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Abstract. There is a common belief that the successful training of deep
neural networks requires many annotated training samples, which are
often expensive and difficult to obtain especially in the biomedical imag-
ing field. While it is often easy for researchers to use data augmentation to
expand the size of training sets, constructing and generating generic aug-
mented data that is able to teach the network the desired invariance and
robustness properties using traditional data augmentation techniques is
challenging in practice. In this paper, we propose a novel automatic data
augmentation method that uses generative adversarial networks to learn
augmentations that enable machine learning based method to learn the
available annotated samples more efficiently. The architecture consists
of a coarse-to-fine generator to capture the manifold of the training
sets and generate generic augmented data. In our experiments, we show
the efficacy of our approach on a Magnetic Resonance Imaging (MRI)
image, achieving improvements of 3.5% Dice coefficient on the BRATS15
Challenge dataset as compared to traditional augmentation approaches.
Also, our proposed method successfully boosts a common segmenta-
tion network to reach the state-of-the-art performance on the BRATS15
Challenge.

1 Introduction

Accurate segmentation of a brain tumor from medical images is a crucial step for
clinical diagnosis, evaluation, and follow-up treatment. Currently, the automatic
segmentation methods which achieve state-of-the-art results are often using a
deep learning approach. Modern deep learning models often consist of millions
of parameters and learning these parameters requires massive annotated datasets
to avoid overfitting to the training set. However, the problem is made challenging
by the number of annotated training datasets often being limited in the medical
imaging domain due to a couple of reasons. First, it is time-consuming and
expensive for experts to accurately delineate the pixel-wise brain tumor region.
Second, manual labeling also suffers from considerable intra-rater and inter-rater
inconsistencies [5]. Third, there are various modalities and imaging protocols,
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therefore a training set generated for one study is difficult to transfer to another
study in practice.

To address these problems, we propose an automatic data augmentation app-
roach for network-based brain tumor segmentation. Specifically, we present and
evaluate a method for augmenting multimodal brain MRI images of high-grade
(HG) and low-grade (LG) glioma patients, in which the generic augmented data
enable the network-based method to learn the available annotated datasets more
efficiently. Experimental results demonstrate that the proposed method effec-
tively improves the segmentation accuracy of the network-based method, com-
pared to the traditional data augmentation approach. It achieves improvements
of 3.5% dice coefficient on the BRATS15 Challenge dataset as compared to tra-
ditional augmentation approaches.

2 Related Work

Data Augmentation. Data augmentation is essential to teach the network the
desired invariance and robustness properties when only a few training samples
are available. For medical image segmentation, different combinations of affine
transformations are commonly used as data augmentation to teach the network
the desired invariance and robustness properties. Ronneberger et al. [7] applied
shift, rotation and elastic deformations to the microscopical images during train-
ing, while Milletari et al. [6] applied the random deformation to prostate MRI
volumes using dense deformation field with B-spline interpolation. For brain
tumor segmentation, scaling, rotation and flipping have also been applied to
multimodal brain MR images for data augmentation [9]. Typical data augmen-
tation approaches fail to increase the diversity of the training data, i.e., different
parameters for MR imaging protocol, tumor size, shape, location, and appear-
ance. The contribution of this work is that we have developed an automatic way
to learn a more generic augmentation so that not only the rotational and scaling
invariance, high-level information such as the shape of tumor and contextual
information can also be augmented.

Generative Adversarial Networks. In the domain of computer vision, Gen-
erative adversarial networks (GANs) [2] have elicited considerable attention.
GANs aim to model the data distribution by forcing the generated sample to
be indistinguishable from the data. They have also proven successful in a wide
variety of applications such as image generation [1,8], image manipulation [13]
and image inpainting [11]. Recently, various coarse-to-fine frameworks of GANs
have been proposed [4,10] to generate high-quality and high-resolution images,
e.g., 1024× 1024 pixels. Inspired by their successes, we propose a new coarse-to-
fine boundary-aware GANs suitable to generate generic augmented MR images
for brain tumor segmentation.
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3 Methods

