anatomical template, interpolated to the
same resolution (1mm3) and skull-stripped. These MRI scans were manually
annotated by one to four raters, and approved by experienced radiologist. Seg-
mentation labels describe different glioma sub-regions: “enhancing tumor” (ET),
“tumor core” (TC) and “whole tumor” (WT). In total, dataset has 285 MRIs
for training (210 high grade and 75 low grade glioma images), 67 validation and
192 testing MRIs.
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2.3 Preprocessing and Data Augmentation

We have found data preprocessing employed in [8] to be especially effective. Like
in [8], we perform z-score normalization on non-zero (brain) voxels. After that
we are eliminating outliers and noise by clamping all values to the range from -5
to 5. At the final step we shift brain voxels to the range [0;10] and assign zeros
to background.

For offline data augmentation we artificially increase number of samples by
employing b-spline transformation to the original data. It has been done with
ITK implementation [9].

During training we randomly flip input image along sagittal plane and “mute”
input modalities with predefined probability. Without this augmentation the net-
work was only considering one of the input modalities while making a prediction
and not taking others into account. To deal with this issue we are randomly
filling input channels with Gaussian noise. We introduce probability to apply
this augmentation for every channel and set it to 0.1, so there is 34% chance
to mute at least one out of four modalities. This also helps to aggregate infor-
mation allover input data and to deal with noisy or corrupted input images like
illustrated in the Fig. 4.

Fig. 4. Example of the registration artifacts found in the training dataset. This series
contain one corrupted modality (shown) and three correct ones. Overlapping structures
of the brain are marked with red circles. Visualization is done with ITK-SNAP [13].
(Color figure online)
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2.4 Training

The training procedure is conducted on brain regions resampled to
128 x 128 x 128 voxels. We are operating with downsampled data to preserve
the context since we believe it plays important role for robust segmentation of
multimodal MRI scans obtained from different institutions and scanners. We
use Mean Dice 1088 Lyean_dice(g, p) where g is a ground truth, p is a model’s
prediction. We trained our network with stochastic gradient descent with initial
learning rate of 0.1, exponential learning rate decay with rate 0.99 for every
epoch, weight decay of 0.9 and minibatch size equal to 4 samples.

u pLge

Lpean. dlce(g p ‘C‘ Z Z i +g.

where C is a set of different classes.

This CNN was implemented in MXNet framework [5] and trained using four
GTX 1080TT with batch size 4 to enable data parallelism. Training was per-
formed for 500 epoches.

3 Results

In this section we report evaluation results obtained with online validation sys-
tem provided by organizers. With intention to penalize model for relying on
the one single modality we apply channel-out augmentation to the input data
by randomly filling input modalities with Gaussian noise in addition to stan-
dard augmentations like mirroring and elastic transformations. Then we com-
pare results obtained with this augmentation disabled (Table 1) and enabled
(Table 2). The challenge validation data [2,3] contains 66 MRI scans obtained
with different scanners and from different institutions. Results of evaluation on
validation dataset are reported in Table 3; and on test dataset in Table 4.

Table 1. Evaluation of glioma segmentation without channel-out augmentation; Dice
index is reported, WT stands for whole tumor, ET stands for enhancing tumor, TC
stands for tumor core, ME UNet stands for Multiple Encoders UNet and C ME UNet
stands for Cascaded Multiple Encoders UNet. Tested networks has the same number
of parameters.

Method WT |ET |TC

UNet 0.901 | 0.767 | 0.797
ME UNet 0.904 | 0.763 | 0.823
C ME UNet | 0.906 | 0.772 | 0.836
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Table 2. Evaluation of glioma segmentation with channel-out augmentation; Dice
index is reported, WT stands for whole tumor, ET stands for enhancing tumor, TC
stands for tumor core, ME UNet stands for Multiple Encoders UNet and C ME UNet
stands for Cascaded Multiple Encoders UNet. Tested networks has the same number

of parameters.

Method WT |ET |TC

UNet 0.901 | 0.779 | 0.837
ME UNet 0.907 | 0.784 | 0.827
C ME UNet | 0.908 | 0.784 | 0.844

Table 3. Performance of proposed method on BraTsS 2018 validation data, Dice index

is reported.

WT |ET |TC
Mean 0.908 1 0.784 | 0.844
StdDev 0.065|0.237 | 0.161
Median 0.926 | 0.858 | 0.906
25quantile | 0.900 | 0.805 | 0.791
75quantile | 0.943 | 0.897 | 0.947

Table 4. Performance of proposed method on BraTS 2018 test data, Dice index is

reported.
WT |ET |TC
Mean 0.878 1 0.720 | 0.795
StdDev 0.119]0.278 1 0.251
Median 0.913 1 0.818 | 0.901
25quantile | 0.870 | 0.711 | 0.804
75quantile | 0.940 | 0.877 | 0.936
Ground truth Prediction

Fig. 5. Example of segmentation labels produces by proposed method in comparison

with ground truth annotation.
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4 Discussion and Conclusion

Analyzing the segmentation results provided by out model (Fig. 5) we noticed
that it produces more smooth results compared to ground truth. According to
BraT$S 2018 challenge summarizing manuscript [4], out method took 14th place
in final ranking. Analyzing the results we found out model to produce high
number of inaccurate enhancing tumor segmentation labels (24th rank by DICE
ET). This issue could be potentially overcame with learning ET, TC, WT labels
instead of labels provided by annotation. However our model showed relatively
high score for segmentation of Tumor Core (11th place by DICE TC) and Whole
Tumor (10th place by DICE WT). Furthermore, it achieved ranks as high as 9th,
5th, 12th for segmentation of ET, TC, WT w.r.t. Hausdorff distance.

To sum it up, in this paper we presented automatic segmentation algorithm
solving two main problem arising during brain tumor segmentation with multi-
modal scans: complex input consisting of multiple modalities and overconfidence
of the classifier. Solving the problem of heterogeneous input we proposed to use
multiple encoders, so that every individual input modality produces correspond-
ing feature maps independently from others; and we introduced the way to merge
encoded feature maps. Also we explored influence of channel-out augmentation
on model’s output quality and we showed that proposed architecture benefits
from this aggressive augmentation. It encourages model to take into account
whole input by implicitly penalizing classifiers that rely only on one single modal-
ity. As a result model becomes robust to the presence of noise and corrupted data
that could be encountered in the training and validation datasets. Moreover we
introduced the way to efficiently fuse multiple models operating on the different
resolution that forms a cascade of classifiers. Every next classifiers takes results
of previous ones and refines the segmentation for it’s specific scale. It enables
iterative result refinement with less parameters than in corresponding deep mod-
els. As a part of BraTS 2018 challenge [1,11] we implemented and evaluated our
approach with online validation tools. As a result we achieved high mean score
and notably high median score. The mean Dice score of 0.878/0.72/0.795 was
reported on testing dataset for the Whole tumor, Enhancing tumor and Tumor
core correspondingly
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