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Abstract. Recently, CT perfusion (CTP) has been used to triage
ischemic stroke patients in the early stage, because of its speed, avail-
ability, and lack of contraindications. But CTP data alone, even with the
generated perfusion maps is not enough to describe the precise location
of infarct core or penumbra. Considering the good performance demon-
strated on Diffusion Weighted Imaging (DWI), We propose a CTP data
analysis technique using Generative Adversarial Networks (GAN) [2] to
generate DWI, and segment the regions of ischemic stroke lesion on top
of the generated DWI based on convolutional neutral network (CNN)
and a novel loss function. Specifically, our CNN structure consists of a
generator, a discriminator and a segmentator. The generator synthesizes
DWI from CT, which generates a high quality representation for sub-
sequent segmentator. Meanwhile the discriminator competes with the
generator to identify whether its input DWI is real or generated. And
we propose a novel segmentation loss function that contains a weighted
cross-entropy loss and generalized dice loss [1] to balance the positive
and negative loss in the training phase. And the weighted cross entropy
loss can highlight the area of stroke lesion to enhance the structural con-
trast. We also introduce other techniques in our network, like GN [13],
Maxout [14] in the proposed network. Data augmentation is also used
in the training phase. In our experiments, an average dice coefficient of
60.65% is achieved with four-fold cross-validation. From the results of our
experiments, this novel network combined with the proposed loss func-
tion achieved a better performance in CTP data analysis than traditional
methods using CTP perfusion parameters.
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Generalized dice loss

1 Introduction

Stroke is the second leading cause of death worldwide, accounting for 6.24 mil-
lion deaths globally in 2015 [4]. And more than 80% of stroke cases are ischemic.
However, only very few of stroke patients receive recombinant tissue plasminogen
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activator (rtPA) therapy despite proven effectiveness in reducing stroke disabil-
ity. Defining location and extent of irreversibly damaged brain tissue is a critical
part of the decision-making process in acute stroke. Magnetic resonance images
(MRI) using diffusion and perfusion imaging can be used to distinguish between
infarcted core and the penumbra. Because of the advantages in speed, availability,
and contraindications, CT perfusion have been used to triage with acute stroke
instead of MRI, which may shorten the scanning time for the stroke patients
[3]. Automatic methods, including many commercial software have been devel-
oped to measure the perfusion maps of stroke patients, but such methods may
not be good enough to solve the heterogeneities of the stroke patients. There-
fore, there is a great need for advanced data analysis techniques that could help
to diagnosis stroke accurately and precisely with repetitiveness, and support
decision-making for treatments. In the literature, more often a optimal thresh-
old of the CTP parameter is used, like rCBF < 30% within delaytime > 3 s is
the threshold of the region of core [3]. But this pre-defined threshold suffers from
several drawbacks. First, progression of stroke is patient specific and a popula-
tion threshold may not work in some cases. Second, thresholding means a fixed
value for all patients across all scanners in all hospitals, without considerations
of site differences.

In the past decade, deep learning technology, especially Convolutional Neural
Network (CNN) has achieved huge successes in various computer vision tasks,
like classification [7], detection [8] and segmentation [9]. And the power of CNN is
demonstrated in medical imaging more and more. Ciresan et al. [10] firstly intro-
duced CNNs to medical image segmentation by predicting a pixel’s label based on
the raw pixel values in a square window centered on it. But this method is quite
slow because the network must run separately for every pixel within every sin-
gle image and there is a lot of redundancy due to overlapping windows actually.
Later on, Ronneberger et al. proposed U-Net [11], which consists of a contracting
path to capture context and a symmetric expanding path that enables precise
localization and can be trained end-to-end from very few images built upon the
famous Fully Convolutional Network (FCN) framework [9]. Specifically, Nielsen
[6] introduce the deep CNN in Acute Ischemic Stroke segmentation task with a
simple encoder-decoder structure to predict the final infarct.

In this paper, different from Anne Nielsen, we proposed a novel structure
of network combined with the GAN approach to solve this task. Our proposed
network structure contains a generator, a discriminator and a segmentator. The
structure of our work flow is shown in Fig. 1. Generator is used to synthesize
the DWI images from the CT data. Discrimintator is used to perform the clas-
sification of the generated DWI image and the true DWI image. Segmentator is
finally used to segment the lesion of brain on the generated DWI image.



Segmentation with GAN 255

Fig. 1. Structure of our ischemic stroke lesion segmentation work flow. Generator is
used to synthesize the DWI images from the CT data. Discrimintator is used to perform
the classification of the generated DWI image and the true DWI image. Segmentator
is finally used to segment the lesion of brain on the generated DWI image.

