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Abstract. New T2w and gadolineum-enhancing lesions in Magnetic
Resonance Images (MRI) are indicators of new disease activity in Mul-
tiple Sclerosis (MS) patients. Predicting future disease activity could
help predict the progression of the disease as well as efficacy of treat-
ment. We introduce a convolutional neural network (CNN) framework
for future MRI disease activity prediction in relapsing-remitting MS
(RRMS) patients from multi-modal MR images at baseline and illus-
trate how the inclusion of T2w lesion labels at baseline can significantly
improve prediction accuracy by drawing the attention of the network
to the location of lesions. Next, we develop a segmentation network to
automatically infer lesion labels when semi-manual expert lesion labels
are unavailable. Both prediction and segmentation networks are trained
and tested on a large, proprietary, multi-center, multi-modal, clinical
trial dataset consisting of 1068 patients. Testing based on a dataset of 95
patients shows that our framework reaches very high performance lev-
els (sensitivities of 80.11% and specificities of 79.16%) when semi-manual
expert labels are included as input at baseline in addition to multi-modal
MRI. Even with inferred lesion labels replacing semi-manual labels, the
method significantly outperforms an identical end-to-end CNN which
only includes baseline multi-modal MRI.
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Disease activity · Deep learning

1 Introduction

Multiple sclerosis is traditionally known as a chronic inflammatory demyelinating
disease of the central nervous system [7]. The presence of lesions in MRI is one
of the hallmarks of MS. As a result, MRI has been used for diagnosis and to
monitor disease progression and treatment response. The number of new or
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enlarging T2w lesions as well as gadolinium-enhancing lesions have been used as
markers of disease activity [14,16,20] which in turn is used as a clinical outcome
to monitor the progression of disease and also the efficacy of new treatments
in clinical trials for RRMS [10,21]. Hence, developing an automatic method to
predict future disease activity from MRI could lead to better understanding of
disease progression and help identify patients that can benefit from treatment.
However, given the variability of lesion distribution in MRI, complexity of the
evolution of lesions over time and the heterogeneity of the disease across the
population in terms of clinical disease course, there are currently no established
MR biomarkers that reliably predict the future disease activity.

We define future MRI disease activity as the presence of any new/enlarging
T2w lesions or gadolinium lesions at any period within two years of the trial.
Examples of active and inactive patients are shown in Fig. 1. Traditional
biomarkers such as lesion counts and lesion volumes at baseline are not reliable
predictors of future MRI disease activity due to the complexity of the disease.
Furthermore, the presence of lesions at baseline does not necessary guarantee
future MRI activity. Figure 2 illustrates how the absence of lesions at baseline
does not guarantee the lack of future MRI disease activity, and a high lesion
load at baseline does not guarantee the appearance of new/enlarging lesions
two years ahead. As such, more sophisticated biomarkers are needed to reliably
predict future MRI disease activity.

Fig. 1. Examples of active (left) and inactive patients (right). Lesions are highlighted
in red. In each panel, the left image depicts T2w MRI at baseline and the right image
is the same patient at the end of the second year. The patient in the left panel shows
one enlarging (yellow bounding box) and one new lesion (blue bounding box) near the
ventricles at year two. In the right panel, no new or enlarging lesions are present at
year two. (Color figure online)

Although several automatic prediction methods predict the conversion of
patients with preliminary symptoms to MS [1,3,23], only recently has the first
machine learning approach been proposed for the prediction of future MS dis-
ease activity, in terms of future new/enlarging T2w lesions, based on baseline
MRI [5]. This approach—a random forest classifier based on a Bag-of-Lesion
representation—led to promising results on a proprietary dataset (sensitivity at
68.0% and specificity at 57.0%).
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Fig. 2. Examples of patients whose baseline lesion loads are not good indicators of
future disease activity: (left) active; (right) inactive. Lesions are highlighted in red.
In each panel, the left image represents T2w MRI at baseline and the right image
represents the same patient at the end of the second year. The patient in the left panel
shows no baseline lesions, yet develops a new lesion (blue bounding box) at the end of
the second year. The patient on the right, however, shows no new or enlarging lesions
at the end of second year, despite having high lesion load at baseline. (Color figure
online)

