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Abstract. Accurate brain tumor segmentation plays a pivotal role in clinical
practice and research settings. In this paper, we propose the multi-level up-
sampling network (MU-Net) to learn the image presentations of transverse,
sagittal and coronal view and fuse them to automatically segment brain tumors,
including necrosis, edema, non-enhancing, and enhancing tumor, in multimodal
magnetic resonance (MR) sequences. The MU-Net model has an encoder–de-
coder structure, in which low level feature maps obtained by the encoder and
high level feature maps obtained by the decoder are combined by using a newly
designed global attention (GA) module. The proposed model has been evaluated
on the BraTS 2018 Challenge validation dataset and achieved an average Dice
similarity coefficient of 0.88, 0.74, 0.69 and 0.85, 0.72, 0.66 for the whole
tumor, core tumor and enhancing tumor on the validation dataset and testing
dataset, respectively. Our results indicate that the proposed model has a
promising performance in automated brain tumor segmentation.
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1 Introduction

Glioma is a type of tumors that starts in the glial cells of the brain or the spin, comprising
about 30% of all brain tumors and central nervous system tumors, and 80% of all
malignant brain tumors [1]. Shape and localization of tumors are crucial for diagnosis,
treatment planning and follow-up observation in clinical, while the manual segmenta-
tion of brain tumor in magnetic resonance (MR) images requires a high degree of skills
and concentration, and is time-consuming, expensive and prone to operator bias. Thus, a
fully automated and reliable segmentation algorithm is of great significance. However,
despite considerable research efforts being devoted to this task [2], automated seg-
mentation of brain tumors remains a challenge, largely due to the variable shapes and
locations, diffusion and poor contrast of brain tissues in MR images.
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In recent years, deep learning techniques, especially deep convolutional neural
networks (DCNNs), have led to significant breakthroughs in computer vision, since
they provide an ‘end-to-end’ framework for simultaneous presentation learning and
image segmentation and thus free users from the troublesome extraction of handcrafted
features. Such breakthroughs have prompted many researchers to use DCNNs for brain
tumor segmentation. The solutions published in the literature can be roughly divided
into two groups. One group of solutions are based on the classification of image
patches. Pereira et al. [3] designed an 11-layer CNN and a 9-layer CNN to classify the
patches extracted from high grade gliomas (HGG) and low grade gliomas (LGG),
respectively. To simultaneously learn the presentation of both fine details and coarse
structures from input images, Zhao et al. [4] proposed a three-convolutional-pathway
network, in which the input patches for three pathways have a size of 48 � 48,
28 � 28 and 12 � 12, respectively, and concatenated these three outputs for classi-
fication. Kamnitsas et al. [5] adopted a 3D CNN architecture, i.e. DeepMedic, with
multiple input image resolutions, residual connections and fully connected conditional
random field. Castillo et al. [6] developed a neural network with four contracting
pathways and residual connections that receive patches centered on the same voxel, but
with different spatial resolutions. Lopez et al. [7] removed max pooling layers in dilated
residual network [8] to avoid loss of upsampling the prediction by interpolation, but at
the same time enlarge the receptive field through dilated convolutional operations.
McKinley et al. [9] also replaced max pooling layers by dilated convolutions without
influencing the receptive field of the classifier in Densenet. The other group of solutions
are based on fully convolutional networks (FCNs). Pereira et al. [3] employed two U-
Nets, one for the localization of tumors and the other for the segmentation of intra-
tumor structures. Li et al. [10] used three parallel end-to-end networks for three views
and generated the segmentation results using majority voting. Kamnitsas et al. [11]
trained seven end-to-end networks and used ensemble learning to produce robust
segmentation results. Wang et al. [12] proposed a cascade of fully convolutional neural
networks to decompose the multi-class segmentation problem into a sequence of three
binary segmentation problems according to the subregion hierarchy. In our previous
work [13], we used a cascaded U-Net model and a patch-wise CNN to detect and
segment brain tumors.