2 Method

2.1 Dataset and Data Preprocessing

Our framework is trained and tested using ISLES 2018 Segmentation Challenge
dataset, which include imaging data from acute stroke patients in two centers
who presented within 8 h of stroke onset and underwent an MRI DWI within
3 h after CTP. The training data set consists of 63 patients, and the testing
set includes 40 patients. Because some patients have two slabs to cover the
stroke lesion (These are non-, or partially-overlapping brain regions). In the
end, we have 94 and 62 cases in training phase and testing phase separately.
Each case in training have eight modalities or parametric maps, including CT,
CT 4DPWI, CT MTT, CT Tmax, CT CBF, CT CBV, MR DWI, and ground
truth, OT. All modalities are shown in Fig. 2. ISLES 2018 dataset have the same
size, (256 * 256), and the same spacing, (1 * 1 mm), in x and y dimension, but
with a very different slice number in z dimension. Most cases of the dataset have
only two slices, which is hard to exploit the information from the 3D data via
3D-CNN method. Thus we separate the 3D images into 2D slices along z axis,
which equivalently augment the data size, as more training data are available in a
2D manner with a 2D CNN network. We concatenate the channels of CT MTT,
CT Tmax, CT CBV, CT CBF, and the maximal value of CT 4DPWI along time
dimension, which we call PWI max, and normalize them in the training process.

Additionally, We also perform on-the-fly data augmentation when feeding
training samples. Augmentation operations include scaling, flipping, rotation,
and translation are applied during the training.

2.2 Construction of Network

The whole workflow of our approach is shown in Fig. 1. The generator and seg-
mentator are both designed based on U-Net [11] as illustrated in Fig. 4. It is a
fully convolutional network, which consists of a encoder structure (left side) and
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Fig. 2. An example of ISLES 2018 training data: (a) CT, (b) max value of 4DPWI,
(c) DWI, (d) OT, (e) Tmax, (f) CBF, (g) CBV, (h) MTT.

a decoder structure (right side). The encoder part and decoder part consist of
repeated layers of two 3 × 3 convolutions, with either MaxPooling in encoder
part or UpConv layer in decoder part. With the limited GPU memory, a degra-
dation problem is encounted in batch normalization due to the small batch size.
Group normalization [13] is thus introduced in our network to solve this prob-
lem. GN’s performance is relatively independent of the batch sizes used, and its
accuracy is stable in a wide range of batch sizes. Inspired by the idea of maxout
from Goodfellow et al. [14], maxout operation is performed in the final predic-
tion. Normally, there are two output channels predicted for binary classification
tasks, followed by softmax operation. Instead, We predict four layers, includ-
ing three layers as background prediction for false positive reduction and one
layer for foreground prediction. Then the max of three background channels are
combined along channel dimension, to construct the final background channel
for each pixel. We show a schematic drawing in Fig. 3. Through this maxout
operation, many false positives could be reduced.

Fig. 3. Maxout for segmentation.
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The discriminator in our work flow is in its simplest form, because we want
to save the GPU memory used as much as we can. It only consists of five con-
volutional layers followed by group normalization [13], with Relu and a average
pooling layer in the end. We use kernels with size 5 * 5 and stride 2 * 2, with no
padding.

Fig. 4. U-Net with GN and Maxout, the backbone Structure of our generator and
segmentator (Maxout is only used in segmentator).

2.3 Loss Function

Our loss function have three parts, which come from the generator, discrimi-
nator and segmentor, respectively. For the generator network, we measure how
effectiveness the network transfer CT modalities to DWI using traditional mean
square error (MSE) loss compared with the ground truth DWI. For the dis-
crimination network, borrowed from LSGAN [15], we calculate the gap between
prediction and ground truth via MSE Loss as well. During the training of the
discriminator, DLoss is calculated with Eq. (2). In training of the generator and
segmentator, DLoss is in the form of Eq. (3).

GLoss = MSELoss(Pred, Target) (1)

DLoss = MSELoss(FakeDWI, 0) + MSELoss(TrueDWI, 1) (2)

DLoss = MSELoss(FakeDWI, 1) (3)
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In the segmentation task, people usually use either cross entropy (CE) loss
or dice loss alone. In Kaggle Carvana Image Masking Challenge, one challenger
come up with a novel loss function result in a good performance with the form:

SegLoss = BCELoss − log(diceloss) (4)

But in the training process, this loss is not stable when used directly. Then
CE Loss combined with generalized dice loss [1] is introduced instead in the
above equation:

SegLoss = CELoss − log(generalizeddiceloss) (5)

We evaluate the gradient in training phase and found there would be a
more reasonable ratio between positive and negative regions’ gradients, bringing
a more stable result. Intuitively, considering both foreground and background
simultaneously is good for performance improvements.