In recent years, deep learning has provided a wide range of powerful alter-
native frameworks with impressive results in both computer vision [2,12] and
medical imaging fields [4,13]. In this work, we present the first automatic, deep
learning framework, a 3D CNN, for predicting future disease activity from base-
line MRI of patients with RRMS. We show how activity prediction accuracy is
further enhanced through the inclusion of binary T2w lesion labels at baseline
as inputs. These lesion labels help the network focus on areas of the brains with
lesions, thereby aiding in network training. As expert lesion labels are expensive,
time consuming, and hard to obtain, we further evaluate the performance of our
prediction network in settings where semi-manual expert T2w lesion labels are
not available. To this end, we develop a 3D Unet segmentation network [17] for
automatic inference of T2w lesion labels. These labels are then used as an input
to the prediction network.

Both prediction and segmentation networks are trained on a proprietary,
multi-scanner, multi-center, clinical trial dataset of 1068 patients with RRMS.
The performance of both networks is examined at operating point of interest on
Receiver Operating Characteristic (ROC) curves. Our results indicate that using
only baseline MRI and semi-manual expert lesion labels at baseline leads to very
high prediction accuracies for future MRI disease activity over the next two years
(accuracies of 80.21% and precision of 91.82%). This leads to the possibility
of future development of precision medicine in RRMS. We further show that
inclusion of baseline T2w lesion labels inferred from a Unet segmentation network
provides good results, while still significantly outperforming a CNN based only
on baseline MRI as inputs.
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2 Proposed Framework

We develop a 3D CNN to predict future disease activity from baseline MR
sequences. The prediction network takes three baseline MRI sequences (T1w,
T2w and FLAIR) as well as T2w lesion labels as input for each patient and
produces future MRI disease activity as binary labels (active/inactive). Should
semi-manual lesion labels not be available at baseline, these labels are estimated
using a proposed segmentation network. Inferred lesions are then fed into our
prediction network along with baseline MR modalities (see Fig. 4(a)). Our seg-
mentation network is a modified Unet, trained to segment lesions from baseline
MR sequences. This network takes as input four acquired MR sequences (T1w,
T2w, FLAIR, and Proton Density) and generates a lesion label with the same
dimensions as the input brain volume (Fig. 4(b)).

2.1 Activity Prediction Network

The prediction network is a 3D CNN network with five convolutional layers
followed by two dense layers. The architecture of the prediction network is illus-
trated in Fig. 3. As evident from the figure, each convolutional layer consists of
two consecutive 3 × 3 × 3 convolutions, each followed by a rectified linear unit
(ReLu). In each convolutional layer, barring the first, a 2 × 2 × 2 max-pooling
with strides of two follows the two convolution units. The initial number of
filters (feature maps) is set to four and this number is doubled after each max-
pooling. Two fully-connected layers—with 16 and one neuron(s), respectively—
are appended to the output of last convolutional layer. At the end of each con-
volutional layer, batch normalization [9] is applied. The network is trained with
a dropout probability of 0.5 applied to the layers before both dense layers.

2.2 Segmentation Network

Should manual labels not be available, we wish to infer the lesion labels through
an automatic framework. To this end, we develop a segmentation network which
is a modified Unet (see Fig. 4(b)). Similar to the standard Unet, our network
consists of contracting (encoding) layers followed by expanding (decoding) layers.
The structure of the encoding path is very similar to the prediction network.
Five convolutional layers each containing two 3× 3× 3 convolutions where each
convolution unit is followed by a ReLu. Every layer, except the first, is followed
by a 2 × 2 × 2 max-pooling layer with strides of two for down-sampling.

