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Abstract. Registering brain magnetic resonance imaging (MRI) scans
containing pathologies is challenging primarily due to large deformations
caused by the pathologies, leading to missing correspondences between
scans. However, the registration task is important and directly related to
personalized medicine, as registering between baseline pre-operative and
post-recurrence scans may allow the evaluation of tumor infiltration and
recurrence. While many registration methods exist, most of them do not
specifically account for pathologies. Here, we propose a framework for the
registration of longitudinal image-pairs of individual patients diagnosed
with glioblastoma. Specifically, we present a combined image registra-
tion/reconstruction approach, which makes use of a patient-specific prin-
cipal component analysis (PCA) model of image appearance to register
baseline pre-operative and post-recurrence brain tumor scans. Our app-
roach uses the post-recurrence scan to construct a patient-specific model,
which then guides the registration of the pre-operative scan. Quantita-
tive and qualitative evaluations of our framework on 10 patient image-
pairs indicate that it provides excellent registration performance without
requiring (1) any human intervention or (2) prior knowledge of tumor
location, growth or appearance.

1 Introduction

Glioblastoma is the most common and aggressive malignant brain tumor that
heavily and heterogeneously infiltrates surrounding tissue. This infiltration com-
plicates treatment [1], as it is difficult to precisely localize the extent of infiltra-
tion. Considering that more than 80% of patients have a local tumor recurrence
close to the initial resection cavity [2] (hence to the infiltrated brain tissue),
we identify the need to accurately map correspondences between pre-operative
(pre) and post-recurrence (post) brain tumor scans. Such registrations would
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support research into the early detection of tumor recurrence, e.g., enable the
identification of subtle imaging phenotypic characteristics of tumor recurrence.
Even though correspondences are established between longitudinal image-pairs,
where scans are expected to be comparable (as they are of the same patient),
registration is challenging due to there being two sources of image appearance
changes: first, the pre scans contain tumors and mass effect deformations; sec-
ond, the post scans typically contain tumor resection cavities (where the tumor
used to be in the pre scan) and show signs of tumor infiltration and recurrence.

Registration in the presence of pathologies may employ cost function mask-
ing [3] to exclude regions without clear correspondences and hence avoid influ-
encing the registration’s image similarity term. Alternatively, one could combine
cost function masking with a model of infiltration and mass effect [4]. A joint
segmentation-registration method has also been proposed [5,6], that incorpo-
rates a tumor growth model and that estimates a patient-specific atlas to guide
the segmentation and registration, while using 4 MRI modalities. Building upon
this and considering that both pre and post scans are of the same patient, Kwon
et al. [7] proposed a framework to jointly segment and register the post to the
pre scans. However, it may be challenging to estimate the deformations of pre
scans with large tumors and post scans with large mass effect relaxation. In addi-
tion, these segmentation-registration approaches require manual interaction in
the form of seed-points to initialize the growth model and to model the intensity
distribution of each brain tissue across modalities. This complicates the use for
large-scale studies and hampers the clinical translatability of these methods.

To account for missing correspondences in pathological regions, an alternative
strategy is to estimate a quasi-normal image by learning from population data
and use it for registration. Quasi-normal images can, for example, be estimated
by a low-rank/sparse (LRS) decomposition [8] or via deep variational encoder-
decoder architectures [9]. However, these methods either blur the normal tissue
appearance and compromise the registration results or require a large number of
training images. Inspired by the LRS decomposition, Han et al. [10] proposed a
joint PCA/image-reconstruction model, which also decomposes the pathological
image into two parts: (1) normal tissue appearance is captured by a statistical
(PCA) model; and (2) large pathologies are captured via a total-variation (TV)
term, which avoids blurring of the normal tissue and retains fine details in the
quasi-normal image. The reconstructed quasi-normal image is then used for atlas
registration. One could directly apply this method independently to the pre and
the post scans, and then register the resulting quasi-normal images. However,
this strategy would ignore the fact that these scans come from the same patient
and the statistical model in the atlas space may not adequately capture the nor-
mal appearance for a specific patient; consequently, the registration quality may
be impaired. Similarly, Kwon et al. [11] extended their framework [7] by incorpo-
rating an inpainting strategy to account for pathological regions. However, prior
knowledge about the tumor of each scan, comprising of seed-points with asso-
ciated radii and initial intensity modeling of each brain tissue type, is required
for the algorithm. This manual interactive step, in addition to introducing an
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extra burden to the method’s usability and increasing the time footprint of the
method, also affects the objectivity and repeatability of the obtained results.
All these together have a direct impact on the consideration of the method for
potential clinical translation, as well as for large research studies. Therefore, a
method combining the benefits of pathology modeling with patient-specificity,
while eliminating manual interactions, is highly desirable.

