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Abstract. This paper presents a novel Multipath Densely Connected
Convolutional Neural Network (MDCNN) for automatically segmenting
glioma with unknown sizes, shapes and positions. Our network archi-
tecture is based on the Multipath Convolutional Neural Network [21],
which considers both local and contextual patches of segmentation infor-
mation, including original MRI images, symmetry information and spa-
tial information. Motivated to reduce the feature loss induced by under-
utility of feature maps, we propose to fuse feature maps from original
local and contextual paths at three different units and introduce three
more densely connected paths. Consequently, three auxiliary segmenta-
tion paths together with original local and contextural paths forms the
complete segmentation network. The model’s training and validation are
performed on the BraTS2017 dataset. Experimental results demonstrate
that the proposed network is capable to effectively extract more accurate
tumor locations and contours with improved stability.

1 Introduction

Glioma is a type of tumor that occurs in the brain and spinal cord, and it
accounts for almost 80% of primary malignant brain tumors [20]. Statistics show
that brain and other central nervous system (CNS) tumors are the second most
common cancers in children and adolescents [6]. What’s worse is that brain
tumor in children easily leads to related diseases, such as visual impairment and
hemiplegia.

Last few decades have witnessed significant improvement in clinical neuro-
oncology treatment, including neurosurgery surgery, chemotherapy, radiotherapy,
physiotherapy and etc. [23]. Medical images, such as computed tomography (CT),
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ultrasound and magnetic resonance imaging (MRI), act as an irreplaceable role in
these techniques, since they can provide indispensable information for diagnosis
and treatment. Comparing with other medical imaging modalities, MRI can form
clear and complete pictures of the lesions from various image sequences [3]. This
advantage makes MRI being widely used in hospitals and clinics for medical diag-
nosis and treatment of many diseases [7].

Whereas MRI brings great conveniences for tumor diagnosis, it’s not straight-
forward to accurately segment MRI images for extracting the patient-specific
important clinical information, and their diagnostic features [15,24]. Moreover,
due to the large amount of data, it is time consuming and tedious for the radiol-
ogists to manually annotate and segment the data, resulting in limited usage for
objective quantitative analysis [3]. To tackle this issue, great efforts are put for
automatic brain tumor segmentation. Considerable research has been conducted
for glioma segmentation in MRI images, it’s still a challenge task to achieve
satisfied results due to several inherent difficulties:

– It requires large dataset to learn stable characteristics feature map because
of the uncertainty in shape and characteristics of glioma.

– It’s difficult to balance between large context features and local detail features
because of various region sizes of different tissue distributions.

– It easily causes class imbalance due to inhomogeneity of label classification.

Abundant of solutions are proposed aiming at solving this problem from
different perspectives. To reduce continuous resolution reduction, Long et al.
[14] propose to segment images using Fully Convolutional Networks (FCN) and
achieve pixel level segmentation on images with various scales. However, the
results has limited accuracy because max-pooling and sub-sampling would reduce
the resolution of feature maps. To solve this problem, SegNet [1] and U-Net [19]
add up-sampling layers (decoder network) after down-sampling layers (encoder
network) to map low resolution feature maps to full input resolution feature
maps. This architecture improves segmentation accuracy due to more features
retained from training data. U-Net has been successfully adopted for real brain
tumor segmentation [4].

With the depth of the network deepens, SegNet and U-Net would “get lazy”
in feature extraction, i.e., it would easily lose abstract features. ResNet [9] are
proposed to improve the learning capability of deeper features with deeper mod-
els. It reformulates the layers as learning residual functions with reference to the
layer inputs, rather than learning unreferenced functions.

By introducing direct connections between any two layers with the same
feature-map size, DenseNet [11] can naturally scale to hundreds of layers without
exhibiting optimization difficulties. Moreover, DenseNet requires substantially
fewer parameters and less computation because of the adoption of hyperparam-
eter settings optimized for residual networks.

Meanwhile, dual path cascade architecture also has achieved good results on
brain tumor segmentation task [8]. [12] simultaneously exploits local features and
more global contextual features than traditionally CNN architecture and obtains
competitive performance with much higher efficiency. [21] further improves the
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network of [12] by considering spatial information and high asymmetry property
caused by the contrast between healthy brain tissue and tumor tissue.