In the decoding path, each layer consists of a deconvolution of 3 × 3 × 3
with strides of two for upsampling, a concatenation with the correspondingly
feature map from the contracting path, and two 3 × 3 × 3 convolutions each
followed by a ReLu. The number of feature maps is halved after each upsampling.
Similar to the prediction network, batch normalization is applied to the output
of each convolutional layer in the encoding path. In the decoding path, batch
normalization is applied to the output of deconvolution unit in each layer.
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Fig. 3. Architecture of the activity prediction network. The network takes as input
three MR sequences as well as T2w lesion labels at baseline and predicts future dis-
ease activity. All operations including convolution, max-pooling, and up-sampling are
applied to 3D volumes.

2.3 Network Training

Training of both segmentation and prediction networks is performed by the
Adam optimizer [11] using standard cross entropy loss [8]. To deal with the
class imbalance in the segmentation task, the two classes (lesion/non-lesion)
are weighted in a manner which is inversely proportional to their frequencies.
Specifically, the weight for each class (wci) is defined as total number of voxels
(voxtot) divided by the total number of class voxels (nvoxci

):

wci = nvoxtot
/nvoxci

ci = 0 (inactive), 1 (active). (1)

This produces a rough ratio of 1 (lesion) to 800 (non-lesion). The prediction task
suffers from a similar imbalance problem: 75% of the patients in our trial are
labeled as active. We address this imbalance by oversampling from the minority
(inactive) class so that each batch has equal number of active and inactive sam-
ples. Since the ratio of active to inactive patients is 3 to 1, oversampling can be
achieved by replicating inactive samples three times. This way, the total number
of active and inactive samples are equal and therefore each batch can contain
equal number of samples from both classes.
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(a) Activity Prediction Network with Inferred Lesion Labels and MRI as Inputs

(b) Lesion Segmentation Network

Fig. 4. (a) Activity prediction network with automatically inferred labels as inputs,
(b) lesion segmentation network. (a) The prediction network takes as input three MR
sequences as well as T2w lesion labels generated by the segmentation network depicted
in (b) and predicts future MRI disease activity. (b) The segmentation network takes
as input four MR sequences and estimates T2w lesion labels at the baseline which
are then fed into the prediction network demonstrated in (a). All operations including
convolution, max-pooling and up-sampling are applied to 3D volumes.

3 Experiments and Results

3.1 Data Sets

To validate our framework for predicting future activity from baseline MRI, we
conducted experiments using a proprietary dataset consisting of 1068 MS patient
brain images, acquired during a large, multi-center, multi-scanner clinical trial.
The trial was two years long, and MR scans were obtained at the beginning of
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the trial (baseline) and at the end of the first and second years. While samples
from all time points were used for training, validation, and testing of the seg-
mentation network, only baseline samples were used for the prediction network.
T1-weighted (T1w), T2-weighted (T2w), Proton Density-weighted (PDw) and
Fluid-attenuated inversion (FLAIR) are among MR sequences available for each
subject and each timepoint. The dimensions of each volume are 192× 192× 64,
providing a resolution of 1 mm× 1 mm× 3 mm. Pre-processing included brain
extraction [19], bias field inhomogeneity correction using N3 [18], Nyul image
intensity normalization [15], and registration of all images to MNI-space.

In addition to four MR modalities, semi-manual expert T2w lesion labels
are included in this dataset. These are comprised of 3D volumes with binary
labels for lesions/non-lesions at each voxel. These labels are available for each
patient at each time point and used for training the segmentation network.
They were obtained through a semi-manual process where lesion labels were first
generated by an in-house automated segmentation algorithm and then corrected
by a trained expert reader.

Clinical data provided for this trial includes gadolinium and new/enlarging
T2w lesion counts at the end of both first and second year. Due to missing
clinical data for some patients, the total number of patient data available for the
prediction task was 937. To calculate new/enlarging T2w lesion counts, lesion
labels were generated through expert validation of an automatic longitudinal
MS lesion segmentation framework [6]. Gadolinium counts were also provided for
each patient in this dataset. These were estimated from post contrast T1w MRIs
obtained after administration of contrast media (gadolinium). Gadolinium lesion
segmentation was performed manually by trained experts. Binary MRI disease
activity labels were defined based on the provided lesion counts. A patient was
defined as being active if they had one or more new/enlarging T2 or gadolinium
lesions.

