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Abstract. Brain image segmentation is used for visualizing and quanti-
fying anatomical structures of the brain. We present an automated app-
roach using 2D deep residual dilated networks which captures rich con-
text information of different tissues for the segmentation of eight brain
structures. The proposed system was evaluated in the MICCAI Brain
Segmentation Challenge (http://mrbrains18.isi.uu.nl/) and ranked 9th

out of 22 teams. We further compared the method with traditional U-Net
using leave-one-subject-out cross-validation setting on the public dataset.
Experimental results shows that the proposed method outperforms tra-
ditional U-Net (i.e. 80.9% vs 78.3% in averaged Dice score, 4.35 mm vs
11.59 mm in averaged robust Hausdorff distance) and is computationally
efficient.
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1 Introduction

Brain MRI segmentation is an important task in many clinical applications. Var-
ious approaches for brain analysis rely on accurate segmentation of anatomical
regions. For example, it is commonly used for measuring and visualizing differ-
ent brain structures, for delineating lesions, for analysing brain development,
and for characterization of brain disorders such as Alzheimers disease, epilepsy,
schizophrenia, multiple sclerosis (MS), cancer, and infectious and degenerative
diseases. Manual segmentation is the gold standard for in-vivo images. However,
it requires outlining structures slice-by-slice by neuroradiologist, which is highly
time-consuming and prone to rater-bias. Therefore, there is a need for automated
segmentation approaches to provide accuracy close to that of expert raters with
a high reproducibility.

Early works on segmentation of normal brain structures focus on white mat-
ter (WM), gray matter (GM), and cerebrospinal fluid (CSF), which is important
for studying early brain developments in infants and quantitative assessment
of the brain tissue and intracranial volume in large scale studies. Atlas-based
approaches [7,12], which match intensity information between an atlas and tar-
get images and pattern recognition approaches [10], which classify tissues based
on a set of local intensity features, are the classical approaches that have been
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used for brain tissue segmentation. The MRBrainS Challenge 2013 [8] was held
to compare state-of-the-art segmentation algorithms on three brain structures in
conjunction with the 16th International Conference on Medical Image Comput-
ing and Computer Assisted Intervention. Deep-learning based approaches have
shown superior performances to the traditional state-of-art methods on the seg-
mentation of brain stroke lesions, brain white matter lesions and brain tumors
[5,6,9].

In this paper, we presented a deep-learning based method for segmenting
eight brain tissues including cortical gray matter (GM), basal ganglia, WM,
white matter lesions/hyperintensities (WMH), CSF, ventricles, cerebellum and
brain stem. Deep dilated residual U-Net was adopted to learn context and tex-
ture information of different brain tissues. Multi-sequence data including T1,
T1-IR and FLAIR which captures complementary information of different brain
structures. The proposed 2-D network was more computationally efficient than
3D network and traditional U-Net. Experimental results showed that the pro-
posed method outperforms traditional U-Net.

2 Materials

2.1 Dataset and Protocols

Dataset. Thirty MRI scans were acquired on a 3.0T Philips Achieva MR
scanner at the University Medical Center Utrecht (Netherlands). The follow-
ing sequences were acquired and used for the evaluation framework: 3D T1
(TR: 7.9 ms, TE: 4.5 ms), T1-IR (TR: 4416 ms, TE: 15 ms, and TI: 400 ms), and
T2-FLAIR (TR: 11000 ms, TE: 125 ms, and TI: 2800 ms). The sequences were
aligned by rigid registration using Elastix [3] and bias correction was performed
using SPM8. After registration, the voxel size within all provided sequences (T1,
T1-IR, and T2-FLAIR) was 0.96×0.96×3.00 mm3. Seven scans with annotations
were released as a public training set, and the remaining twenty-three scans were
used as hidden testing set. For more details on the method of ranking perfor-
mance, please find the relevant information on the challenge website.

