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Abstract. Leveraging information from multiple scales is crucial to
understanding complex diseases such as cancer where this could have
a significant impact in improving diagnoses, patient management and
treatment decisions. Recent advances in Convolutional Neural Networks
(CNNs) have enabled major breakthroughs in biomedical image analysis,
in particular for histopathology and radiology images. Our main contri-
bution is a methodology to combine independent CNN models built for
these two types of images in order to improve diagnostic accuracy. We
train separate CNN models and combine them using a Dropout-Enabled
meta-classifier. Our framework achieved second place in the MICCAI
2018 Computational Precision Medicine Challenge.
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1 Introduction

Recent breakthroughs in deep learning and Convolutional Neural Networks
(CNN) have enabled the development of state-of-the art models for many image
classification tasks [1,2], with wide applications in areas such as medical image
analysis [3,4]. These models have the advantage that they automatically learn
the appropriate image features, as opposed to traditional machine learning
approaches which require hand-crafted features [5,6]. The features learned by
each separate CNN model can also conveniently be stacked together to form the
input of a joint model. We follow this approach, building two separate CNNs for
radiology and pathology images for the desired task, and subsequently combining
them.

Furthermore, the deep learning community has developed many regulariza-
tion techniques in recent years to deal with the issue of overfitting. This is use-
ful given the scarcity of medical images data. We incorporate these techniques
throughout our training process. In particular, we use dropout [7] to generate
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Fig. 1. Description of the histopathology prediction pipeline. The slides are tiles, fea-
tures are extracted with a finetuned DenseNet, classification is made by a final fully
connected network.

many variations of the base patients, augmenting the data available for our mod-
els. This method lets us leverage the complexity of the medical images, whilst
still being able to generalize to unseen data.

Our method achieved second place in the MICCAI 2018 Computational
Precision Medicine Challenge, in which participants were asked to classify a
cohort of lower grade glioma tumor cases into two sub-types using radiology and
histopathology images [8]. Here, we report this model and its results on this
classification problem.

2 Methodology

2.1 Data Set

We evaluate our framework on the Computational Precision Medicine Combined
Radiology and Pathology classification data set [8]. It contains histopathology
and radiology images for 32 glioma patients with annotations for training and
validation (16 oligendroglioma and 16 astrocytoma) and 20 glioma patients for
testing. These images were collected from several medical centers.

2.2 Histopathology Image Data Preprocessing and Modeling

Analysis of histopathology slides is a critical step in oncology where it defines the
gold standard for diagnosis, prognosis and treatment design. It largely consists of
careful microscopic examination of hematoxylin and eosin (H&E) stained tissue
sections by a highly skilled pathologist. This can be a tedious, time-consuming
and sometimes subjective task. Advances in slide scanning technology and reduc-
tions in cost of digital storage capacity have enabled the widespread adoption
of digital pathology over the past decade [9]. At the same time, the dramatic
increase in computational power and the breakthroughs in deep learning have
fueled the rich expansion of visual recognition research [1]. These developments
together have led to the rapid emergence of computational histopathology. Most
recent works have successfully leveraged state-of-the-art Convolutional Neural



Dropout-Enabled Ensemble Learning for Multi-scale Biomedical Data 409

Networks (CNNs) for tasks such as disease detection and diagnosis, highlighting
the effectiveness and relevance of learned features in complex images such as
histopathology slides [10–12].

Digital pathology images are massive data sets, which at highest zoom level
can have a digital resolution upwards of 100k pixels in both dimensions. However,
since localized annotations are very difficult to obtain, data sets may only contain
whole slide level diagnosis labels, falling into the category of weakly-supervised
learning. To deal with this, we modify existing CNNs architecture to incorporate
a Multiple Instance Learning (MIL) framework [13]. This consists in dividing
the histopathology slides into small high resolution patches, sampling randomly
from these patches and applying patch level CNNs. The MIL framework is then
used to combine patch level predictions intelligently and make an overall slide
prediction. In the following sub-sections we present our preprocessing pipeline
and provide a description of our model for histopathology image analysis.

Preprocessing. We perform the following preprocessing steps on the highest
slide resolution available:

1. Region of Interest: tissue segmentation is necessary given that there are large
areas of white background space in histopathology images which are irrelevant
for analysis. We follow a threshold based segmentation method to automati-
cally detect the foreground region. In particular, we first transform the image
from RGB to HSV color space and apply Otsu’s method [14] to find the opti-
mal threshold in each channel. The masks are then combined to compute the
final tissue segmentation.

2. Tiling: we tile the tissue region extracted from the original slides into 256×256
patches.

3. Color Normalization: stain normalization is essential given that the results
from the staining procedure can vary greatly. Indeed, differences in slide scan-
ners or staining protocol can materially impact stain color, which in turn
can affect algorithm performance. Many methods have been introduced to
overcome this well defined problem, including sophisticated end-to-end deep
learning solutions [15]. For simplicity, we resort to a histogram equalization
algorithm as proposed in [16].