In this paper, we propose a FCN called the multi-level upsampling network (MU-
Net) to segment brain tumor structures, including necrosis, edema and enhancing tumor
from multimodality MR. Our main contributes are: (a) we designed a global attention
(GA) module to combine the low level feature from encoder and high level feature
from decoder; (b) we designed a multi-level decoding architecture. The proposed
algorithm has been evaluated on the BraTS 2018 Challenge validation dataset and
achieved a promising result.

2 Dataset

The proposed MU-Net model was evaluated on the Brain Tumor Segmentation 2018
(BraTS 2018) Challenge dataset [14–16]. There are 285 cases for training, including
210 HGG and 75 LGG cases. Each case has four multimodal MR scans, including the
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T1, T1c, T2, and FLAIR. All these scans were co-registered to the same anatomical
template, interpolated to the same dimension of 240 � 240 � 155 and the same voxel
size of 1.0 � 1.0 � 1.0 mm3 and skull-stripped. Each case has been segmented
manually, by up to four raters, following the same annotation protocol, and their
annotations were approved by experienced neuro-radiologists. Annotations of tumor
tissues comprise the enhancing tumor (ET-label 4), the peritumoral edema (ED-label
2), and the necrotic and non-enhancing tumor core (NCR/NET-label 1). The validation
and testing datasets consist of 66 and 191 cases, respectively, but their grade and
ground truth are unseen.

3 Methods

The 3D brain MR sequences are resliced from three views, transverse, sagittal and
coronal respectively. Three probability maps of these three views are learned by three
identical MU-Nets, respectively, and concatenated together as the input of a multi-view
fusion network. The pipeline of proposed algorithm is shown in Fig. 1.

3.1 MU-Net

The proposed MU-Net model adopts the encoder-decoder structure, consisting of five
convolutional blocks, a spatial pyramid pooling (SPP) module [17], five global
attention (GA) modules, and nine upsampling feature (UF) modules. The architecture
of this model is shown in Fig. 2.

The encoder branch is a variants of ResNet-101. The convolutional layer with 64
7 � 7 kernels and a stride of 2 in the root block (i.e. Block 1) is replaced with five
convolutional layers, each consisting 64 3 � 3 kernels. The stride of the third con-
volutional layer is 2, and the stride of other convolutional layers is 1. Other blocks in
this branch is the same as those in ResNet-101 [18].

Between the encoder and decoder, we add a SPP module, in which there are five
parallel operators, including three 3 � 3 dilated convolution with a dilation rate of 6,
12, and 18, respectively, a 1 � 1 convolution and a global pooling (see Fig. 3(a)). The
input of the SPP module is processed by these operators simultaneously, and the feature
maps generated by these operators are concatenated as the output of the SPP module.

Transverse

Sagital

Coronal

Multi-
view

 fusion
Segmentation

Fig. 1. Pipeline of proposed algorithm.
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The major part of the decoder branch contains five decode modules (i.e. UF 1 – UF 5),
which are designed to recover the size of feature maps. Usually, there are two 3 � 3
convolutions and a bilinear interpolation between them in each UF module (see Fig. 3
(c)). However, since there is no down-sampling operation in the encoder block 3–5, the
interpolation operation is omitted in UF 1, UF 2, and UF 5 modules such that the output
feature maps have the same size as the input of MU-Net. Meanwhile, to combine low-
level feature maps and high-level feature maps in the decoding process, we add five GA
modules to the MU-Net model. Each GA module takes two groups of inputs - low-level
feature maps from the corresponding encoder block and high-level feature maps from
the UF module at the previous level. Two 3 � 3 convolutions are applied to low-level
feature maps, respectively. High-level feature maps are also processed by two opera-
tions – one is the global average pooling followed by a 1 � 1 convolution as, and the
other is a 3 � 3 convolution. The processed high-level feature maps are then used as the
element-wise weighting mask of the processed low-level feature maps (see Fig. 3(b)).
In addition, the output of each of UF 2 – UF 5 are fed simultaneously to the UF module
(UF 6 – UF 9) at the next level. Eventually, the output of the UF 6 and the output of UF1
are concatenated and fed to a 3 � 3 convolution another UF module to produce the
segmentation results.