Evaluation Metric. Three types of measures were employed to evaluate the
segmentation results. The Dice coefficient is used to determine the spatial overlap
and is defined as:

Dice =
2|G ∩ P |
|G| + |P | (1)

where G is the reference standard, P is the segmentation result.
The 95th-percentile of the Hausdorff distance is used to determine the dis-

tance between the segmentation boundaries. Hausdorff distance is defined as:

H(G,P ) = max{sup
x∈G

inf
y∈P

d(x, y), sup
y∈P

inf
x∈G

d(x, y)} (2)

where d(x, y) denotes the distance of x and y, sup denotes the supremum and
inf for the infimum.
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The third measure is the volumetric similarity. Let VG and VP be the volume
of lesion regions in G and P respectively. Then the volumetric similarity (VS)
in percentage is defined as:

VS =
|VG − VP |

VG
(3)

3 Methodology

3.1 Image Preprocessing

A patient-wise normalization of the image intensities was performed both during
training and testing. For the scan of each patient, the mean value and standard
deviation were calculated based on intensities of all voxels. Then each image
volume was normalized to zero mean and unit standard deviation. Rotation,
shearing, scaling along horizontal direction (x-scaling), and scaling along vertical
direction (y-scaling) were employed for data augmentation. After data augmen-
tation, a four times larger training dataset was obtained.

3.2 2D Dilated Residual U-Net

We used Dilated Residual U-Net (DRUNet), which was originally proposed in
[1] for nerve head tissues segmentation in optical coherence tomography images.
DRUNet exploits the inherent advantages of the U-Net skip connections [11],
residual learning [2] and dilated convolutions [13] to capture rich context infor-
mation and offer a robust brain structure segmentation with a minimal number
of trainable parameters.

DRUNet architecture is presented in Fig. 1. The model consists of down-
sampling and upsampling parts. In turn, each part includes one standard block
and two residual blocks. Corresponding blocks in downsampling and upsampling
parts are connected through skip connections. Convolution layers in both block
types have 32 filters of size 3 × 3. In total the entire network consists of 156,105
trainable parameters.

3.3 Combination of Modalities

Multi-sequence data including T1-weighted (T1), T1-weighted inversion recov-
ery (T1-IR) and FLAIR which captures complementary information of different
brain structures were used for training the network. In clinical practice, the com-
bination of FLAIR and T1 is beneficial for segmenting white matter lesions while
the combination of T1 and T1-IR is helpful for annotating cerebrospinal fluid.
We feed different combinations of modalities for multiple networks.

3.4 Ensemble Model

To improve the robustness of our model, an ensemble method was used in the
testing stage. Then when given a new testing subject, each subject will be seg-
mented based on the averaged probability maps by the ensemble model.
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Fig. 1. Details of DRUnet architecture which contains residual blocks with dilated
convolutions.

3.5 Our Submissions

Submission 1. We used only DRUNet for simultaneously segmenting the ten
labels including infarction and pathologies were set to background label during
the training of the network. We generated five DRUNet models with the same
architecture but trained with shuffled batches. Then in testing stage, each subject
was segmented based on the averaged probability maps by the ensemble models.

Submission 2. We used two Dilated Residual U-Nets (DRUNet) and one tra-
ditional U-Net for segmenting different labels. Since not all the labels were anno-
tated in the same modalities, i.e., white matter lesions were annotated on the
FLAIR scan and the outer border of the CSF was segmented using both the
T1-weighted scan and the T1-weighted inversion recovery scan, we employed a
multi-stage approach to segment different tissues from coarse to fine using dif-
ferent combinations of input modalities. Firstly, coarse segmentation including
eight brain tissues (other labels including infarction and pathologies were set to
background label) was performed using FLAIR and T1-weighted modalities by
DRUNet (model 1). Secondly, CSF was independently segmented using T1 and
T1-IR modalities by DRUNet (model 2). Thirdly, since segmentation of white
matter lesions is a very challenging task, we used the pre-trained model of the
winning method in MICCAI WMH challenge [4] (model 3) to perform segmenta-
tion independently. Finally we fused the multi-stage segmentation results. Five
DRUNet models for model 1 and model 2, respectively, with the same architec-
ture were trained with shuffled batches.
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Fig. 2. Sample segmentation result on Case 70. From top to bottom: four axial slices
of the same scan. From left to right: FLAIR MR images, the associated ground truth,
segmentation result using DRUNet and segmentation result using U-Net. (Best viewed
in colour). We can observed from the segmentation result of axial slice 16 that DRUNet
achieved better performance on large continuous regions while U-Net generated some
isolated false positives. It indicates that the dilated convolution in DRUNet helps to
capture context information. On the other hand, for the segmentation of small tissues
such as WMHs, DRUNet seems to generate more false positives than U-Net as observed
from axial slice 28.
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Table 1. Leave-one-subject-out evaluation of our submissions on the public training
set containing seven subjects. The averaged Dice score, averaged H95, averaged volume
similarity of eight tissues for each subject were shown in the table. The left and right
values in each cell were the results of submission 1 and submission 2 respectively.
The values in bold indicates the subject on which the two submissions has significant
segmentation difference.