Contributions. In this work, we present an automatic, repeatable, patient-
specific registration approach for pre and post brain MRI scans that requires
only a single modality. This is accomplished through careful adjustment of the
PCA/image-reconstruction model [10]. In particular, we show how to (1) model
each patient separately to improve the registration results and (2) leverage the
decomposition’s TV term to intrinsically exclude the estimated pathology in case
the image is not well-aligned to the target space.

Organization. Section 2 describes our patient-specific registration framework,
Sect. 3 presents the qualitative and quantitative evaluations of our approach,
compared against other state-of-the-art methods, and Sect. 4 concludes the paper
with a discussion and an outlook on future work.

2 Methodology

We first present an overview of the low-rank/sparse approach [8] and the PCA-
TV model [10]. We then propose modifications for patient-specific registration.

2.1 Low-Rank/Sparse (LRS) Decomposition

In the LRS approach, images {Ii : i = 1, 2, ..., n} are first arranged as columns
of a matrix I = [I1, ..., In], where n describes the number of images. This matrix
is then decomposed into a low-rank matrix L = [L1, ..., Ln] and a sparse matrix
S = [S1, ..., Sn] by solving the problem:

{L, S} = arg min
L,S

(‖L‖∗ + λ‖S‖1), s.t. I = L + S, (1)

where ‖ · ‖∗ is the nuclear norm (i.e., a convex approximation of the rank),
‖ · ‖1 denotes the �1 norm, and λ weighs the penalty on sparse term. Liu et
al. [8] proposed a low-rank-based registration method by alternating the LRS
decomposition and registering the low-rank image to an atlas. Upon convergence,
the low-rank matrix contains the normal information from all images, while the
sparse matrix obtains the estimated pathology. The low-rank images are then
used for registration. While effective, the approach suffers two shortcomings:
First, it requires optimization over the entire population, which is ineffective
and computationally expensive. Second, while it recovers normal appearance in
pathological regions, normal tissue areas are blurred which may negatively affect
registration results.
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2.2 PCA-TV Model

Inspired by the LRS framework and the Rudin-Osher-Fatemi (ROF) image
denoising model [12], Han et al. proposed a PCA-TV registration framework [10].
It registers all the “normal” images, i.e., images from healthy controls, to an atlas
space only once, followed by a PCA on the warped normal images. The PCA
basis is kept fixed, and the PCA-TV model decomposes the image by solving
the following problem:

{L̂, T,α} = arg min
L̂,T,α

1
2
‖L̂ − Bα‖22 + γ‖∇T‖2,1, s.t. Î = L̂ + T, (2)

where Î denotes the “pathological image”, i.e., an image with at least a pathol-
ogy/tumor, after we subtract the mean. ‖∇T‖2,1 =

∑
i ‖∇Ti‖2, i is the spatial

location, {α} are the PCA coefficients and B is the PCA basis. The model con-
sists of (1) a quasi-low-rank part L̂ that is close to the PCA space and retains
image detail, and (2) a TV term, which captures pathologies that are large, spa-
tially contiguous, and not expressed by the PCA basis. The quasi-normal image
is obtained by adding the mean image to the quasi-low-rank image. Overall, this
model is more effective than the LRS decomposition, as it works on just one
image and explicitly leverages spatial information.