3.1 Preliminaries of Generative Adversarial Networks

Typical Generative Adversarial Networks (GANs), comprise a generator G and
a discriminator D that are trained to compete with each other alternatively. The
generator G is optimized to generate the data distribution pdata by generating
the images that are indistinguishable for the discriminator D to differentiate
from real images. While D is optimized to distinguish real images and synthetic
images generated by G. The training objective is similar to a two-player min-max
game as follows:

min
G

max
D

LGAN (D,G) = Ex∼pdata
[log D(x)] + Ez∼pz

[log (1 − D(G(z))]. (1)

where x is a real sample from the target data distribution pdata, and z is a noise
vector sampled from distribution pz.

Fig. 1. Network architecture of proposed generator.

3.2 Coarse-to-Fine Boundary-Aware Generator

To generate high-resolution MR images of brains with realistic detail, we propose
a Coarse-to-fine Boundary-aware Generative Adversarial Networks (CB-GANs).
In our proposed method, the noise vector in traditional GANs is replaced by a
label map of 2D axial slice from a 3D MR volume as a conditioning variable.
We explain how we diversify the generated data without using a noise vector as
input in Sect. 3.4.
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Coarse-to-Fine Generator. Our generator is decomposed into two different
sub-generators: Gc and Gf . Gc is the coarse generator while Gf is the fine
generator. The generator G is then given by the tuple G = {Gc, Gf}. The coarse
generator Gc aims to sketch the primitive shape and texture of multimodal brain
MR images from a label map at a lower resolution and the fine generator Gf

aims to correct the defects and completes the details of the low-resolution MR
images from the coarse generator Gc.

The Gc and Gf consist of three components, namely, a convolutional down-
sampling block, a set of residual blocks, and a transposed convolutional block.
The resolution of the input label map to Gf is the same as the training data,
while the resolution of the input label map to Gc is 4× smaller than the train-
ing data (2x smaller along each axis). Different from the residual block in coarse
generator Gc, the residual block in fine generator Gf takes the element-wise sum
of the output of Gc and the input feature maps of previous layers from Gf as
the input. The element-wise sum operation helps integrate the global and local
information from Gc and Gf .

Boundary-Aware Generator. Although the above coarse-to-fine framework
can already produce high resolution natural images, it remains a challenge to
produce a high quality synthetic MR image of a brain tumor that serves the pur-
pose of data augmentation, given the corresponding label map. Because the size
of the tumor core in MR images is often small compared to the other encephalic
regions, in which the networks may fail to notice that the details of the tumor
core are important. Preserving accurate tumor boundaries is important for aug-
mented data to teach the network the desired invariance and robustness proper-
ties. To address this problem, we propose a multi-task generator Gf to replace
the original fine generator.

The structure of the proposed generator is illustrated in Fig. 1. Instead of
treating the image generation task as a single problem, we formulate it as a
multi-task problem by exploring auxiliary information, which can simultaneously
infer the location and boundary of the complete tumor. Specifically, two different
branches are added to the final layer of Gf in order to output the MR image of
a brain with a tumor and the boundaries of the complete tumor. After that, the
outputs from the two new branches are concatenated and fed into a residual block
followed by a non-linear activation layer. Therefore, the boundary and texture
information from the new branches are fused together to output the final image.
The mean-square-error loss is used for the boundary extraction task, as shown
in the following:

Lb(x, y) =
1
ni

∑

n

∑

i

(P (xn,i; θ) − yn,i)2, (2)

where θ is the weight parameters in the generator. Lb refers to the mean-square-
error loss for the boundary extraction task. xn,i and yn,i are the i-th pixel and
ground truth in the n-th image used for training, respectively. P refers to the
predicted probability for the pixel xn,i.
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Fig. 2. Example of a synthetic high-grade glioma tumor. Left to right: FLAIR, T1,
T1c, T2, expert delineation (Ground truth) and semantic label map (Red: necrosis,
Green: edema, Yellow: non-enhancing tumor, Blue: enhancing tumor). (Color figure
online)

3.3 Adversarial Training

Multi-discriminators. As the resolution of the synthetic image increases, the
difficulty for the discriminator to differentiate real and synthetic images also
increase. When there is only a single discriminator, the discriminator needs to
have a large receptive field that is able to capture both global, i.e., tumor loca-
tion, and local, i.e., tumor texture and shape, information from the input image.
However, this may not be a good idea as it implies we will need a discriminator
which has either a deep network or large convolutional kernels. Both options
require a large memory and may easily suffer from overfitting to the training
data.

