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Abstract. Brain tumor localization and segmentation is an important
step in the treatment of brain tumor patients. It is the base for later clin-
ical steps, e.g., a possible resection of the tumor. Hence, an automatic
segmentation algorithm would be preferable, as it does not suffer from
inter-rater variability. On top, results could be available immediately
after the brain imaging procedure. Using this automatic tumor segmen-
tation, it could also be possible to predict the survival of patients. The
BraTS 2018 challenge consists of these two tasks: tumor segmentation
in 3D-MRI images of brain tumor patients and survival prediction based
on these images. For the tumor segmentation, we utilize a two-step app-
roach: First, the tumor is located using a 3D U-net. Second, another 3D
U-net — more complex, but with a smaller output size — detects subtle
differences in the tumor volume, i.e., it segments the located tumor into
tumor core, enhanced tumor, and peritumoral edema.

The survival prediction of the patients is done with a rather simple,
yet accurate algorithm which outperformed other tested approaches on
the train set when thoroughly cross-validated. This finding is consistent
with our performance on the test set - we achieved 3rd place in the
survival prediction task of the BraTS Challenge 2018.
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1 Introduction

Brain tumors can appear in different forms, shapes and sizes and can grow to
a considerable size until they are discovered. They can be distinguished into
glioblastoma (GBM/HGG) and low grade glioma (LGG). A common way of
screening for brain tumors is with MRI-scans, where even different brain tumor
regions can be determined. In effect, MRI scans of the brain are not only the
basis for tumor screening, but are even utilized for pre-operative planning. Thus,
an accurate, fast and reproducible segmentation of brain tumors in MRI scans
is needed for several clinical applications.
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HGG patients have a poor survival prognosis, as metastases often develop
even when the initial tumor was completely resected. Whether patient overall
survival can be accurately predicted based on pre-operative scans by employing
knowing factors such as radiomics features, tumor location and tumor shape,
remains an open question.

The BraTS challenge [11] addresses these problems, and is one of the biggest
and well known machine learning challenges in the field of medical imaging. Last
year around 50 different competitors from around the world took part. This year,
the challenge is divided in two parts: First, tumor segmentation based on 3D-
MRI images, and second, survival prediction of the brain tumor patients based
on only the pre-operative scans and the age of the patients.

(a) T1 weighted (b) T1 post-contrast (c) Subtraction image

(d) T2 weighted (e) T2 Flair (f) T1 with labels

Fig. 1. Example of image modalities and groundtruth-labels in the BraT$S 2018 dataset.
The subtraction image is calculated by subtracting the T1 image (a) from the T1
post-contrast image (b), as described in Sect.3.1. For the labels, blue indicates the
peritumoral edema, green the necrotic and non-enhancing tumor, and red the GD-
enhancing core, as described in the BraTS paper [11]. (Color figure online)
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Similar to the BraT$S 2017 dataset, the BraT$S 2018 training dataset consists
of MRI-scans of 285 brain tumor patients from 19 different contributors. The
dataset includes T1, T1 post-contrast (T1CE), T2, and T2 Fluid Attenuated
Inversion Recovery (Flair) volumes, as well as hand-annotated expert labels for
each patient [1-3]. An example of a set of images can be seen in Fig. 1.

Motivated by the success of the U-net [14] in biomedical image segmentation,
we choose the 3D-adaptation [5] of this architecture to tackle the segmentation
part of the BraTS challenge. Two different versions are used, a first one to
coarsely locate the tumor, and a second one to accurately segment the located
tumor into different areas.

Concerning the survival prediction, we found that complex models using
different types of radiomics features such as shape and texture of the tumor and
the brain could not outperform a simple linear regressor based on just a few
basic features. Using only the patient age and tumor region sizes as features, we
achieve competitive results.

The code developed for this challenge is available online: https://github.com/
weningerleon/BraTS2018.

2 Related Work

In the last years, deep learning has advanced classification and segmentation
in many biomedical imaging applications, and has a preeminent role in current
publications.

In the BraTS Challenge last year, all top-ranking approaches of the segmen-
tation task [6,9,16,17] used deep convolutional neural networks. The employed
architectures vary substantially among these submission. However, a com-
mon ground seems to be the utilization of 3D-architectures instead of 2D-
architectures.

One key architecture for biomedical segmentation, which is also heavily used
throughout this paper, is the U-Net [14]. Both, 2D as well as 3D-variants [5] have
been successfully employed for various biomedical applications, and still achieve
competitive results in current biomedical image segmentation challenges [7,8].