Proper weights need to be set for each loss while training generator and
segmentator. In the end, the loss function used is shown below.

Loss = ωg ∗ GLoss + ωd ∗ DLoss + ωs ∗ SegLoss (6)

3 Experiment

3.1 Implementation Details

We split the training data into four folds for cross-validation in the training
phase. The input samples’ size is (B, 5, 256, 256) where B is batch-size. First, we
train the discriminator using generated DWI, which is synthesized via generator
from the input CT data and the perfusion parameters, and the true DWI with
pre-prepared labels. The discriminator’s parameters were optimized using RMS
optimizer with DLoss (Eq. (2)). Similar as in the discriminator, we also use RMS
optimizer to optimize the generator and segmetator’s parameters simultaneously,
with Loss (Eq. (6)). The initial learning rate and γ is 0.0001 and 0.9, respectively.
We train these two branches alternately 700 epoch in total. Learning rate will
be halved in epoch 100, 300, 500. The ratio of weights, GLoss:DLoss:SLoss, is
0.002:0.5:1. In GN layers, we fix the number of channels per group as 16. Because
the GN layers can have different channel numbers, the group number can change
across layers in this setting. The batch size is 6 in our exerments.

3.2 Results

We implemented our framework using PyTorch with cuDNN, and ran all exper-
iments on a GPU server with 256 GB of memory, and a Nvidia GTX 1080Ti
11G GPUs. We analysed the segmentation loss function in the early stage. So
the experiments result below are all based on the loss functions mentioned in
Sect. 2.3.
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Table 1. Result in different experiment stage.

Stage First Second Third Fourth

Dice 0.8473 0.5463 0.5829 0.6065

Fig. 5. Visualization of validation results of model trained on MR DWI directly. Image
in the left is the raw DWI image. DWI image overlayed by ground truth and prediction
of model is in the right (green is ground truth, cyan is prediction). (Color figure online)

Fig. 6. Visualization of validation results of model trained on MR MTT, MR Tmax,
MR CBV, MR CBF directly. MTT image overlayed by ground truth and prediction
of model is used to show. (green is ground truth, yellow is prediction). (Color figure
online)

The inspiration of our novel work flow is as the following. At the very begin-
ing, first stage (Table 1), we don’t know there is no MR DWI modality in testing
phase. So MR DWI is used as input to train the algorithm with a raw U-Net
only. And the result is pretty good (Fig. 5) with dice coefficient equal to 0.8473.
Then at the second stage (Table 1), we tried training a U-Net with MTT, Tmax,
CBV and CBF, getting a much worse result of dice coefficient of 0.5463. The big
gap in performance of segmentation between CTP image and DWI image drives
me to transfer CTP images to a DWI image with a GAN approach. LSGAN
[15] is a variation of traditional GAN [2] with a more stable performance and
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Fig. 7. Four-flod cross-validation dice (mean). Comparation between BN and GN.

Fig. 8. Visualization of final result of model trained on our whole pipeline. (Top):
Image in the left is the raw DWI image. Image in the right is our generalized DWI
modality. (Bottom): Image overlayed by ground truth and prediction of model (green
is ground truth, cyan is prediction). (Color figure online)

quicker convergence by changing log loss to L2 loss. In the third stage, after
adding LSGAN in our work flow, the final dice coefficient score had a great
improvement, from 0.5456 to 0.5811. Meanwhile, we concatenate a new channel,
max of CT 4DPWI along time dimension, into the input. So, this work flow
is determined to be our pipeline. In the fourth stage (Table 1), we mainly did
some network structure modifications, like self attention, Maxout, GN, etc, to
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stable the training process and reduce the FP regions. The average dice score
of four-fold cross-validation is 0.6065 in the end. The visualization of our final
result is shown in Fig. 8. And the average dice score of the four fold validation
sets is shown in Fig. 7. Batch normalization using BN or GN is also compared.
The curve of network with GN is more stable than the curve of network with
BN (Fig. 6).

4 Conclusion

In this paper, we propose a deep learning based method combined with adversar-
ial networks to locate the region of ischemic stroke lesion automatically. And we
proposed a novel pipeline for stroke lesion segmentation through DWI modality
generation from CT perfusion data, which have a potentially promising prospec-
tive. This novel pipeline have a improvement over direct segmentation with a
large margin. And a novel loss function is proposed as well, with maxout oper-
ation used in segmentation to achieve the state of art in ISLES challenge 2018.
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