To address this challenge, we adopt multi-discriminators with different scales
of input as our discriminator D = {D1,D2,D3,D4}. The four discriminators
have identical architectures but operate at different image scales, which is sim-
ilar to [10]. Specifically, real MR images and synthesized MR images are down-
sampled by factors 2, 4 and 8 using the bilinear interpolation to create input for
D of 4 scales. Throughout the experiments, we find that using four discrimina-
tors can achieve the optimal performance and further increasing the number of
discriminators cannot improve the quality of synthetic image.

Perceptual Loss. We further improve the GAN’s loss by incorporating a mod-
ified perceptual loss. The main idea of the perceptual loss function is that if the
synthetic image is similar to the real image, the ith-layer feature maps of the
discriminator should be also similar when the synthetic and real images pass
through it. The modified perceptual loss LP (G,Dk) is calculated as:

LP (G,Dk) = E(x,c)

L∑

i=1

1
Ni

[||D(i)
k (x, c) − D

(i)
k (G(z), z)||22], (3)

where D
(i)
k represents the ith-layer feature maps of discriminator Dk, L is the

total number of layers, Ni denotes the number of elements in each layer, x denotes
the real MRI image, c denotes the label map and z denotes the deformed label
map.
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Fig. 3. Comparison of traditional augmentation and our proposed method. First row:
Original image. Second row: Augmented image using elastic deformation. Third row:
synthetic image generated by our approach. Left to right: FLAIR, T1, T1c, T2 and
semantic label map

Therefore, our full training objective combines both GANs loss and modified
perceptual loss as:

min
G

((
max

Dk∈{1,2,3,4}

∑

k=1,2,3,4

LGAN (Dk, G)
)
+ λ1Lb(x, y) + λ2

∑

k=1,2,3,4

LP (G,Dk)
)
.

(4)

3.4 Diversity of Augmented Data

Using Deformed Semantic Label Maps. The traditional augmentation app-
roach for object segmentation often uses different combinations of affine trans-
formations, such as shifting, rotation, and zoom, to leverage the knowledge of
invariances in a task. However, such knowledge implied by these affine trans-
formations is limited. For example, the shape, location and appearance of a
complete tumor in a multi-modal MR image can vary significantly in the testing
data, but the augmented image produced by the typical data augmentation fails
to “simulate” such changes. Although some interpolation-based techniques such
as elastic deformation can cause a slight variation in the shape of the augmented
image, it may bring about damage and noise to the training data, as shown in
Fig. 3, if the deformation field varies a lot.

Instead, we propose applying the elastic deformation to the label map. After
that, we create a set of semantic labels from the deformed label maps. Specif-
ically, we label 1 to 5 for necrosis, edema, non-enhancing tumor, enhancing
tumor, non-tumor brain regions and 0 for everything else in the semantic labels.
We use the semantic labels instead of the label maps as input for our proposed
CB-GANs. By providing the information of the contour of the brain to the gen-
erator, it further diversifies the synthetic brain MR image with different shapes
and prevents model collapse, i.e., prevents the model from generating a set of
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realistic MR images with the identical shape and context of the brain. Figures 2
and 3 show the example of the synthetic image generated by CB-GANs with
corresponding semantic label map.