3 Methods

3.1 Segmentation

We tackle the segmentation task in a two-step approach: First, the location
of the brain tumor is determined. Second, this region is segmented into the
three different classes: peritumoral edema (ed), necrotic tumor (nec), and GD-
enhancing core (gde).
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(b) T1 post-contrast

(¢) Groundtruth (d) Our prediction

Fig. 2. Comparison of our segmentation result with the groundtruth labels.

Preprocessing. We first define a brain mask based on all voxels unequal to
zero, on which all preprocessing is carried out. On this brain mask, the mean
and standard deviation of the intensity is calculated, and the data normalized
accordingly. Since different MRI-scanners and sequences are used, we indepen-
dently normalize each image and modality based on the obtained values. Non-
brain regions remain zero.

The whole tumor is strongly visible in T1, T2 and Flair MRI-images. How-
ever, in practice, including all images seems to produce better results even for the
whole tumor localization. We also add another image as input, a contrast-agent
subtraction image, where the T1 image is subtracted from the T1CE image. This
should enhance the contrast-agent sensitive region, as can be seen in Fig. lc.
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We construct a cuboid bounding box around the brain, and crop the non-
brain regions to facilitate training. The training target is constructed by merging
the three different tumor classes of the groundtruth labels.

For training of the tumor segmentation step, the 3D-images are cropped
around a padded tumor area, which is defined as the area of 20 voxels in every
direction around the tumor.

Network Architectures and Employed Hardware. For both steps, a 3D
U-net [5] with a depth of 4 is employed.

The first U-net uses padding in every convolutional layer, such that the input
size corresponds exactly to the output size. Every convolutional layer is followed
by a ReLU activation function. 16 feature maps are used in the first layer, and
the number of feature maps doubles as the depth increases. For normalization
between the different layers, instance-norm layers [15] are used, as they seem
to be better suited for normalization in segmentation tasks and for small batch
sizes. Testing different training hyperparameters, the Adam optimizer [10] with
an initial learning rate of 0.001 together with a binary cross entropy loss was
chosen for the tumor localization step. An L2-regularization of 1le—5 is applied
to the weights, and the learning rate was reduced by a factor of 0.015 after every
epoch. One epoch denotes a training step over every brain.

The U-net utilized in the second step has a similar architecture as the pre-
vious one, but with double as many feature maps per layer. To counteract the
increased memory usage, no padding is used, which drastically reduces the size
of the output as well as the memory consumption of later feature maps.

Here, we apply a multi-class dice loss to the output of our 3D U-net and
the labels for training, as described in [12]. A learning rate of 0.005 was chosen,
while weight decay and learning rate reduction remain the same as in step 1.

Our contribution to the BraTS challenge was implemented using pyTorch
[13]. Training and prediction is carried out on a Nvidia 1080 Ti GPU with a
memory size of 11 Gb.

Training. In the first step, we train with complete brain images cropped to the
brain mask. The brain mask is determined by all voxels not equal to zero. Using
a rather simple U-net, a training pass with a batch-size of one fits on a GPU
even for larger brains. Due to the bounding box around the brain, different sizes
need to be passed through the network. In practice this is possible using a fully
convolutional network architecture and a batch size of one.

For the second step, we choose the input to be fixed to 124 x 124 x 124. Due
to the unpadded convolutions, this results in an output shape of 36 x 36 x 36.
Hence, the training labels are the 36 x 36 x 36 sized segmented voxels in the
middle of the input. Here, a batch-size of two was chosen.

During training, patches are chosen from inside the padded tumor bounding
box for each patient. To guarantee a reasonably balanced train set, only training
patches which comprise all three tumor classes are kept for training.
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Inference. Similar to the training procedure, the first step is carried out directly
on a complete 5-channel (T1, T2, Flair, TICE, and contrast-agent subtraction
image) 3D image of the brain.

Before the tumor/non-tumor segmentation of this step is used as basis in the
second step, only the largest connected area is kept. Based on the assumption
that there is only one tumorous area in the brain, we can suppress false positive
voxels in the rest of the brain with this method.

We then predict 36 x 36 x 36 sized patches with the trained unpadded U-
net. Patches are chosen so that they cover the tumorous area, and the distance
between two neighboring patches was set to 9 in each direction. This results
in several predictions per voxel. Finally, a majority vote over these predictions
gives the end result.

3.2 Survival Prediction

According to the information given by the segmentation labels, we count the
number of voxels of the tumor segmentation. This volume information about
the necrotic tumor core, the GD-enhancing tumor and peritumoral edema as
well as the distance between the centroids of tumor and brain and the age of the
patient were considered as valuable feature for the survival prediction task. We
tested single features, as well as combinations of features as input for a linear
regressor.

4 Results

4.1 Segmentation

For evaluation on the training dataset, we split the training dataset randomly
into 245 training images and 40 test images to evaluate our approach with
groundtruth labels. No external data was used for training or pre-training.