Metrics Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7

Dice 0.86/0.85 0.82/0.82 0.77/0.77 0.73/0.77 0.85/0.84 0.80/0.80 0.83/0.81

H95 2.98/2.43 3.15/2.33 6.07/6.56 8.25/5.87 3.42/2.39 4.17/6.58 2.49/8.07

VS 0.97/0.98 0.92/0.91 0.86/0.87 0.82/0.88 0.94/0.92 0.88/0.89 0.92/0.90

4 Results

4.1 Leave-One-Subject-Out Evaluation

To test the generalization performance of our systems across different subjects,
we conducted an experiment on the public training datasets (seven subjects) in
a leave-one-subject-out setting. Specifically, we used the subject IDs to split the
public training dataset into training and validation sets. In each split, we used
slices from six subjects for training, and the slices from the remaining subject
for testing. This procedure was repeated until all of the subjects are used as
testing. The results were shown in Table 1. There exists significant segmentation
difference on subject 4. We further observed the brain structures of subject 4
and found it was a heathy brain scan without WMHs, infarctions and other
lesions. The reason for the performance difference could be that the models in
first submission were trained on 10 labels including infarctions and other lesions
while the models in the second submission were trained on 8 main structures
excluding two other labels. When testing on healthy scans, the models trained
with 8 main healthy tissues could be more effective since the data distributions
among training and testing were similar.

4.2 Comparison with U-Net

We further compared the performance of the proposed method (submission 1)
with traditional U-Net using the state-of-the-art architecture proposed in [4]. As
shown in Table 2, generally our approach outperformed traditional U-Net, espe-
cially in segmentation of WM and CSF, with an improvement of 8% and 11% in
Dice score. WM and CSF are both large structures in brains. We concluded that
the use of dilated convolutions is beneficial for capturing the context information
of large target. Furthermore, our model is with much fewer trainable parame-
ters (156,105 vs 8,748,609). Thus the training of the network is computationally
efficient. The segmentation results of both DRUNet and U-Net on test case 70
was shown in Fig. 2.
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Table 2. Comparison on each class with traditional U-Net under leave-one-subject-out
setting. The performance on each class was averaged over seven subjects. The values
in bold indicated significant improvement over traditional U-Net.

Metrics GM BG WM WMH CSF Ventricles Cerebellum Brain stem Averaged

DiceU−Net 0.83 0.84 0.70 0.79 0.43 0.89 0.9 0.88 0.783

DiceDRUNet 0.84 0.85 0.78 0.81 0.54 0.88 0.92 0.85 0.809

H95U−Net 1.26 1.8 43.5 1.78 23.09 3 15.63 2.67 11.59

H95DRUNet 1.29 1.67 5.82 1.61 14.8 3.15 2.97 3.45 4.35

VSU−Net 0.95 0.95 0.84 0.93 0.71 0.94 0.96 0.94 90.25

VSDRUNet 0.96 0.94 0.89 0.94 0.66 0.93 0.97 0.92 90.13

4.3 Results on Hidden Testing Cases

Our submissions were independently evaluated by the challenge organizer. Fig-
ures 3 and 4 show the box plots of performance on eight labels on 23 testing
scans. Submission 1 and submission 2 ranked 9th and 12th respectively out of 22
teams.

Fig. 3. Result of our first submission on the 23 hidden testing set evaluated by the
challenge organizers. Our method achieved Dice scores of more than 80% and volume
similarity of more 90% on the major classes while the segmentation performance on
WMHs is relatively poor. This is because the WMHs are in small volumes and thus
the most difficult structure to be segmented.
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Fig. 4. Result of our second submission on the 23 hidden testing set evaluated by the
challenge organizers. The two submissions achieved comparable performance on major
classes except the WMHs. Actually the second submission was designed to improve the
segmentation performance of WMHs and integrated the state-of-the-art models from
[4]. There may exist some implementation mistakes in the label fusion stage.
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