Some other researchers design segmentation networks by integrating advan-
tages from multiple different networks. [18] proposes a natural image segmenta-
tion algorithm by introducing a special residual function with a path of multiple
stream. [11] employed this method on brain tumor segmentation and achieved
appealing results. [16] and [17] integrate several components into CNNs, includ-
ing residual structure, up-sampling, down-sampling and symmetric/asymmetric
convolution structure. Therein, E-Net [16], significantly improve efficiency with
competitive results while [17] performs better in boundary segmentation by
enlarging perception of different convolution sum. In addition to residual struc-
ture, [5] continuously fuses feature information from different convolutional lay-
ers to retain detail features and reduce in-balance problem.

In this paper, we propose a Multi-path Densely Connected Convolutional
Neural Network (MDCNN) which fuses information in multiple stages to improve
the stability and reduce feature loss, and define a loss function to support multi-
path segmentation.

2 Database

Data from BarTS Challenge 2017 [2], which is composed of training, validation
and test datasets, is employed for our experiments. Since the date of competi-
tion has expired and unable to get the test datasets, we only use the training
and validation dataset. The training dataset contains MRI data of 285 sub-
jects, 210 with high grade glioma (HGG) and 75 with low grade glioma (LGG).
Each training subject provides four MRI modalities, namely T-weighted(T1),
post-contract T1-weighted(T1ce), T2-weighted(T2) and T2 Fluid Attenuated
Inversion Recovery(FLAIR). In addition, four ground truth classes are given by
images with resolution 240 × 240 × 155. The four classes represent necrotic and
non-enhancing tumor (NCR and NET, label 1), peritumoral edema (ED, label
2), enhancing tumor (ET, label4) and everything else (label 0), respectively.

80% of the training dataset (168 HGG and 60 LGG subjects) is used for
training and the remaining 20% (42 HGG and 15 LGG subjects) is used for
validation. At last, the validation dataset without GT from 46 patients is used
to test the proposed network.

3 Methods

Our method is motivated to make full usage of features for better segmentation
performance by integrating advantages from multi-path Convolutional Neural
Network [21] and densely connected multi-scale feature maps [11]. The work of [21]
uses multi-path to encode both contextual and local information and proposes spe-
cific pre-processing and post-processing procedures for better performance. How-
ever, it hasn’t taken full advantage from feature maps. Multi-scale feature maps
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Fig. 1. Illustration of multipath densely connected CNN. (Color figure online)

and dense connectivity are introduced to further improve the segmentation accu-
racy. This shares similar idea as MSDNET [10], which is originally proposed to
classify images with strong randomness and large variation range. So, the pro-
posed method not only fuse the feature maps at the final stage of the two paths,
but also introduce fusion in multiple stages and add dense connection between the
fused feature maps. Even local and contextural paths may lose some features, the
segmentation network of fusion feature can compensate with different features and
thus can improve the performance. This architecture can continuously strengthen
the transmission between feature maps, thus making more efficient usage of fea-
ture maps and reducing vanishing-gradient [10,11]. Even with more parameters,
the network is more stable and has stronger learning ability.

Figure 1 illustrates the network structure. The network extracts both large
contextual patches and local patches as multi-path CNN does, so it can well
retain contextual information. On the basis work of [21], symmetry information
is used to differentiate healthy tissue and tumor tissue. To facilitate re-usage of
feature maps for fusion in the same scale, we change the patch sizes on the con-
textual region path and on local region path in multi-path CNN to 48× 48 × 11
and 20× 20 × 4, respectively. In addition to convolution operation in each path,
we fuse feature maps from large region path and local region path. The fusion
operation can make better usage of feature maps. The first fusion of feature
maps from two paths is conducted when the size of feature map is 16 × 16 (Illus-
trated in the red part in Fig. 1). The fusion generates the first auxiliary densely
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connected segmentation path. In the same manner, the second and third aux-
iliary densely connected segmentation path are generated by fusing the feature
maps with size 12 × 12 and 8× 8 (Illustrated in the blue and yellow regions
respectively). Further, first auxiliary layer with size 16× 16 is proceeded to layer
with size 8 × 8 (See the yellow rectangle in Fig. 1) and fused to the second auxil-
iary densely connected segmentation path. Similarly, the second auxiliary layer
is proceeded to layer with size 4 × 4 and fused to the third auxiliary layer. Each
fused feature map will generate an auxiliary densely connected segmentation
path with normal convolution and FCN. We also tried to introduce fusion on
the layer with patch size 4 × 4 and found that it can’t significantly improve the
performance but introduces more parameters. So we finally chose to use three
fusion segmentation paths for the best performance. Except for the parameters
shown in Fig. 1, the layers between 48 × 48 × 11 to 16 × 16 × 64 and the FCN
parameters on the main path and branches are given in Table 1.