Based on our experience with the training dataset, we choose 200 epochs as an
appropriate training duration for the first step, and 60 epochs as an appropriate
training duration for the second step. We thus train from scratch on all training
images for the determined optimal number of epochs, and use the obtained net-
works for evaluation on the validation set. The results obtained by this method
can be seen in Table 1, and an exemplary result is visualized in Fig. 2.

4.2 Survival Prediction

For evaluating our approach on the training dataset, we fit and evaluate our
linear regressor with a leave-one-out cross-validation on the training images. We
compare the results obtained by solely using the age of the patient versus using
the age with a subset of the tumor region sizes as features. On top, we consider
the distance between the centroid of the tumor and the centroid of the brain as a
feature. Our finding is that all features other than the age of the patient increase
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Table 1. Results for the segmentation challenge. Train, validation and test errors
according to the online submission system, as available.

Dataset | Dice Sensitivity Specificity Hausdorff 95

ET WT | TC ET WT | TC ET WT | TC ET WT | TC
Train set | 0.763 | 0.860 | 0.817 | 0.747 | 0.784 | 0.787 | 0.998 | 0.998 | 0.998 | 5.63 | 7.01 | 7.88
Val set 0.712 | 0.889 | 0.758 | 0.757 | 0.887 | 0.735 | 0.998 | 0.995 | 0.998 | 6.28 | 6.97 | 10.91
Test set | 0.621 | 0.844 | 0.728 | * * * * * * 10.5 |8.71|13.3

the error on left-out images. In Tables 2 and 3, we show the exact results for the
different input features on the training set (cross-validation) and on the test set
(according to the online portal).

In Fig. 3, the survival time in years is plotted against the age for all patients
with a resection status of ‘gross total resection’ in the train dataset. The linear
regressor fitted to this data and used for the challenge, is plotted as well. The
three classes used during the challenge, dividing the dataset into long, short, and
mid-survivors can also be seen.

This age-only linear regressor achieved the 3rd place in the BraTS challenge
2018 [4], with an accuracy of 0.558, a MSE of 277890 and a median SE of 43264
on the test data.

Table 2. Training Data: Mean Squared Error and Median Error for leave-one-out
cross-validation of the linear regressor. The different features considered are the age of
the patient, the volume in voxels of the enhancing tumor (gde), of the necrotic tumor
(nec), of the edema (ed) as well as the distance between the centroid of the tumor and
the centroid of the brain (dist).

Features MSE | Median Err.
Age (submitted) 95082 | 216
Age + gde 100941 | 224
Age + ed 99693 | 221
Age + nec 98826 | 216
Age + dist 100928 | 215
Age + gde + ed + nec | 109817 | 222

Table 3. Validation Data: Accuracy metrics according to the online portal.

Features Accuracy | MSE Median SE | stdSE SpearmanR
Age 0.5 97759.5  46120.5 139670.7 | 0.267
Age + gde + ed + nec | 0.536 101012.0 | 51006.5 140511.5 |0.258
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Fig. 3. Our linear regressor (blue) over the age of the tumor patients. The red points
are the training data, and the green lines indicate the boundaries between the classes
(long, mid, and short survivor), which are used for calculation of the accuracy metric.
(Color figure online)

5 Discussion and Conclusion

Our contribution submitted to the BraTS challenge 2018 was summarized in
this paper. We used a two-step approach for tumor segmentation and a linear
regression for survival prediction.

The segmentation approach already gives promising results. In practice, the
two-step framework helps eliminating spurious false-positive classifications in
non-tumorous areas, as only the largest connected area is considered as tumor.
However, this assumes that there is only one tumorous area in the brain. As there
is only one tumorous area in the vast majority of cases, this boosts the accu-
racy measured. Notwithstanding, it is a simplification that can lead to serious
misclassifications in single cases.

This simplification needs to be tackled in future development of the frame-
work. Furthermore, we will evaluate a broader variety of different network archi-
tectures, and will also include 3D data-augmentation techniques into our frame-
work.

Our algorithm for the survival analysis task is a straight-forward approach.
We considered other, more complex approaches, which were however not able to
beat this baseline algorithm.

On the validation set, our survival prediction algorithm ranks among the top
submissions, e.g., the age-only approach achieves the lowest MSE and second
highest accuracy according to the online portal.
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Finally, our top-placement (3rd place) in the challenge underlines the

strength of the age as feature for survival prediction. Other teams, using various
radiomics and/or deep learning approaches, could not perform much better than
our straight-forward approach. Hence, it can be concluded that pre-operative
scans are not well suited for survival prediction. However, other datasets could
be better suited for survival prediction, e.g., post-operative or follow-up scans
of the patient.
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