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Abstract. Recent years’ segmentation challenges on Ischemic Stroke
Lesion Segmentation (ISLES) attracted great interest in the medical
image computing domain, reflected in >80 citations of the 2017 summary
article of the initial ISLES 2015 challenge [1]. While 2015–2017 ISLES
challenges focussed on MRI images, the 2018 challenge takes into account
clinical relevance of (perfusion) CT to triage stroke patients. Thus, from
a methodological point of view, it is now to be analyzed whether and to
what extent the 2015–2017 methods can be adapted to automated core
lesion segmentation using acute stroke CT perfusion imaging.

We strive to deliver a baseline for ISLES 2018 by using two well estab-
lished machine learning-based segmentation approaches already applied
for the initial ISLES 2015 challenge: random forest (RF) with classical
hand-crafted image features (i.e. the most frequently used type of algo-
rithm in ISLES 2015) and encoder-decoder-style convolutional neuronal
networks (CNNs). In detail, for CNN-based segmentation, we employ the
DeepLabv3+ architecture. The performance of the individual as well as
a combination of the segmentation approaches is evaluated based on the
ISLES 2018 training data set, and respective results are presented. Aim-
ing at an ISLES 2018-specific performance baseline, we do neither make
use of additional data other than the provided challenge data nor per-
form extensive data augmentation. The results highlight the potential to
improve stroke lesion segmentation accuracy by combining RF and CNN
information.

Keywords: ISLES challenge · Stroke segmentation · Random forest ·
Convolutional neural networks (CNN)

1 Introduction

Ischemic stroke is one of the most prevalent causes for death and disability
worldwide [2]. It is caused by an occlusion of the cerebral arteries, which results
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in hypoxia and finally in death of the affected brain tissue. Brain imaging plays a
crucial part for diagnosis of ischemic stroke and respective therapeutic decisions.
Detection and evaluation of stroke lesions require, however, a significant amount
of time from the radiologist. To overcome or at least alleviate this problem,
reliable methods to automatically segment the lesions are strongly desired.

The Ischemic Stroke Lesion Segmentation (ISLES) [3] strives to provide open
benchmark data to objectively evaluate and compare respective algorithms. The
first ISLES challenges and evaluation data sets focussed on magnetic resonance
imaging (MRI) data [1,4]. Compared to computed tomography (CT), MRI comes
with the advantages of better visibility of stroke lesions and the absence of radi-
ation; yet, CT has higher availability in most hospitals [5]. Taking related clini-
cal relevance of (perfusion) CT to triage stroke patients into account, the 2018
ISLES challenge therefore now focuses on methods to segment acute ischemic
stroke lesions in native CT images and contrast medium-enhanced perfusion
maps. Thus, it is now to be answered whether and to what extent the 2015–2017
methods can be adapted to core lesion segmentation using such data. There-
fore, a training dataset including radiologists’ ground-truth segmentations and a
testing dataset without known ground truth were provided by the challenge orga-
nizers. The participants were asked to upload their stroke segmentation results
for the testing data set.

In this article, we describe our participation in the ISLES 2018 challenge. The
final choice of the applied method(s) was based on the original MRI-based 2015
ISLES challenge [1]. At that time, the majority of participants applied (either as
single solution or as part of a pipeline) random forest for segmentation [6–15].
In addition, first convolutional neural network (CNN)-based approaches were
also applied [16,17], and it seems to be the case that (at least at the moment)
encoder-decoder-style CNNs [18] manifest as quasi-standard for medical image
segmentation. We therefore decided to implement both approaches and to report
on their performance on the ISLES 2018 training data set – either applied indi-
vidually or in combination. Being interested in the pure algorithm performance,
we did neither make use of additional data other than the provided challenge
training data nor performed extensive data augmentation. Algorithmic details
are described in depth in succeeding sections.

2 Materials and Methods

2.1 Image Data Description

The ISLES 2018 training data contained 94 individual data sets (subsequently
called ‘cases’) from 63 patients, i.e. image data from patients with separated
lesions were split into different cases. The individual cases consisted of only slices
around the stroke lesions, with the number of slices per case ranging from 2 to
16. For each case, native CT image data as well as contrast medium enhanced
4D CT image data were provided. From the latter, cerebral blood flow (CBF),
cerebral blood volume (CBV), mean transit time (MTT), and time-to-maximum
flow (Tmax) perfusion maps were calculated and also provided.
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Ground truth data were binary masks manually drawn by radiologists on the
basis of co-registered diffusion weighted imaging (DWI)-MRI data.