3.2 Results

The dataset is divided into a training (80%), a validation (10%), and a test set
(10%) in such a way that the ratio of active/inactive is the same (3/1) for all
three splits. In this section, we first report the results of the prediction network
trained to predict future disease activity from baseline multi-modal MRI as
well as semi-manual expert lesion labels. This will be compared against using
multi-modal MRI alone as inputs to the network. Next, the results of the lesion
segmentation network will be shown. This leads to a quantitative analysis of the
performance of the same network but with the semi-manual expert lesion labels
replaced with the inferred lesions generated automatically by the segmentation
network. Finally, a full comparison of the activity prediction results for all cases
will be provided.

(I) Prediction with Semi-manual Expert T2w Lesion Labels. A 3D
CNN network that takes as input three MR sequences (T1w, T2w and FLAIR)
as well as T2w lesion labels at baseline is trained on a proprietary dataset.
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Fig. 5. Quantitative and qualitative results of the prediction network. (a) ROC curve
with different inputs: Orange line: three MR sequences plus semi-manual, expert T2w
lesion labels; blue: baseline MRI sequences alone; red: random performance. (b) Exam-
ples of brains for which the network prediction is successful: (top) Baseline MRI and
lesion labels (red); (bottom) Year 2 MRI and lesion labels. Blue box depicts example
of a new lesion. Yellow box depicts an enlarging lesion. (Color figure online)

Testing the performance of this network on a test set of 95 patients results in a
sensitivity of 80.11% and a specificity of 79.16% (accuracies of 80.21%, precision
of 91.82%) suggesting that our network is able to reliably predict the future
MRI disease activity. To further evaluate the performance of our prediction
network, an identical CNN network with only baseline MR sequences as input is
trained. ROC curves, defined as True Positive Rate (TPR) vs False Positive Rate
(FPR), for these two experiments are shown in Fig. 5(a). As is evident from the
ROC curves, training an identical network with the same parameters and hyper-
parameters values and using only baseline MR images leads to a performance
barely better than random (with sensitivity of 8.45% and specificity of 79.16%).
The low sensitivity in the baseline network is due to the fact that the network
predicts the majority of the patients as inactive. This result shows that including
lesion labels can significantly improve the performance of the prediction network
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over MRI alone. Qualitative examples of images for which network prediction is
successful are also depicted in Fig. 5(b).

(II) T2w Lesion Segmentation and Detection. We examine the case where
semi-manual lesion labels are not available, and are instead generated automati-
cally. To this end, we train a Unet segmentation network with four MR sequences
(T1w, T2w, FLAIR, and PDw) as input to estimate the lesion labels. Later, the
inferred lesion labels will be fed, along with three MR sequences (T1w, T2w,
FLAIR) at baseline, to the 3D CNN activity prediction network.

Fig. 6. Quantitative and qualitative results of the segmentation network. (a) ROC
curves for both voxel level segmentation (blue) and lesion level detection split into three
groups: small (red curve), medium (green) and large (magenta) lesions. (b) Examples of
semi-manual expert segmentation (top) vs. output of segmentation network (bottom).
While the segmentation network performs well for the three first brain images, a few
small lesions are missed in the last case (inside red bounding boxes). (Color figure
online)
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The segmentation network is evaluated by reporting ROC curves for the test
data. ROC curves, defined as TPR vs. False Detection Rate (FDR), are reported
in Fig. 6 for both voxel-level segmentation and lesion-level detection. To obtain
lesion-level detection statistics, TPR and FDR, from voxel segmentations, semi-
manual, expert lesions smaller than three voxels are removed, in accordance with
clinical protocol [22]. Candidate detected lesions are inferred using a simple
connected component labeling method: a lesion is labeled as a true positive
if the segmentation and its 18-connected neighborhood overlaps with at least
three, or more than 50%, of the expert lesion voxels. Otherwise, it is labeled as a
false positive. Insufficient overlap leads to a false negative. Lesion-level detection
results are split into three groups of small (3–10 voxels), medium (11–50 voxels)
and large (51+ voxels) according to their sizes and the ROC curves for each
group is plotted separately in Fig. 6. The results indicate that, although the
segmentation network performs very well for large and medium size lesions, it
performs worse for small lesions. Qualitative examples of inferred lesion label
slices shown against expert labels are also depicted in Fig. 6(b).