After several convolution operation and dropout regularization [22], contex-
tural and local feature vectors are concatenated and put forward for another
FC layer. Finally, softmax function is adopted for classification. In the training
process, we employ DisturbLabel regularization, which randomly set GT to 0 or
1, to improve the stability.

Table 1. Detail MDCNN parameters.

Region Block Output size

Large region {5× 5 Conv+ReLU}× 2 40× 40× 32

2× 2 Max-pooling 20× 20× 32

{5× 5 Conv+ReLU}× 2 12× 12× 128

Main path FCN× 4 256

128

32

4/2 classes

Auxiliary path FCN× 3 128

32

4/2 classes

Besides, considering that brain tumor segmentation has relatively lower ran-
domness, we introduce the idea of dense connection [10] to our net. In addition,
the segmentation results from four paths, i.e., main path and three densely con-
nected paths, are weighted by 0.25 summed up for the final loss. The loss function
is:

L(X;ω) =
∑

s∈S

λ1Ls(X;ωs) +
∑

s∈S

λ2Ls(X;ωs), (1)
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in which, S is the number of branches, X is the input with size [N,h ∗ w ∗ d],
ωs is the weight, λ1 and λ2 are the weights correlating to the ratio of the two
cases. Ls is the loss function defined for each branch:

Ls =
1
N

N∑

i=1

C∑

c=1

Zgt
i,c · log qi,c (2)

in which, N is the number of samples in the batches, qi,c means the segmentation
results with respect to label c, and Zgt

i,c is the corresponding label. In this paper,
we simultaneously consider two classification cases, namely two classes (with
label 0 or 1) and four classes (with label 0,1,2,4), to further enhances the learning
capability.

4 Results

The method is implemented with Python and trained with TensorFlow. The
hardware platform is PC with NVIDIA Titan X (12 GB) GPU and Intel R©
Xeon(R) CPU E3-1231 v3 @ 3.40 GHz x8 32 GB). The detailed parameters in
network are given in Fig. 1 and Table 1.

In pre-processing, all data are clipped into range [−2.0, 2.0]. The sizes of con-
textual patches and local patches are 48 × 48 and 20 × 20, respectively. Dropout
probability used during the entire training process is 0.5. Weights for the two
classification cases (λ1 and λ2) are 0.2 and 0.4. These parameters are empirically
chosen based on [21]. In the training process, Adama optimization algorithm [13]
is used to update weights. Different parameters are used in Adama optimizers
in different phases.

Two phases are defined in training, rather than 3 phases use by [21]. The
two phases correlate to pre-training and fine training. During the first phase
(iteration ≤ 9000), we randomly chose data of 5 subjects and extract 50 samples
for each class in each iteration. During the second phase (9000 < iteration ≤
13000), 10 subjects and 25 samples for each class are randomly chosen in each
iteration. 10−4 and 10−5 are chosen as the learning rate for these two phases.

In post-processing, thresholding is first applied to convert the output, which
represents the probability of being different regions, to integer values matching
with the GT data type. The thresholding values for being tumorous or being
enhancing tumor are 0.905 and 0.45, respectively. In addition, after thresholding,
connected components with less than 3000 voxels will be re-classified as healthy.

Our experiment is conducted on various label combination, including whole
tumor region with labels 1, 2, 4 (WT), core tumor region with labels 1 and 4
(TC), and enhancing tumor region with label 4 (ET). We adopt 20% of the train-
ing dataset (Data of 57 subjects) and validation dataset (Data of 46 subjects)
in validation and testing, respectively. Besides, Dice score and 95% Hausdorff
are used for measurement. The results all we show in the tables are received
after uploading our segmentation results to the official website. Since BraTS2017
testing dataset is not available, we use the validation dataset for testing. The
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Table 2. Comparison with [21] after post-processing in terms of average Dice score and
95% Hausdorff distance for the BraTS 2017 training subset and validation datasets.