The DWI-MRI data were not available for the ISLES 2018 challenge testing
data; we therefore did not consider them for training purposes and the experi-
ments described in the present paper. As dealing with the 4D perfusion image
series is also challenging from a computational perspective (e.g. GPU memory
handling), we did not make use of the respective explicit temporal information;
we only computed a corresponding maximum intensity projection (MIP) along
the temporal axis as additional image data.

2.2 Image Preprocessing

Image preprocessing consisted of two parts: intensity normalization and fast
brain segmentation. Image intensity normalization was applied independently for
each case and image sequence by rescaling the original image intensity dynamics
to the range [0; 1]. Fast brain segmentation was based on a 3D-connected compo-
nent (CC) analysis of the CBV images. The largest non-zero CC was considered
an initial brain segmentation, which was further refined for the individual axial
slices by filtering out small 2D-CCs based on their size and position (CC cen-
troid should be rather posterior than anterior; the latter corresponded, e.g., to
close-to-eyes CCs in inferior slices).

2.3 Random Forest (RF) Implementation

For random forest (RF) implementation, we used the Scikit-learn Python library
[19], Gini impurity as impurity measure, and 150 trees. For RF feature extrac-
tion, we applied the Python medical image processing library MedPy [20]. Fea-
tures were computed for each case and voxel inside the case-specific brain mask
(see Sect. 2.2); class imbalance due to small lesions (compared to healthy brain
tissue) was not accounted for.

As voxel features, we used the image intensity as well as Gaussian-weighted
local mean intensity values (standard deviations σ = 3, 7, 13). These intensity
features were computed for each of the rescaled image sequences (i.e. native CT,
CBF, CBV, MTT, and Tmax), resulting in 20 features. Despite the fact that
the MedPy implementation to derive hemispheric difference values may lead to
partially erroneous values due to the images not being normalized/registered to
symmetric atlas space, we also computed voxel-wise hemispheric difference values
for the different image sequences, yielding additional five features. Thirdly, we
extracted a 10-bin local histogram (5×5 neighborhood) from the Tmax and used
the ten frequency values as additional features. Fourth and finally, we computed
the distance of the voxel to the brain mask boundary and the distance of the
voxel to the image center. Thus, in total, we extracted 37 features for each voxel.

For classification of test cases, i.e. application of the trained RF, case-specific
RF probability maps were generated based on the voxel-wise probability of
belonging to the lesion class. The probability map was rescaled to the range
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[0; 1] in such a way that the 99th percentile (and values above) of the prob-
ability map values corresponded to a value of 1. For lesion segmentation, the
resulting map was thresholded by a value of 0.5. Given the resulting binary
map, we excluded all connected areas with size smaller than 70 voxels to avoid
false positives related to noise or image artifacts. Finally, a hole-filling algorithm
was applied for each axial slice.

2.4 CNN Architecture and Workflow

Different CNN architectures were proposed in recent years for semantic image
segmentation via deep learning. In this study, we decided to employ the currently
popular DeepLabv3+ network that is designed to learn multi-scale contextual
image features and controlling signal decimation [21]. For this purpose, it utilizes
three key concepts:

Feature extraction. Feature extraction is conducted by a ResNet, pre-trained
on the ImageNet data set, which employs residual learning to allow for effi-
cient training of deeper neural networks [22].

Atrous convolutions. Efficient computation of feature responses by adding
larger context information without increasing the number of parameters, i.e.
sparse convolution kernels, is achieved using atrous convolutional layers.

Atrous spatial pyramid pooling. In order to combine the multi-scale informa-
tion yielded by different atrous convolution layers, the atrous spatial pyramid
pooling is applied.

For the problem defined by the ISLES 2018 challenge, the original DeepLabv3+
structure had to be slightly modified. To convert the network output into a
binary segmentation, a convolutional filter was randomly chosen from the 21
pre-trained filters regarding the last convolutional layer. Further, we had to
change the number of input color channels from 3 to 6 as we concatenated the
given native CT, CBF, CBV, MTT, Tmax and the computed MIP image data,
yielding a tensor for every case and slice of shape nx × ny × 6. To allow for a
robust and efficient training, 256 patches of shape 64 × 64 × 6 of each (nx, ny)-
slice were randomly selected and used as input data set. Based on this data, the
model was re-trained in 5 epochs.

2.5 Combining RF and CNN Results

To analyze potential segmentation improvement by combining RF and CNN out-
puts, we averaged the RF probability map after rescaling by the 99th percentile
and the CNN probability map. Thresholding and post-processing of the binary
maps remained unchanged compared to previous explanations.