CNN Model. Convolutional Neural Networks (CNNs) are very computation-
ally expensive to train in practice and they require a large data set to avoid
overfitting. We used the DenseNet-169 [17] architecture starting with initial pre-
trained parameters from ImageNet [18] and we used fine tuning of these parame-
ters to speed up convergence. We also replaced the last fully connected layers to
be compatible with our classification task, using dropout for regularization. Our
CNN is trained at the patch level and then produces an average slide level score
by averaging all sampled patches for a given patient. The steps of the model are
described schematically in Fig. 1.
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Fig. 2. Description of the radiology prediction pipeline. Preprocessing removes the
skull and balances the channels, features are extracted with a 3D-CNN, classification
is made with a fully connected network.

2.3 Radiology Image Data Preprocessing and Modeling

Our computational task consists in evaluating also the radiology images of a
patient’s lower grade glioma in the form of multi-modal Magnetic Resonance
(MR) images. An automated algorithm for classification should analyze these
3D MR images, aggregate local information to understand where the tumor is
located, and then compute metrics on these tumors (e.g. capturing size, intensity
or texture). These features would then have to be evaluated so that a final
decision rule can be devised.

A classical approach to this problem would be to compute hand-made fea-
tures from the segmentation mask of the tumor [19,20] - this segmentation mask
being obtainable in a completely computational fashion - and then to use these
features to classify the patient’s status using a linear classification algorithm in
the feature space [4,20]. However, this method would have to rely on complex
feature extraction methods [21], mimicking a radiologist’s analysis, which can
be time-consuming and difficult to hard-code.

Convolutional Neural Networks (CNNs), on the other hand, have proven
effective in reaching state-of-the art results in computational analysis of biomed-
ical images for disease detection and diagnosis [2,22]. Consequently, a newer,
more data-driven way to tackle this classification task would be to rely on CNNs
for feature extraction and image downsampling, letting us train a neural net-
work through backpropagation to perform the classification task. This CNN can
take into input either the raw image channels (i.e. MR image modalities), or the
tumor segmentation mask, or both. However, in this contribution, we use the
raw modalities as inputs, in order not to rely on external data, and to evaluate
the stand-alone performance of our approach.
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Preprocessing. We applied preprocessing steps which have been used for the
tumor segmentation task, from brain MR images. It consists in the tasks of bias
correction, skull-stripping, and registration:

1. Bias Correction: we used the FSL library to remove the bias fields from all
modality images, as provided by [23];

2. Skull Removal: we used the Brain Extraction Tool (BET, [24]) from the same
library to remove the skull structure from these images;

3. Co-registration: we used the reg aladin command from the niftyreg library
to co-register the modalities on the same standard grid [25].

We also enriched our data by randomly flipping scans along the x-axis at
train time.

Furthermore, we chose to only rely on the contrast-enhanced T1 and FLAIR
MR modalities for this radiology task. Indeed, T1+contrast is sufficient to mag-
nify the grey matter; while the FLAIR modality lets the unusual brain structures
appear explicitly. This resulted in 27 patients out of 32 available in the train set.
The images were then re-sized to 320 × 320 × 24.

CNN Model. The input of this model is a 3-D voxel image with three spatial
dimensions times two modalities per voxel, the FLAIR and T1+contrast MR
images. We used an 8-layers 3-D CNN to extract deep features from the images,
with three 3-D maxpooling operations to reduce the sample size. The convolution
layers have a receptive field of five cells from the previous layers, and extract from
eight features on the first layer, to 64 channels on the last layer. The maxpooling
layers downsample the images by a factor of two in each dimension.

After the last convolutional layer is applied, we averaged the extracted fea-
tures over all the 3D space to have a unique 100-dimensional feature vector for
the patient. This feature vector is then connected to a 1-dimensional output for
a classification task with cross-entropy loss, and the whole network is trained
with the back-propagation algorithm.

We inserted a total of 8 dropout layers throughout the network, both to
avoid overfitting, and, most importantly for the ensemble learning step, to let
us evaluate the network at test time. The overall pipeline is sketched in Fig. 2.

2.4 Meta-classifier Methodology Image Data Preprocessing and
Modeling

Next, to combine the two CNNs modeling the histopathology and MR images,
we introduce a meta-algorithm to combine the individual models. Our ensemble
learning methodology allows each model to be trained separately, and combines
their predictions into a single, more robust output.
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Meta-classifier for Models Combination. Since these models rely on very
different data sources, with different scales, batching methods and actual bio-
logical meaning, it is not always possible to train an end-to-end backpropaga-
tion algorithm combining these. A crucial limitation is the computational power
required for these models to run simultaneously, especially in terms of storage
space. Another inconvenience to the co-training the models is reduced modular-
ity, where a big advantage is if more data from an extra level of biomedical data
can be added without having to reconstruct and train the other models.