4 Experiments and Results

4.1 Data and Pre-processing

Experiments have been performed using brain MRI sequences from BRATS15
datasets. The dimensions of each MR volume are 240×240×155 pixels. BRATS15
provides both the training and test sets. The training set consists of 220 high-
grade glioma (HGG) and 54 low-grade glioma (LGG) cases. For each case, it
includes 4 modalities (Flair, T1, T1-contrast (T1c) and T2) that were skull-
stripped and co-registered. Pixel-wise ground truths that annotate the complete
tumor, which are verified by radiologists, are provided in the training set. For
the testing set, it consists of 110 cases each with 4 modalities. Unlike the train-
ing set, the ground truth labels of the test cases are hidden from the public and
evaluation is carried out via an online system. Extensive evaluation has been car-
ried out on three tasks: (1) the complete tumor (necrosis, edema, non-enhancing
and enhancing tumor) (2) the tumor core (necrosis, non-enhancing and enhanc-
ing tumor) (3) enhancing tumor region. For each MR image, we normalize the
intensities of each modality to have zero-mean and unit variance.

4.2 Network Architectures

Generator Architectures. For generator networks, we adopt our backbone
architectures from Wang et al. [10] with some modifications. Below, we follow
the naming convention used in the Wang et al. [10]. Let c7s1-k denote a 7 × 7
Convolution-BatchNorm-ReLU layer with k filters and stride 1. dk denotes a 3×3
Convolution-BatchNorm-ReLU layer with k filters and stride 2. Rk denotes a
residual block that contains two 3 × 3 convolutional layers with the same num-
ber of filters on both layers. uk denotes a 3 × 3 fractional-strided-Convolution-
BatchNorm-ReLU layer with k filters and stride 1

2 . Note that we will replace the
activation layer from ReLU to Tanh for the final layer of each generator.

Our coarse generator Gc:
c7s1-64, d128, d256, d512, d1024, R1024, R1024, R1024, R1024, u512, u256,
u128, u64, c7s1-4

Our fine generator Gf :
c7s1-32, d64, R64, R64, R64, u32, c7s1-4, concat{c7s1-2, c7s1-4}, R64, R64,
c7s1-4

Discriminator Architectures. For discriminator networks, we use 4
Convolution-BatchNorm-LeakyReLU blocks for each discriminator. Let Ck
denote 4×4 Convolution-BatchNorm-LeakyReLU blocks with k filters and stride
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2. At the last layer, we add a sigmoid activation layer at the end to produce a
1-dimensional output. We use leaky ReLUs with default slope 0.2. All our four
discriminators share the identical architecture as follows:
C64, C128, C256, C512

4.3 Network Configuration and Training

During the experiments, we employ two sets of convolution neural networks
(CNNs). The first set of CNNs is the proposed CB-GANs as shown in Fig. 1,
which is used for generic data augmentation. While the second set of CNNs is
the U-Net [7], which is used for the segmentation task. We first trained the CB-
GANs with back-propagation using the Adam optimizer with initial learning
rate 0.0002 and momentum 0.5 for both generators and discriminators. We use
CB-GANs to augment the training data during the training phase of U-Net.
U-Net is trained with the same learning rate as CB-GANs. All the network are
trained from scratch. The method is implemented using Pytorch.

In terms of computation time, it takes about 4 days to train the CB-GANs
and 20 h to train the segmentation network for 100 epochs on a Nvidia GTX1080
Ti GPU. Moreover, we define the typical augmentation to be a combination of
rotation (−10 to 10◦), zoom (0.98x to 1.02x) and random horizontal flip (50%)
that apply to the training data.

4.4 Evaluation

We validate our approach by using it to augment the annotated training sets for
the segmentation tasks and show that we have achieved strong gains, in terms of
the Dice overlap metric between the automated segmentation and the radiolo-
gist annotation label map, over traditional augmentation baselines. We randomly
split the training set in BRATS15 into two subsets, resulting in 234 training and
40 validation multimodal volumes. The full test set in BRATS15 is used as our
test set, which includes 110 patients. First, we conduct the component testing
on the test set to evaluate the impact of coarse-to-fine framework and pro-
posed boundary loss function. Table 1 compares the segmentation performance
between a baseline GANs, a coarse-to-fine GANs and the proposed CB-GANs.
It shows that if the coarse-to-fine framework and boundary loss function were
added, there is an improvement in Dice values for the tumor core task, giving an
average 3.6% improvement in Dice. This is probably because the coarse-to-fine
framework GANs and boundary loss function can correct defects and generate
a clear boundary for small tumor regions in synthetic images.

