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Abstract. The challenge of Ischemic Stroke Lesion Segmentation 2018 asks
for methods that allow the segmentation of stroke lesion based on acute CT
perfusion data, and provided a data set of 103 stroke patients and matching
expert segmentations. In this paper, a novel deep learning framework with
extractor, generator and segmentor for ischemic stroke lesion segmentation has
been proposed. Firstly, the extractor is to extract the feature map from processed
perfusion weighted imaging (PWI). Secondly, the output of extractor, cerebral
blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) and
time of peak of the residue function (Tmax), etc. as the input of the generator to
generated the Diffusion weighted imaging (DWI) modality. Finally, the seg-
mentor is to precisely segment the ischemic stroke lesion using the generated
data. In order to overcome the over-fitting, the data augmentation (e.g. random
rotations, random crop and radial distortion) is used in training phase. Therefore,
generalized dice combined with cross entropy were used as loss function to
handle unbalanced data. All networks are trained end-to-end from scratch using
the 2018 Ischemic Stroke Lesion Challenge dataset which contains training set
of 63 patients and testing set of 40 patients. Our method achieves state-of-the-art
segmentation accuracy in the testing set.
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1 Introduction

CT perfusion (CTP) [1] is an important diagnostic method in ischemic stroke. It
enables differentiation of salvageable ischemic brain tissue (penumbra) from irrevo-
cably damaged infarcted brain (infarct core). This is useful when assessing a patient for
treatment (clot retrieval or thrombolysis). Compared with CTP, magnetic resonance
images (MRI) is more sensitive to the early parenchymal changes of infarction. But its
clinical application has been limited due to difficulties in timely access of MRI in many
hospitals. For ischemic stroke patients, rapid imaging is especially important in the
clinical treatment workflow.

The quantitative perfusion parameters of CTP (included CBV, CBF, MTT, Tmax,
etc.) are usually used to identify the ischemic penumbra and the infarct core. The
infarct core is defined as an area with prolonged MTT or Tmax, with markedly
decreased CBF and CBV. The ischemic penumbra, which in most cases surrounds the
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infarct core, also has prolonged MTT or Tmax (typically >6 s), but in contrast has only
moderately decreased CBF and, importantly, near normal or even increased CBV [16].
Although the parameters of CTP can provide abundantly information in treatment of
ischemic stroke, the accuracy is affected by factors such as the placement of arterial
input function (AIF), and the deconvolution method used. In this work, we are also
trying the extract the perfusion information directly from the CTP data, instead of
indirectly from the perfusion parameters extracted.

In recent years, deep convolutional neural networks (CNNs) [2], have achieved great
successes in image classification, segmentation and detection tasks and rapidly become
the most popular technique in the medical imaging analysis. Image segmentation plays
an important role in medical imaging, so the CNNs were firstly applied on medical
image segmentation using patch-wise pixel classification. Later on, the global and local
information are considered in the fully convolutional network (FCN) [3], which have
encoder, decoder and show state-of-the-art performance in segmentation. The U-Net [4]
is developed based on the FCN framework and uses the skip-connections to combine the
low-level feature maps with higher-level feature maps, which has achieved better result
in breast cancer segmentation in pathology. Cross-entropy (CE) was commonly used as
loss function in segmentation networks of medical imaging, where background pixels
are in majority which could cause serious class-imbalance problem, therefore the Dice
loss function was proposed in [5] to alleviate this problem.

In this paper, we proposed an integrated network of ischemic stroke lesion seg-
mentation for CTP data, which consists of an extractor, a generator and a segmentor.
The FCN-like framework, with encoder and decoder, is used in extractor, generator and
segmentor, respectively. This network is trained and tested on 2018 Ischemic Stroke
Lesion Challenge [11], and achieved the first place of this challenge. Figure 1 shows
the overall pipeline of our method, which contains three networks: (1) the extractor is
to learn the representative image or the most important information from CT perfusion
images; (2) the generator is to generate the DWI data using the output of the extractor

Fig. 1. The overall pipeline of our integrated segmentation framework. Here, PWImax_o and
PWImax_p represents the max value in the time dimension of original PWI and preprocessed
PWI, respectively.
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and the perfusion parameters, which provides a better input for the segmentor; (3) the
segmentor is to precisely segment the ischemic stroke lesion using the generated data.
All networks are trained end-to-end, and the infarct core will be automatically predicted
in the inference phase.