Additionally, an iterative regularization strategy can be used after the decom-
position, just as for the ROF model [13]. In particular, after solving (2) and
obtaining L̃0 = L̂ and α0, for k ≥ 1, one can iteratively solve

{L̃k, Tk,αk} = arg min
L̃k,Tk,αk

1
2
‖L̃k − Bαk‖22 + γ‖∇Tk‖2,1 s.t. Îk = L̃k + Tk, (3)

where Îk = Î + L̃k−1 − Bαk−1. After N regularization steps, the TV term
TN captures the pathology and the quasi-low-rank term can be obtained by
subtracting the TV term from the input image, i.e., L̂N = Î − T̂N .

The entire framework iteratively alternates between the image decomposi-
tion and atlas registration. Each iteration includes the registration of the quasi-
normal image to the atlas, the transformation of the input image to the atlas
space, and the decomposition of the warped image in the atlas space. In addi-
tion, to avoid accumulating deformation errors, the quasi-normal image is always
transformed back to the original image space prior to registration.

2.3 Patient-Specific Registration

When registering the pre to the post scan, one could simply apply the PCA-TV
model (Sect. 2.2) independently on each scan and then register the correspond-
ing quasi-normal images. However, this ignores that both scans are of the same
patient. In addition, both the LRS and the PCA-TV approaches register quasi-
normal images to the atlas during each iteration, but never use the sparse/TV
information. In case an image contains tumors with large mass effect, it is dras-
tically misaligned with the population images. Hence, the decomposition may
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not work sufficiently, unless the image is well-aligned with the atlas. This is
especially true during the first iteration of registration and decomposition. To
overcome these shortcomings and improve the registration of pre and post scans,
we propose the following key adjustments to the PCA-TV model.

PCA-TV-Mask Model. When we compute the decomposition in the first iter-
ation, the image is only affinely aligned to the atlas. We apply Otsu thresholding
to the TV image, to obtain a coarse mask of the pathological region (TV-mask).
This mask is then used during the registration, i.e., we register the quasi-normal
image to the atlas, but use the TV-mask for cost-function masking of the tumor.
Once the image is better aligned to the atlas via a deformable registration, we
remove the TV-mask and use the entire quasi-normal image for registration. We
refer to this improvement as the PCA-TV-mask model.

Patient-Specific PCA. Considering (i) that the post scan is relatively free from
mass effects (e.g., except for scarring) and (ii) that the tumor resection cavity is
easily modeled via the TV term, we propose the following two-step strategy. In
the first step, we apply the PCA-TV-mask model to the post scan, resulting in a
quasi-normal reconstructed image, in addition to registering the post scan to the
atlas space. In the second step, we use the inverse transformation of the first step
to map all normal images into the post scan space and then construct a new PCA
basis from this data. Importantly, we can now use this new PCA basis together
with the quasi-normal post image (now warped back to the patient space and
used as atlas) to run the PCA-TV-mask model on the pre scan. Overall, this
strategy allows direct registration between the pre and the post scans. Another
advantage of using this patient-specific strategy is that by running PCA in the
patient-specific space, the normal space spanned by the PCA basis is expected to
be more consistent with the pre scan, which in turn improves the decomposition
and registration results, when compared with the original framework.