3.2 Multi-view Fusion

Three views are fused by a shallow encoder-decoder network. The encoder consists of
three convolutional layers with 64, 128 and 256 3 � 3 kernels, followed by three max
pooling layers respectively. The decoder comprises three deconvolutional layers with
256, 128 and 64 kernels of size 3 � 3. Then, we convolve the output of the decoder by
four 3 � 3 kernels and predict by max possibility.

Block 1

Block 2

Block 3

Block 4

Block 5

SPP

GA

GA

GA

GA

GA

UF 5

UF 4

UF 3

UF 2

UF 1

UF 9

UF 8

UF 7

UF 6

Fig. 2. Architecture of the proposed MU-Net model

Brain Tumor Segmentation on Multimodal MR Imaging 171



3.3 Implementation

With the proposed MU-Net model, brain tumor segmentation can be performed on a
slice-by-slice basis. The slices in each training dataset were cropped and padded to
224� 224, 224� 160, 224� 160 for transverse, sagittal, and coronal view, respec-
tively, and the voxel values of each modality were normalized by the min-max nor-
malization. The encoding branch was initialized by the pre-trained ResNet-101 [19].
The positive slices (with tumor) and negative slices (without tumor) were randomly
selected at a rate of 5:1. The cross entropy was used as the loss function, and the
adaptive moment estimator (Adam) with an exponentially descending learning rate of
0.001–0.00001 was adopted as the optimizer. It took about twenty hours to train each
MU-Net model with a batch size of 8 and epochs of 30 on two GPUs (NVIDIA 1080
Ti, 12 GB RAM) four hours to train the fusion network with a batch size of 16 and
epochs of 20.

4 Experiments and Results

Following the request of the challenge, four intra-tumor structures have been grouped
into three mutually inclusive tumor regions: (a) whole tumor (WT) that consists of all
tumor tissues, (b) tumor core (TC) that consists of the enhancing tumor and necrotic
and non-enhancing tumor core, and (c) enhancing tumor (ET). The performance of
segmenting each tumor region was quantitatively evaluated through an online system

Fig. 3. Architecture of modules used in segmentation model. (a) shows the SPP module;(b)
shows GA module; (c) shows the UF module.
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by using three metrics, including the average Dice similarity coefficient, sensitivity and
Hausdorff distance.

Preliminary results for the BraTS 2018 Training dataset have been obtained by
hold-out using 80% of the data (228 cases) for training and the remaining 20% for
validation (57 cases). Table 1 shows the quantitative evaluation and Fig. 4 presents
some examples of the predictions against the ground truth on predicted cases from
BraTS 2018 training data. It appears that this proposed model works well when the
edge is relatively smooth, as the first three examples shown in Fig. 4. However,
similarly to other semantic image segmentation task, our deep model works weakly on
pixels distributed near the edge as th last two examples shown in Fig. 4. Tables 2 and 3
give the quantitative evaluation of our algorithm on 66 validation and 191 testing
unseen subjects. We can observe that performance on training data, validation data and
testing data are consistent, which indicates that this model generalizes well to unseen
examples. Figure 5 shows the visualization of segmentation result from validation
dataset.

5 Discussion

5.1 Multi-level Upsampling

To demonstrate the performance improvement resulted from using the GA module, we
trained a similar network but without using multi-level upsampling on the BraTS 2018
training dataset and tested it on the validation dataset. Table 4 gives the performance of
both models measured by the average Dice similarity coefficient, sensitivity, specificity
and Hausdorf-95. It reveals that multi-level upsampling connection is able to improve
the performance.

Table 1. Quantitative result of validation on BraTS 2018 training set.

