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Abstract. The business processes of an organization are often required
to comply with domain-specific regulations. Such regulations can be
checked based on the models of the respective processes. These mod-
els’ main focus is on the operational part of the process. However, also
decisions play a major role in the execution behavior of processes, and
they are expressed in separate decision models. In this paper, we inves-
tigate the influence of decision models on business process compliance
checking. To this end, we formalize decision-aware processes as colored
Petri nets, extract the state space, and check compliance rules using
temporal logic model checking. The approach improves the quality of
existing compliance checking by reducing the risk of false negatives. We
provide a prototype and discuss advantages and disadvantages.
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1 Introduction

Business process compliance is the topic of ensuring that an organization’s busi-
ness processes comply with internal and external domain-specific regulations.
Such regulations often refer to the sequence of certain activities that must or
must not occur. Given that the organization documented its processes in respec-
tive models, it is possible to uncover potential violations of the regulations at
design time already to ensure a compliant execution of the process.

Compliance checking for business process models has been given a lot of
attention in the literature in recent years [1–3,18,19]. These approaches focus
on process models specifying aspects such as control flow and high level data
dependencies, which may be subject to internal and external domain-specific
regulations. However, particular instances of these processes often depend on
additional decision logic defining fine-grained data dependencies, which are not
specified in the process model, but in a separate decision model.

This paper presents a semi-automated approach to design-time compliance
checking of decision-aware process models. To this end, we formally capture the
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execution semantics of decision-aware processes (i.e., the logic of the process and
the decision as well as the data dependencies between the two). Subsequently,
we show that considering decisions increases the size of the processes’ state
space by adding more information to the data objects. However, at the same
time, the amount of traces is limited, since there may be interdependencies
between decisions that rule out certain traces. Therefore, compliance checking
with decision-aware processes may actually lead to more accurate results since
in the decision-unaware process rules were violated by traces that could actually
never occur.

The remainder of this paper is structured as follows. Section 2 presents related
work. In Sect. 3, we provide definitions of the structures used and an example.
The paper presents the decision-aware compliance checking approach in Sect. 4.
We evaluate the approach using a prototypical implementation in Sect. 4.4.
Finally, Sect. 5 concludes the paper and discusses future work.

2 Related Work

Business Process Compliance received increasing attention of BPM research from
2000 to 2007 and is still actively researched [15]. Recently, Hashmi, Governatori,
and Lam summarized the developments and gave possible directions for future
work in a survey paper [15]. They distinguish between design-time, run-time, and
auditing approaches—based on their application during the process life cycle.
This paper contains a design-time approach that checks models for potential
violations using a model checking approach [4,11]. It addresses an open issue
[15]: consideration of activities’ effects.

Various approaches for design-time compliance checking have been developed.
Awad et al. introduce BPM-Q (and its visual counterpart BPMN-Q) to formally
(and visually) model queries for process models by reusing BPMN elements and
annotating them with additional information [1]. Later they used it for modeling
compliance rules [2], and they added data support [3]. The compliance rules are
formalized using temporal logic and checked with the model checker NuSMV1.
Awad et al. only investigate compliance rules based on control-flow relationships
and data; however, data based rules can only constrain the state of the data
object.

In contrast, (Extended) Compliance Rule Graphs (eCRGs) are capable of
expressing fine grained data conditions and additional perspectives such as time
and resources [19,20,26]. While most eCRG based approaches are used for run-
time or auditing compliance approaches, Knuplesch et al. present an approach
for checking data-aware rules on process models [18], which is strongly related to
this paper. In contrast to Awad, fine grained data conditions can be evaluated.
Knuplesch et al. infer respective knowledge from arc-conditions and derive
abstraction predicates (contraints for possible values) for all data attributes.

1 NuSMV’s web page: http://nusmv.fbk.eu/ (retrieved 4/10/2018).
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They embedded their approach in the SeaFlow compliance checker, which mod-
els rules as Compliance Rule Graphs (CRGs) [23]. However, our method addi-
tionally considers decision models and supports operations on data.

The approach of this work uses a colored Petri net (CPN) based formalism
for process models. The translational semantics are based on Dijkman’s et al.
approach of mapping processes to Petri nets [13] and Lee’s et al. method for
modeling decisions as Petri nets [22]. Instead of classical Petri nets, we use CPNs
[17]. CPNs have been used for analyzing data aware processes in [27]. In our
paper, CPNTools2 is used for implementation: the formalization, the state space
extraction, and the compliance checking using the ASK-CTL extension [10].

Decisions and decision models receive increasing attention from BPM
research. Recently Jansen et al. and Batoulis et al. defined criteria for consistent
integration of process and decision models [7,16]. Further, Batoulis et al. inves-
tigates soundness notions for decision-aware processes and thereby domain inde-
pendent correctness criteria [6,8]. Compliance is based on domain specific rules.
Therefore, our approach complements existing correctness criteria for decision-
aware processes.