2 Method

2.1 Dataset and Preprocessing

The integrated segmentation framework is trained and tested using the 2018 Ischemic
Stroke Lesion Challenge dataset. Imaging data from acute stroke patients in two centers
who underwent CTP within 8 h of stroke onset, and were further scanned with MRI
with DWI sequence within 3 h after CTP were included. Infarcted brain tissue is
hyperintense on the DWI images. The training set consist of 63 patients, which con-
tains, plain CT, DWI and CTP as well as perfusion maps of CBF, CBV, MTT and
Tmax. Ground-truth segmentations were also provided. 40 patients with perfusion
maps (CBF, CBV, MTT, Tmax), CT and CTP are provided in the testing phase, with
no DWI or ground truth. The perfusion maps are calculated from original PWI using
deconvolution method. The preprocessing of CTP data contains three stages: (1) firstly,
the pixel values of a certain CTP frame are summed at any given time point, which
forms a single time intensity curve for the whole CTP data of any case; (2) secondly,
this time intensity curve is smoothed using a Gaussian smoothing filter, with a kernel
size of 5. (3) finally, the 11 frames of CTP are selected, which are sampled between the
onset of contrast injection and the end of the first pass. For normalization of the input
data, the Batch Normal layer with no parameters is chosen.

2.2 Network Architecture

Our integrated segmentation framework consists of extractor, generator and segmentor,
with all networks adapted from U-Net, which is a fully convolutional neural network
and uses skip connections to combine low-level feature maps with higher-level ones.
The U-Net consists of four blocks in the downsampling stage, each block has two
3 � 3 convolutions, each followed by a rectified linear unit (ReLU) and a 2 � 2 max
pooling operation with a stride of 2. At each downsampling step, the number of feature
channels doubles. Every step in the expansive path consists of an upsampling of the
feature map followed by a 2 � 2 convolution (“deconvolution”) that halves the number
of feature channels, a concatenation with the correspondingly feature map from the
contracting path, and two 3 � 3 convolutions, each followed by a ReLU. The network
of extractor is a small U-Net that halves number of feature channels of U-Net in the
downsampling and upsampling stage. The network of generator is an original U-Net
without modification, except in the first convolution to adapt to the input data.

With regard to segmentor, the network is an attention U-Net as illustrated in Fig. 2.
Compared with the original U-Net, it has an inserted network block, called squeeze-
and-excitation networks (SE Block) [6], and with a switchable normalization (SN) [7]
layer. The SE Block adaptively recalibrates channel-wise feature responses by
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explicitly modelling interdependencies between channels using the attention mecha-
nism. And the SN layer is to learn the weights of batch-wise, channel-wise and layer-
wise normalizers for normalization, it is robust to a wide range of batch sizes, main-
taining high performance even when the batch size is small.

In the training phase, the same two small networks are used to help train the
generator following the generator, each network consists of five 3 � 3 convolutions
with stride 2, each followed a ReLU, and two adaptive average pooling layers in the
end of network with size 7 � 1 and 1 � 7, respectively.

2.3 Loss Function

The output of extractor is a single channel feature map with the same size of input,
which is calculated before sigmoid activation in the final layer. Through the sigmoid
activation, this single channel feature map indicated the confidence probability of each
pixel to be foreground. The L1 loss function is used for training in the extractor to
regress the confidence probability and be expressed as

Le ¼ k1 � p� ykk 1 ð1Þ

where p and y represent the confidence probability of predicted and ground-truth
respectively.

The loss function of generator has two parts: one part is the L2 loss to constrain the
distance between the generated DWI and real DWI; the other part is to calculate the L2

Fig. 2. The architecture of our segmentation network (Attention U-Net) adapted from 2D U-Net.
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distance of feature maps extracted from the generated DWI and the real DWI. Thus the
whole loss function of generator can be written as

Lg ¼ k2 �W � DWIg � DWIr
�
�

�
�

2 þ k3 � FA � FBkk 2

� � ð2Þ

where the DWIg and DWIr is the generated DWI and real DWI, respectively. FA is
high-level feature map, extracted from generated DWI using model A, and FB is the
high-level feature map, extracted from real DWI using model B, the model A and B
have the same network to extract high-level information, similar as perceptual loss.
Here, W is the heat map of ground truth, calculated by signed distance function
(SDF) [9], as is shown in Fig. 3.

As for the segmentor, its network predicts two output channels of the same size as the
input, which indicate the probability of each pixel to be foreground or background after
the pixel-wise softmax activation. In the medical image segmentation task, the back-
ground pixels are the majority, so the balance of the sample gradient must be considered.
In this work, generalized dice [8] combined with cross entropy were used as loss function
to handle the class-imbalance problem. The loss function is defined as the following

Ls ¼ k4 � W � CE � log generalized diceð Þf g ð3Þ

In this loss function, we consider the pixel-wise classification, and the similarity
between the foreground prediction and the given ground truth, it is robust to a wide
variance of input data. In order to balance the gradient size of cross entropy and
generalized dice, the log operate is used.