Dice Sensitivity Hausdorf-95
ET WT TC ET WT TC ET WT TC

Mean 0.61 0.83 0.73 0.83 0.89 0.75 41.48 47.23 41.14
StdDev 0.27 0.11 0.17 0.17 0.09 0.21 37.49 23.49 28.90
Median 0.72 0.86 0.77 0.88 0.91 0.82 41.69 46.70 44.77
25quantile 0.50 0.78 0.64 0.80 0.85 0.62 5.12 30.36 12.37
75quantile 0.80 0.90 0.86 0.95 0.96 0.93 61.25 59.84 59.67
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Flair                                 T1c                                Segmentation                Ground truth

Fig. 4. Segmentation examples from the validation set. From top to bottom: the 55th, 57th, slices
from the subject Brats18_TCIA01_147_1 and the 55th, 57th slices from the subject
Brats18_TCIA10_629_1. Red - NCR&NET, Blue - ET, Green – ED. (Color figure online)

Table 2. Quantitative result on BraTS 2018 validation set.

Dice Sensitivity Hausdorf-95
ET WT TC ET WT TC ET WT TC

Mean 0.69 0.88 0.74 0.71 0.87 0.77 6.69 4.76 10.67
StdDev 0.27 0.10 0.24 0.28 0.15 0.25 12.43 4.04 9.87
Median 0.80 0.91 0.84 0.82 0.93 0.88 2.83 3.00 6.78
25quantile 0.66 0.88 0.69 0.63 0.84 0.68 1.73 2.24 4.36
75quantile 0.86 0.94 0.90 0.90 0.95 0.93 5.39 5.74 14.73
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Table 3. Quantitative result on BraTS 2018 testing set.

Dice Hausdorf-95
ET WT TC ET WT TC

Mean 0.66 0.85 0.72 5.94 6.29 9.04
StdDev 0.29 0.15 0.27 9.04 9.25 11.47
Median 0.77 0.90 0.82 2.83 4.00 5.39
25quantile 0.60 0.84 0.65 2.00 2.34 3.16
75quantile 0.85 0.93 0.90 5.15 6.28 11.32

Flair                                   T1c                           Segmentation

Fig. 5. Segmentation examples from the validation set. From top to bottom: the 54th and 57th

slices from the subject Brats18_CBICA_ANK_1 and 87th and 91th, slices from the subject
Brats18_CBICA_ANK_1. Red - NCR&NET, Blue - ET, Green – ED (Color figure online)
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6 Conclusion

In this paper, we proposed a novel end-to-end segmentation model called MU-Net to
segment brain tumors and their intra structures from multimodal MR scans, which
learns the presentation of MR scans in transverse, sagittal and coronal views and fused
them through a convolutional neural network for image segmentation. This model has
been evaluated on the BraTS 2018 Challenge online system and achieved an average
Dice similarity coefficient of 0.88, 0.74, 0.69 and 0.85, 0.72, 0.66 for whole tumor,
core tumor, and enhancing tumor on the validation dataset and testing dataset,
respectively.

Acknowledgement. This work was supported in part by the National Natural Science Foun-
dation of China under Grants 61471297 and 61771397.

References

1. Goodenberger, M.L., Jenkins, R.B.: Genetics of adult glioma. Cancer Genet. 205, 613–621
(2012). https://doi.org/10.1016/j.cancergen.2012.10.009

2. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS).
IEEE Trans. Med. Imaging 34, 1993–2024 (2015)

3. Pereira, S., Oliveira, A., Alves, V., Silva, C.A.: On hierarchical brain tumor segmentation in
MRI using fully convolutional neural networks: a preliminary study. In: 2017 IEEE 5th
Portuguese Meeting on Bioengineering (ENBENG), pp. 1–4. IEEE (2017)

4. Zhao, L., Jia, K.: Multiscale CNNs for brain tumor segmentation and diagnosis. Comput.
Math. Methods Med. 2016 (2016)

5. Kamnitsas, K., et al.: Deepmedic for brain tumor segmentation. In: Crimi, A., Menze, B.,
Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) International Workshop on
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 138–149.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_14

6. Castillo, L.S., Daza, L.A., Rivera, L.C., Arbeláez, P.: Brain Tumor segmentation and parsing
on MRIs using multiresolution neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze,
B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 332–343. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75238-9_29