We also compare the performance of the proposed method to the traditional
augmentation method as listed in Table 2. Both data augmentation methods are
able to improve the segmentation performance by a significant Dice value. Our
proposed method further improves the performance over traditional data aug-
mentation methods on average by 3.5% of Dice values and achieves a significant
improvement in Dice for the complete tumor task.
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Table 1. Segmentation performance on the BRATS15 testing set. GANs: proposed
architecture without coarse-to-fine framework and boundary loss function. C-GANs:
coarse-to-fine GANs. CB-GANs: our proposed method.

Method Dice Precision Sensitivity

Complete Core Enh. Complete Core Enh. Complete Core Enh.

GANs 0.80 0.58 0.55 0.84 0.80 0.62 0.80 0.55 0.51

C-GANs 0.82 0.60 0.55 0.87 0.80 0.66 0.81 0.55 0.52

CB-GANs
(ours)

0.84 0.63 0.57 0.87 0.82 0.65 0.84 0.57 0.54

Table 2. Performance on the BRATS15 testing set. w/o DA: without any data augmen-
tation. w/ DA: with typical data augmentation. w/ Proposed: with proposed generic
data augmentation method.

Method Dice Precision Sensitivity

Complete Core Enh. Complete Core Enh. Complete Core Enh.

w/o DA 0.79 0.54 0.43 0.85 0.79 0.66 0.78 0.47 0.37

w/ DA 0.81 0.61 0.55 0.85 0.82 0.64 0.80 0.54 0.54

w/ Proposed 0.84 0.63 0.57 0.87 0.82 0.65 0.84 0.57 0.54

Table 3. Comparison to the state-of-the-art results on the BRATS15 testing set.

Method Dice Precision Sensitivity

Complete Core Enh. Complete Core Enh. Complete Core Enh.

Kamnitsasa17
[3]

0.85 0.67 0.63 0.85 0.84 0.63 0.87 0.60 0.66

Zhao17 [12] 0.84 0.73 0.62 0.89 0.76 0.63 0.82 0.76 0.67

2D U-net
w/ proposed

0.84 0.63 0.57 0.87 0.82 0.65 0.84 0.57 0.54

Finally, we compare our proposed method with two state-of-the-art methods
as listed in Table 3. Kamnitsasa et al. [3] method, achieving a top ranking in
both BRATS15 and ISLES15 Challenge, using a dual pathway deep 3D CNNs
to segment the tumor region and 3D fully connected Conditional Random Field
to reduce the false positive, while Zhao [12] joins three segmentation models
which uses 2D image patches from different views. Our results are competitive
with both methods and give better result for the enhancing tumor task in terms
of Dice precision.

Also, one advantage of our proposed model is its relatively low computational
cost in both the training and testing phases as we only leverage simple 2D CNNs
with no post-processing method. Kamnitsasa et al. [3] reported a running time
of 3 min using a 3 GB GPU to segment one case, while 6–12 min was reported by



Learning DA for Brain Tumor Segmentation with GANs 79

Zhao [12]. With our proposed method, we achieve 2.1 s for one case in inference
time as the architecture of U-Net has much fewer learning parameters.

5 Conclusion

In this paper, we propose a novel, automatic and network-based data augmen-
tation method for brain tumor MR image segmentation. The main contribu-
tion is that we propose a generic way to augment training data that is able to
teach network-based methods the desired invariance and robustness properties
for segmentation tasks. We have shown that the proposed coarse-to-fine frame-
work and boundary loss function in GANs lead to improved augmented data and
segmentation quality. We have also shown that our method can boost a common
segmentation network to reach the state-of-the-art multi-scale deep networks’
performance with the relatively low computational cost at inference time and
outperforms the traditional augmentation methods.
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