3 Experiments

We evaluate our framework on 10 pairs of pre and post clinically-acquired scans
of patients diagnosed with de novo (primary) glioblastoma. Each timepoint con-
tains native (T1) and contrast-enhanced T1-weighted (T1-CE), T2-weighted and
FLAIR MRI. All modalities of each patient are skull-stripped, bias-field cor-
rected, and affinely co-registered to the pre T1-CE scan of this patient that
describes a 192 × 256 × 192 volume with voxel size of 0.977 × 0.977 × 1.0 [mm3].
For quantitative evaluation, we use manually seeded landmarks from two clini-
cal experts. The first expert placed 20 landmarks within 30[mm] from the tumor
region and 30 landmarks outside the 30[mm] region in each pre scan. Then, both
experts independently placed matching landmarks in the post scans. The land-
marks placed by the first expert are considered the gold-standard and the ones
placed by the second expert serve as a baseline comparison, referred to as RATER.
In our experiments, we only use the T1 volumes from each patient and run 6 iter-
ations of registration and decomposition. The remaining 3 modalities were only
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Fig. 1. Boxplots of the mean landmark errors. For each method, the landmark errors
are computed against the gold-standard. On each box, the red line is the median and
the green star is the mean. The bottom and top edges of the box denote the 25th and
75th percentiles, respectively, the whiskers extend to the most extreme datas that are
not considered outliers and the outliers are plotted in circle. (A) AFFINE; (B) GREEDY;
(C) DRAMMS; (D) ANTs; (E) NiftyReg; (F) PCA-TV; (G) PCA-PS; (H) RATER. Our result
is plotted in red. (Color figure online)

used by the experts for seeding the landmarks. We pick 100 normal images from
OASIS [14] and select 50 as PCA basis. For registration, we use NiftyReg [15]
as B-spline registration with the default settings and local normalized cross cor-
relation as similarity measure (--lncc 40). The TV-mask is used in the first
iteration when the image is only affinely aligned to the target image. After B-
spline registration, we remove the TV-mask for subsequent iterations. We also
apply the regularization steps in the last three iterations. γ in (2) and (3) for
the decomposition model is chosen as 1 if no regularization step is used and
2 if regularization steps are used. We compare with AFFINE [16], GREEDY [17],
DRAMMS [18], ANTS [19], NiftyReg [15] and PCA-TV [10]. Although PORTR [7] was
specifically designed for this task, we did not include it in our analysis, as our
intent is to compare methods that do not require multiple modalities or manual
interaction and hence more easily translate to clinical use.

We compute the mean landmark error for each region of each patient (Fig. 1)
and we note that all deformable methods are better than affine registration,
but worse than RATER. Compared to other deformable methods, our patient-
specific approach improves the results in the close-to-tumor region. We also
improve results in the region far away from the tumor, except when comparing
with NiftyReg and the original PCA-TV model. In fact, as shown in Table 2, the
improvements in the close-to-tumor region are statistically significant, assessed
via a one-tailed paired Wilcoxon signed-rank test with a Benjamini-Hochberg
procedure to control the false discovery rate at level α = 0.05. For far-from-
tumor regions, the results are only significant when compared to AFFINE and
GREEDY. We also calculate the effect sizes with each paired rank test. Most of
the tests result in large or medium effect sizes.

We also evaluate the statistics of the paired landmark errors in both regions
(Table 1). For each landmark, we calculate the differences of the errors between
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Table 1. Statistic results for all paired landmark errors in both regions. For each land-
mark, we calculate the paired error; i.e., we subtract the landmark error of compared
method from the landmark error of our method. This is to calculate the improvement
obtained by our method. For each compared method, we rank the paired landmark
errors and show the statistics in the table. The green boxes indicate results where
errors from our framework are smaller.

Near Tumor[mm] Far from Tumor[mm]
5% 25% 50% 75% 95% Mean 5% 25% 50% 75% 95% Mean

AFFINE -1.03 0.22 1.65 3.71 7.58 2.32 -0.60 0.79 1.35 3.64 6.90 2.11
GREEDY -1.01 -0.28 0.31 1.18 6.03 0.94 -0.80 -0.17 0.05 0.43 2.77 0.36
DRAMMS -1.45 -0.55 0.18 0.79 4.68 0.52 -1.15 -0.28 0.14 0.52 1.16 0.13
ANTs -1.44 -0.31 0.17 0.80 6.10 0.59 -0.68 -0.18 0.08 0.37 1.32 0.17