2.4 Training and Testing

As mentioned above, the extractor, generator and segmentor are the main components
of our integrated segmentation framework, also the same two small networks (model A
and B) need to be trained in the training phase. The five networks are trained end-to-
end from scratch using the 2018 Ischemic Stroke Lesion Challenge dataset which
contains training set with 63 patients and testing set with 40 patients. The training set is
divided to four subsets to validate the trained models using the cross-validation
method. Firstly, the extractor with input size 256 * 256 * 11 is used to extract the
feature map using the regression of confidence probability. Then a concatenation with
the extractor’s feature map and other perfusion maps with a size of 256 * 256 * 7 as
input of generator. In the end, the segmentor is used to predict the foreground region

Fig. 3. The heat map of ground truth.
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(probability) using generated DWI with a size of 256 * 256 * 1. In training, the
weights of all networks are initialized using Xavier initialization [12] and updated
using RMSprop [14] optimizer with a batch size of 5 samples. The strategy of warm-up
[13] and step-by-step learning rate decay are used, and the learning rate is initialized at
0.002 and reduced by factor 0.2 after 180, 300 epochs, and the k1, k2,k3 and k4 we set
at 1.0, 0.002, 1.2 and 1.0, respectively.

In the testing phase, we preprocess a testing case to get the 11 slices of PWI as the
input of extractor, and concatenate the extractor’s feature map, CBF, CBV, MTT,
Tmax, PWImax_o and PWImax_p to feed into the network of generator, then the
Segmentor to predict the probability of infarct core using the generated DWI. The final
segmentation region is an ensemble result of the four cross-validation models by
computing their mean probability, and post-processing method of connected-
component analysis is used to ensure the continuity of predicted area in space.

3 Result

The integrated segmentation framework is implemented by PyTorch [10] with cuDNN,
and all experiments are performed on a workstation with 32 GB of memory, Intel Core i7
6700 k @ 4.0 GHz, and four Nvidia GTX 1080Ti 11G GPUs. In the training stage of
2018 ischemic stroke lesion challenge, the training datasets were divided into four subsets
to validate the trained models by cross-validation, so all analysis of the trained model is
performed on the cross-validation dataset. The detailed statistics are listed in Table 1.

Perfusion maps without DWI is provided in the testing phase, so we firstly attempt
to feed the perfusion maps (CBV, CBF, MTT, Tmax) into the network of U-Net and
use cross entropy after softmax activation for training, which caused a lot of false
positives with a Dice score of only 0.53. In order to reduce the gradient of background
to balance the gradient in the training phase, a novel loss function was designed using a
combination of cross entropy and generalized dice, it improved the result with a Dice
score of 0.55 and made the training more stable. Meanwhile, we designed a novel
network (Attention U-Net), adapted form U-Net, which used an attention block (SE
block) to get better performance with a Dice score of 0.56. An initial experiment using
DWI as input achieves a dice score of 0.83, which inspired us to propose a two stage
segmentation framework, which contains a generator with U-Net and a segmentor with
Attention U-Net. In this framework, the PWImax_p, CBF, CBV, MTT and Tmax are
used as the input of the generator to generate a pseudo-DWI, then the generated DWI is
used to predict the region of infarct core. It increased the dice score by two percentage
points on the original result. The heat map, calculated by sign distance function, is used
as loss function for the generator and the segmentor, which makes the network focus
more on the region of infarct core, so a Dice score of 0.59 was achieved. With the
network becoming larger and larger, smaller batch number is needed in the training
phase, so we replace Batch Norm (BN) [15] with Switch Norm (SN) in the networks.
The SN is to learn the probabilities of different normalizers for normalization, it is
robust to a wide range of batch sizes, maintaining high performance even when the
batch size is small. Therefore, a Dice score of 0.60 is obtained by the SN.
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Next, we try to extract the useful information from original CTP data to generate a
more realistic DWI, firstly we extract 6 slices from PWI in time dimension, then a small
U-Net was used to extract the representative images to feed into the generator’s network.
Compared with previous result, using the extractor makes the result increased by one
percentage point. Later on, the two same small networks (model A and model B) are
used following the generator, it makes the gradients descent faster and the training more
stable. To calculate a more reasonable mean and standard deviation, the batch normal
layer without learned parameters, designed before first convolution layer, is used to
normalize the input data. Finally, the Dice score 0.62 is obtained in the validation set.

As shown as Fig. 4, the predictions are compared with ground truths, and the
generated DWI is compared with the original DWI, respectively. It demonstrates the
effectiveness of our integrated segmentation framework.

Fig. 4. Segmentation results of 4 cases in the validation set compared with the ground truth. The
ground truths and predictions are given in green and red, respectively. From left to right, the
original DWI, ground truth superimposed on original DWI, the generated DWI and the
predictions superimposed on the generated DWI. (Color figure online)
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4 Conclusion

This paper detailed an integrated segmentation framework, which consists of extractor,
generator and segmentor, for ischemic stroke lesion segmentation. First, the extractor is
to extract the representative image from the original CTP data. Secondly, the generator
is to generate the DWI from extractor’s output and perfusion maps. Finally, the seg-
mentor is to precisely segment the infarct core using the generated data. The network
achieved a dice coefficient of 0.62 in cross validation stage and won the first place in
the 2018 ischemic stroke lesion challenge in the test stage.
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