(III) Comparison of Results. We now compare the results of three exper-
iments, where the architecture of the prediction network is fixed, and network
inputs are varied:
End-to-end CNN-MRI: We train an end-to-end CNN with all four MR
sequences (T1w, T2w, FLAIR, and PDw) as inputs, with no lesion labels at
baseline.
End-to-end CNN-MRI+T2: The PDw sequence is replaced with semi-
manual, expert lesion labels at baseline. PDw sequence is selected as it contains
information that is available in the remaining sequences and is thus the least
informative modality among all available MR sequences.
End-to-end CNN-MRI+segm T2: The semi-manual, lesion labels in the
previous experiment are replaced with inferred labels from the segmentation
network.

ROC curves for these three experiments are provided in Fig. 7. In addition,
accuracy, precision, sensitivity, and specificity at an operation point of interest
(FPR = 0.2) for each experiment are reported in Table 1. It is evident that the
performance of the network with MRI alone as inputs is barely better than ran-
dom, and that adding the semi-manual, expert lesion labels as input considerably
improves the performance of the prediction network. One possible explanation
for the poor performance with MRI alone is that, due to the limited size of the
dataset, in order to avoid overfitting, restriction in the capacity of the model
results in insufficient ability to learn from only baseline MR images. Our solu-
tion is to add lesion labels as an extra input modality to facilitate the training
process by helping the network focus on the areas of interest.

The results also suggest that, although adding inferred lesion labels did not
improve performance over MRI alone as much as adding the semi-manual expert
labels, the gain in performance as compared with the baseline MRI alone is
significant.
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Fig. 7. ROC curves from three experiments on the prediction network with varying
inputs. Orange line: three MR sequences plus semi-manual, expert T2w lesion labels,
green line: three MR sequences plus inferred T2w lesion labels, blue: four MR sequences,
red: random performance. (Color figure online)

Table 1. Quantitative comparison of results of three experiments on the same test
data, reported at FP = 0.2.

Method Accuracy Precision Specificity Sensitivity

End-to-end CNN-MRI 26.31% 50.45% 79.16% 8.45%

End-to-end-MRI+segmT2 58.95% 88.09% 79.16% 54.12%

End-to-end-MRI+T2 80.21% 91.82% 79.16% 80.11%

The degradation in prediction performance when using inferred lesion labels
over semi-manual labels is mainly due to the segmentation’s drop in performance
for small lesions, which in this case, make up approximately 40% of all lesions.
This suggests that improving the accuracy of the segmentation network (not
the focus of this work) would lead to significant accuracy improvements in the
automatic prediction of future MRI disease activity.

4 Conclusions

We present the first deep learning framework for predicting future MRI disease
activity in RRMS patients from baseline MR sequences. We show that predic-
tion accuracy based on MRI alone does not perform much better than chance
but improves substantially when baseline lesion labels are provided as additional
inputs to the network. These results suggest the possibility of early prediction
of future disease activity for RRMS patients, paving the way for the possibil-
ity of precision medicine in RRMS. Including semi-manual expert T2w lesion
labels offers a remarkable boost in prediction accuracy showing accuracies of
80.21%, precision of 91.82%, specificity of 79.16% and sensitivity of 80.11%.
When these are not available, we offer a deep learning framework for the auto-
matic estimation of lesion labels. Our tests demonstrate that future MRI disease
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prediction using machine-generated lesion labels is not as accurate as predic-
tion using semi-manual expert labels, but offers significant improvement over
MRI sequences alone. Future work on improving lesion segmentation, particu-
larly for small lesions, should significantly increase the accuracy of future disease
prediction.
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