7. Moreno Lopez, M., Ventura, J.: Dilated convolutions for brain tumor segmentation in MRI
scans. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017.
LNCS, vol. 10670, pp. 253–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75238-9_22

Table 4. Comparison of model with multi-level upsampling and without multi-level upsampling
on BraTS 2018 validation dataset

Dice Sensitivity Hausdorf-95
ET WT TC ET WT TC ET WT TC

With MU 0.69 0.88 0.74 0.71 0.87 0.77 6.69 4.76 10.67
Without MU 0.65 0.84 0.69 0.74 0.84 0.70 29.82 34.51 38.73

176 Y. Hu et al.

http://dx.doi.org/10.1016/j.cancergen.2012.10.009
http://dx.doi.org/10.1007/978-3-319-55524-9_14
http://dx.doi.org/10.1007/978-3-319-75238-9_29
http://dx.doi.org/10.1007/978-3-319-75238-9_22
http://dx.doi.org/10.1007/978-3-319-75238-9_22


8. Yu, F., Koltun, V., Funkhouser, T.A.: Dilated residual networks. In: Computer Vision and
Pattern Recognition, pp. 636–644 (2017)

9. McKinley, R., Jungo, A., Wiest, R., Reyes, M.: Pooling-free fully convolutional networks
with dense skip connections for semantic segmentation, with application to brain tumor
segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes
2017. LNCS, vol. 10670, pp. 169–177. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75238-9_15

10. Li, Y., Shen, L.: Deep learning based multimodal brain tumor diagnosis. In: Crimi, A.,
Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670,
pp. 149–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_13

11. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain
tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.)
BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75238-9_38

12. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using
cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H.,
Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

13. Hu, Y., Xia, Y.: 3D deep neural network-based brain tumor segmentation using
multimodality magnetic resonance sequences. In: Crimi, A., Bakas, S., Kuijf, H., Menze,
B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 423–434. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75238-9_36

14. Bakas, S.: Advancing the cancer genome atlas glioma MRI collections with expert
segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

15. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the
TCGA-GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/
TCIA.2017.KLXWJJ1Q

16. Bakas, S., et al.: Segmentation labels and radiomic features for the preoperative scans of the
TCGA-LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/
TCIA.2017.GJQ7R0EF

17. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous
separable convolution for semantic image segmentation. arXiv preprint arXiv:1802.02611
(2018)

18. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe,
B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

19. Pre-trained Resnet_v2_101 model. http://download.tensorflow.org/models/resnet_v2_101_
2017_04_14.tar.gz

20. Bakas, S., Reyes, M., Jakab, A, Bauer et al.: Identifying the best machine learning
algorithms for brain tumor segmentation, progression assessment, and overall survival
prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

Brain Tumor Segmentation on Multimodal MR Imaging 177

http://dx.doi.org/10.1007/978-3-319-75238-9_15
http://dx.doi.org/10.1007/978-3-319-75238-9_15
http://dx.doi.org/10.1007/978-3-319-75238-9_13
http://dx.doi.org/10.1007/978-3-319-75238-9_38
http://dx.doi.org/10.1007/978-3-319-75238-9_38
http://dx.doi.org/10.1007/978-3-319-75238-9_16
http://dx.doi.org/10.1007/978-3-319-75238-9_36
http://dx.doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
http://dx.doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
http://dx.doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
http://dx.doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
http://arxiv.org/abs/1802.02611
http://dx.doi.org/10.1007/978-3-319-46493-0_38
http://download.tensorflow.org/models/resnet_v2_101_2017_04_14.tar.gz
http://download.tensorflow.org/models/resnet_v2_101_2017_04_14.tar.gz
https://arxiv.org/abs/1811.02629

	Brain Tumor Segmentation on Multimodal MR Imaging Using Multi-level Upsampling in Decoder
	Abstract
	1 Introduction
	2 Dataset
	3 Methods
	3.1 MU-Net
	3.2 Multi-view Fusion
	3.3 Implementation

	4 Experiments and Results
	5 Discussion
	5.1 Multi-level Upsampling

	6 Conclusion
	Acknowledgement
	References