Our individually trained networks provide us with classification scores for
each patient in our data set, quantifying the learned probability that the patient
belongs to one category or the other. We then concatenate these individual
scores into a two-dimensional vector and train a meta-classifier on these vectors
of scores to make a combined prediction for the patient. The meta-classifier using
information from both models is a classical classification algorithm, in this case
we used a random forest. In order to quantify our ability to fit a meta-classifier, as
well as its ability to generalize to unseen data, we used four-fold cross-validation
combined with a random forest classifier with ten trees.

Dropout-Enabled Scores Consolidate the Models’ Outputs. Next, we
evaluated the use of regularization through dropout for the ensemble learning
phase. The idea is to activate the models’ random dropout layers at score extrac-
tion time, so that individual models produce multiple classification scores for
each patient. This array of scores is then averaged into a global patient score.
This approach is comparable to the reasoning of [26], where it is applied to RNNs
for final classification, while we use it as the penultimate step for our classifier
combination.

The rationale behind this choice is that individual classification CNNs were
trained with dropout, such that they have learned several robust ways to clas-
sify a patient’s status. Consequently, scores extracted with dropout capture
the variability of the models’ prediction. Averaging these scores into a global
dropout-enabled patient score removes the noise which emerges when running
a single score prediction. It yields more robust aggregated classification scores
which leverages the networks’ structure, without the need of an end-to-end joint
training.

We quantified the extent to which this technique improves the class separa-
tion, by running the same analysis as before. We evaluated the performance of a
random forest classifier using four-fold cross-validation on the dropout-enabled
scores. We used accuracy and Area Under the ROC curve (AUC) to evaluate
the models.

3 Results

Figure 3(a) shows the output classification scores of each patient, respectively
from the pathology and the radiology models, depending on their status, on the
training set. This shows that these scores let us define with some confidence some
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of the patients’ status. However, there does not seem to be a simple separation
between the two classes leading to a reliable meta-classifier.

Next, Table 1 presents the classification results of this method on the raw
scores, as estimated via vross-validation. It appears that the pathology model
is a good predictor of the patients’ statuses (accuracy 78%, AUC 0.83); while
radiology does not make a good contribution (accuracy 53%, AUC 0.54). The
combined model performed well, but not significantly better than the pathology
model, suggesting that the radiology model does not contribute to the perfor-
mance (accuracy 81%, AUC 0.84).

Fig. 3. Scatter plot of the patients classification scores, according to the pathology
model on the x-axis, and the radiology model on the y-axis, colored by their status.
(a): Raw classification scores. (b): Dropout-enabled classification scores; the patient-
averaged scores are highlighted.

Next, Fig. 3(b) presents the classification scores of the patients of both classes,
after the dropout-enabled aggregation phase has been applied. This shows that
the patients which were in grey zones are now easier to classify, resulting in more
separable classes. The performances of the dropout-enabled scores are summa-
rized in Table 1. The classification scores of the histopathology model alone are

Table 1. Accuracy and AUC for classifying subtype of brain tumors using 4-fold cross-
validation and a random forest classifier, both for raw scores and average dropout-
enabled scores.

Model Data Accuracy AUC

Raw scores Radiology 53% 0.54

Histopathology 78% 0.83

Combined 81% 0.84

Dropout-enabled scores Radiology 70% 0.70

Histopathology 79% 0.83

Combined 85% 0.92
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similar to the previous ones (accuracy 79%, AUC 0.83). Most importantly, we
see that this technique improves the performance of the radiology-based model
(accuracy 70%, AUC 0.70), and contributes to enhancing the combined classifier
(accuracy 85%, AUC 0.92).

4 Conclusion

We have proposed a new approach to combine individual CNN classifiers lever-
aging dropout to combine two types of biomedical image data: histopathology
and radiology images, for classification. We avoided training an end-to-end CNN
training through backpropagation on heterogeneous data, as this would reduce
modularity and be computationally expensive. Our method allows us to make
more relevant decisions for outlier cases, based on separate predictions. Next,
using dropout to generate several predictions of a patient’s data can be used
in further directions, that will be studied independently in further works: we
plan on using the same analysis at feature-level instead of score-level, which
would allow us to analyze the non-linear interactions between multi-scale data.
Finally, applying this technique to glioma subtype classification using radiology
and histopathology images provides initial evidence that a multi-scale model can
improve the prediction of a patient’s diagnosis. Extending this analysis to bigger
cohorts and other classification problems is warranted and will allow to study
the multi-scale model in more detail.
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