Dataset Dice Hausdorff

ET WT TC ET WT TC

Results of [21] Training (57 cases) 0.671 0.859 0.725 8.882 11.279 10.989

Validation 0.678 0.877 0.713 12.749 11.013 14.000

Our results Training (57 cases) 0.685 0.896 0.822 6.515 6.614 7.816

Validation 0.705 0.889 0.756 6.016 6.161 10.355

Table 3. Comparison on results without post-processing in terms of average Dice score
and 95% Hausdorff distance for the BraTS 2017 training subset.

Dataset Dice Hausdorff

ET WT TC ET WT TC

Results of [21] Training (57 cases) 0.626 0.751 0.687 27.336 36.910 30.001

Our results Training (57 cases) 0.652 0.820 0.793 14.505 26.186 17.170

Table 4. Segmentation results on LGG training subjects from BraTS 2017 training
datasets.

Dataset Dice Hausdorff

Training (LGG, 15cases) ET WT TC ET WT TC

Results of [21] Without post-processing 0.334 0.800 0.532 39.820 38.987 23.124

With post-processing 0.358 0.890 0.544 19.962 11.841 12.352

Our results Without post-processing 0.334 0.873 0.670 30.291 28.567 16.009

With post-processing 0.372 0.895 0.676 18.516 5.530 9.367

evaluation results of validation dataset are also received after uploading our seg-
mentation results to the official website, because we have no the Ground Truth.

Table 2 shows the results of our method and that of [21] both with post-
processing. The thresholding of being tumorous or being enhancing tumor used
by [21] are 0.916 and 0.4. We can find that our method achieve better perfor-
mance for all segmentation tasks (WT, TC and ET) than [21]. On the training
dataset, the presented method gains nearly 10% improvement, and on the vali-
dation dataset, we achieve 3% improvement in average.

Table 3 compares the results without post-processing from our method and
that from [21]. The comparison is conducted on the testing dataset from training
data. It shows our method achieves 6.7% improvements in average.

Tables 4 and 5 are specified segmentation results on LGG and HGG training
dataset with or without post-processing. It can be observed that our results
with or without post-processing are prior to the result from [21]. Besides, ET
segmentation results on LGG dataset are significantly poorer than that on HGG
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Table 5. Segmentation results on HGG training subjects from BraTS 2017 training
datasets.

Dataset Dice Hausdorff

Training (HGG,
42cases)

ET WT TC ET WT TC

Results of [21] Without
post-processing

0.730 0.734 0.742 24.364 36.169 36.471

With
post-processing

0.783 0.847 0.780 6.244 11.078 10.502

Our results Without
post-processing

0.765 0.814 0.837 10.371 28.567 17.585

With
post-processing

0.797 0.896 0.874 3.372 7.001 7.262

Fig. 2. Segmentation results with MDCNN. The first two row are segmentation results
on two HGG subjects, and the last row shows results of one LGG subject. Regions
with label 1, 2 and 4 are colored in red, green and yellow respectively. (Color figure
online)
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Fig. 3. Comparison on results with and without post-processing. Regions with labels
1, 2 and 4 are colored in red, green and yellow respectively. (Color figure online)

dataset. The main reason might be that LGG dataset is much smaller than
HGG dataset. Thus, collecting more LGG training subjects would improve the
performance.

Several segmentation results are illustrated in Figs. 2 and 3. It can be noticed
that, post-processing can clearly improve the segmentation results on those sub-
jects with more smooth boundaries. In this case, post-processing can effectively
filter out redundant false details, thus improving the performance. Meanwhile,
segmentation for those subjects with bumping region boundaries rely more on the
segmentation capability of the network, and the promotion from post-processing
would be small.

5 Conclusions and Future Work

This paper presents a novel Multi-path Densely Connected Convolutional Neu-
ral Network for glioma segmentation. By introducing densely connections on
fused feature maps, the proposed model can well retain both abstract features
and specific features for deep network. Thus, the network becomes stable and
with higher learning capability. Experiments indicate that our method achieves
the highest performance for various segmentation tasks. In future, we intend
to reduce the memory cost of the network and extend the framework to more
clinical applications.
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