NiftyReg -1.21 -0.19 0.12 0.60 3.35 0.51 -0.50 -0.14 -0.02 0.12 0.55 0.01
PCA TV -1.06 -0.29 0.11 0.57 2.08 0.23 -0.45 -0.14 0.00 0.15 0.55 0.01
RATER -4.67 -1.86 -0.79 0.07 1.06 -1.18 -1.99 -0.74 -0.14 0.44 1.18 -0.21

our framework and competing methods. Compared to RATER, our method shows
worse performance on more than 50% of the landmarks. However, when compar-
ing to other automatic registration methods, although at some landmarks our
method performs worse than others by less than 1.5[mm] near the tumor and
1[mm] far away from the tumor, as shown at 5% statistics, it shows better perfor-
mance on more than 50% of the landmarks. In fact, the improvement, especially
near the tumor, can be larger than 5[mm], as shown at 95% statistics in the table.
Furthermore, on average, we perform better than other registration methods by
0.5[mm] near the tumor and by less than 0.2[mm] far away from the tumor. This
is consistent with the green stars shown in Fig. 1. Our patient-specific method
also improves over the PCA-TV model near the tumor which illustrates its utility
and the benefit of the patient-specific model.

Table 2. p-values and effect sizes for one-tailed paired Wilcoxon signed-rank test. We
compare all methods (except for RATER) with our patient specific framework. Green
boxes indicate statistically significant results after false discovery rate correction or
effect sizes that are at least medium (>0.3).

AFFINE GREEDY DRAMMS ANTs NiftyReg PCA-TV

p-values
Near 9.77e-4 4.90e-3 1.37e-2 1.86e-2 4.90e-3 3.22e-2
Far 2.00e-3 1.37e-2 4.20e-2 0.116 0.423 0.385

effect sizes
Near 0.6268 0.5584 0.4900 0.4672 0.5584 0.4217
Far 0.6040 0.4900 0.3989 0.2849 0.0570 0.0798

Finally, Fig. 2 shows example results from three patients, where we regis-
ter the pre to the post scans. For the PCA-TV model and our patient-specific
PCA-PS model, we reconstruct the quasi-normal images from each patient which
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are used to guide the registrations. Although the visual differences between our
method and the PCA-TV model are subtle, other results show that by mod-
eling the pathologies registrations are qualitatively more accurate. Note that,
Fig. 2(c) illustrates the T2-FLAIR scans for the post images, only for visualiza-
tion purposes, to better depict the surgically-imposed cavities of these illustrated
examples. All the applied registration methods use only the T1 volumes.

(a)pr-T1(b)po-T1 (c)po-Fl (d) GRDY (e)DRMS (f)ANTs (g)NfRg (h)P-TV (i)P-PS (j)pr-qn (k)po-qn

Fig. 2. Example registration results from three patients. (a) and (b) show the pre and
the post T1 scans. (c) shows the post T2-FLAIR scans, only for visualization purposes.
(d)-(i) show registration results of pre to post from GREEDY, DRAMMS, ANTs, NiftyReg,
PCA-TV, and our patient-specific model, PCA-PS. In addition, (j) and (k) show the quasi-
normal reconstructions of the pre and post scans, respectively. The red box highlights
major differences. (Color figure online)

4 Conclusion

We proposed a patient-specific registration framework based on a PCA-TV-
mask model, which registers pre-operative and post-recurrence scans of the same
patient. The framework uses the post scan, which is relatively free from mass
effects, to build a patient-specific PCA basis, and directly registers the pre scan
to the patient space. The validation results show that our framework is more
effective than the PCA-TV model, as well as other registration methods that do
not explicitly model pathologies. In addition, our framework does not require any
manual interaction, neither in the form of segmentation nor as tumor seeding,
and only requires a single modality. In future work we will explore our method
for different diseases, for example, to register acute and chronic image pairs from
patients with traumatic brain injuries.
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