2.6 Experiments

To evaluate the implemented stroke segmentation approaches, we performed a
5-fold cross validation based on the underlying patient collective of the ISLES
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Table 1. RF-only, CNN-only and results (mean ± standard deviation over cases)
after combining respective probability maps for the individual folds and corresponding
average data. HD and ASSD values refers multiples of the in-plane pixel side length.

Approach Fold Dice HD ASSD

RF-only Fold 1 0.42 ± 0.25 50.59 ± 29.89 7.15 ± 5.33

Fold 2 0.43 ± 0.26 34.98 ± 21.07 6.18 ± 6.52

Fold 3 0.31 ± 0.24 56.25 ± 23.82 11.18 ± 8.57

Fold 4 0.52 ± 0.23 41.47 ± 30.69 6.04 ± 6.73

Fold 5 0.47 ± 0.24 55.53 ± 32.57 7.12 ± 7.23

Avg 0.42± 0.26 47.33± 28.94 7.52± 7.29

CNN-only Fold 1 0.51 ± 0.16 50.52 ± 27.77 6.58 ± 5.51

Fold 2 0.41 ± 0.26 36.42 ± 24.93 5.70 ± 6.09

Fold 3 0.31 ± 0.29 37.03 ± 23.99 6.23 ± 8.82

Fold 4 0.49 ± 0.29 47.20 ± 29.68 8.07 ± 10.22

Fold 5 0.48 ± 0.25 44.57 ± 33.40 6.62 ± 5.85

Avg 0.44± 0.27 43.30± 28.82 6.60± 7.46

Combination Fold 1 0.51 ± 0.21 44.63 ± 28.02 5.73 ± 5.45

Fold 2 0.49 ± 0.27 31.45 ± 19.47 6.02 ± 7.82

Fold 3 0.39 ± 0.26 48.21 ± 25.53 10.09 ± 10.34

Fold 4 0.58 ± 0.22 39.76 ± 31.23 5.21 ± 6.05

Fold 5 0.54 ± 0.24 42.83 ± 36.36 6.05 ± 6.93

Avg 0.50± 0.26 41.12± 28.85 6.69± 7.86

training dataset. Splitting the 63 patients instead of the 94 cases ensured that
the same patient was not part of both the training and testing data, and thereby
prevented a related bias and overestimation of the segmentation performance.

The same folds were used for RF-only training and evaluation, CNN-only
training and evaluation, and evaluation of the combination of RF and CNN
output. Following previous ISLES contributions, we focused our evaluation on
three metrics: Dice coefficient, Hausdorff distance (HD), and average symmetric
surface distance (ASSD).

3 Results

The results for RF-only, CNN-only, and combined RF and CNN stroke lesion
segmentation are summarized in Table 1. RF-only segmentation resulted in a
mean Dice coefficient of 0.42 ± 0.26 (averaged over all testing cases and folds).
The average CNN-only Dice coefficient was slightly higher (0.44 ± 0.27); how-
ever, this was consistently observed for all folds. In contrast, the Dice coefficient
after combining RF and CNN outputs was for all folds at least as high as the
higher single-approach value, indicating the potential of improving segmentation
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Fig. 1. Illustration of complementary information by RF-only and CNN-only stroke
lesion segmentation, and the potential by combining respective outputs. All images are
shown for case 40 and the fifth fold. Top row, left: probability map (blue: low prob-
ability; ref: max. values) and ground truth segmentation contours for RF-only (Dice
0.44); top row, right: same information for CNN-only (Dice 0.31). Bottom row, left:
combined probability map (Dice 0.66); bottom row, right: ground truth segmentation.
(Color figure online)

quality by combining the two approaches. Similar observations hold true for the
Hausdorff distance values. ASSD was, in turn, on average lower for CNN-only
than for RF-only and the combined approach. An illustration of the complemen-
tary information of the individual approaches can be found in Fig. 1.

4 Discussion and Conclusion

We applied and evaluated a classical random forest classifier employing hand-
crafted image features commonly used in the context of stroke lesion segmenta-
tion [1], a state-of-the-art CNN architecture for image segmentation, and a com-
bination of the two algorithms. Given the still relatively small amount of training
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data especially for deep learning purposes, the underlying hypothesis was that
the two methodically different approaches extract complimentary information
and that, as a consequence thereof, the performance of the joint approach leads
to an improved segmentation performance. The presented results (especially in
terms of the Dice coefficient) support the hypothesis. Further improvement of
segmentation performance could, for instance, be reached by using additional
image data during training, exploiting data augmentation strategies and exten-
sive use of additional methods (i.e. consideration of larger ensembles); neverthe-
less, the presented baseline performance is considered promising.
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