3 Foundations

A decision-aware process model contains imperative and declarative parts of a
business process. The imperative parts are captured by a traditional process
model (e.g., a BPMN model [24]) while the declarative parts are captured by
decision models (e.g., a DMN model [25]). Process models link decision models
through decision tasks, which refer to a decision in a decision model. This section
contains a description of decision-aware processes, an running example, and a
brief description of compliance checking.

3.1 Decision-Aware Process Models

A business process consists of a set of tasks that contribute to a common business
goal and are executed in a technical and organizational environment [28]. A pro-
cess model describes these tasks and their temporal and causal dependencies.
Further, it has one start event and one end event. The model contains gateways
to express exclusiveness (XOR gateways) and concurrency (AND gateways) of
tasks. Additional dependencies can be expressed by using data objects and data
flow: an activity can read data objects in specific states and write data objects
in specific states. Each activity has, therefore, a set of input sets and a set of
output sets. At least one input set must be available to enable the activity. One
output set is chosen and its elements are written by the activity.

Consider the sample process model in Fig. 1. It depicts the inquire process
of a car rental company. If an order is received, then the company automati-
cally checks if discounts apply and grants them. Afterwards, additional fees are

2 CPNTools’ web page: http://cpntools.org (accessed 4/10/2018).
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determined and calculated. Eventually, the final price is set and the updated
order is sent to the customer. Throughout the process, various data objects are
used: Offer comprises the key information, Special Offer contains information
about potential discounts, Fees contains the determined fees which are saved in
separate objects when calculated (Young Driver Fee and Last Minute Fee).

Fig. 1. Sample process model (BPMN) of a car rental company

A decision model consists of two layers: the decision requirements and the
decision logic. The former comprises high-level information about the necessary
inputs the data and the preceding decisions that are required to execute a certain
decision. The logic level contains a specification of how decisions are made. These
can be informal or formal. We assume that all decisions are formally specified
by a decision table. A decision table comprises a set of rules, which consist of
conditions for the inputs and expressions for producing outputs. Although rules
can, in general, be overlapping, we only consider unique decision tables where
only one rule matches an input. For unique tables, the order of rules is irrelevant.
It has been shown, that all DMN decision tables can be transformed into unique
ones [9].

The car rental scenario contains two decisions, the logic of which is given by
Table 1a and b. A rule is represented horizontally. The first decision (Table 1a)
has the input Offer.Lead Time, which is the time in weeks between book-
ing and picking the rental up. The output is either rejected (no discount),
mileage (increased free mileage), or discount (monetary discount). The decision
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in Table 1b considers the lead time and the driver’s age to determine the fees: a
driver younger than 25 must pay a young driver’s fee. If the booking occurs less
than one week in advance, then a last minute fee is due.

Table 1. Decision tables for the sample process

Decisions are linked to processes via decision tasks. Whenever a decision task
is reached, the process provides the required inputs to the decision, the logic is
executed, and the process handles the decision output. We make the following
assumption about the input-output behavior of decision tasks: the inputs of the
decision task directly correspond to the inputs of the linked decision table. The
decision’s outputs are reflected in the task’s output sets. If a decision task has
multiple output sets, the decision logic chooses an output set. To do so, the
attribute State is set. The sample process model has two decision tasks linking
the respective decisions. Decide Early-Bird Special links to Table 1a so that the
decision determines the task’s output set. Determine Additional Fees refers to
Table 1b. The decision sets attributes of the only output Fees.

3.2 Compliance Checking

A decision-aware process model is a blueprint for process instances: it describes
the possible behavior. The model structures the process and constrains it (e.g.,
limits the order of activities). The process can be implemented, for example by
using a process engine, to support and control instances. However, real world
process instances are subject to laws, guidelines, and regulations, which might
or might not be captured in the process model. Violating these constraints can
carry penalties and jurisdictional consequences. Thus, it is important to assert
compliant behavior.

One step towards business process compliance is the verification of process
models with respect to compliance regulations. The compliance regulations are
expressed as so called compliance rules (properties that must not be violated).
Table 2 contains rules for the car rental process. In general, we consider the
occurrence and order of activities (rules c1, c2, c3) and might use data conditions
for further restrictions (c4, c5).
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Table 2. Compliance rules for the example process

c1 Every received order will eventually be sent back to the customer

c2 The price will only be calculated after additional fees have been determined

c3 If a discount applies, the order must not be subject to a last minute fee

c4 The young driver fee must be calculated if the driver is younger than 25

c5 If an early-bird special applies, calculate price reads the offer in state discounted

4 Decision-Aware Compliance Checking

Compliance checking can take place during different phases of the business pro-
cess lifecycle. The decision-aware compliance checking approach of this paper
takes place during design-time, i.e., models are checked for compliance viola-
tions. Although different methods for verifying models (e.g., theorem-proofing
and simulation) exist [15], model checking is the most common one for compli-
ance checking [15]. Therefore, our approach follows the general model checking
paradigm depicted in Fig. 2 [21]. The decision-aware process model describes the
system and defines a state space. We use colored Petri nets (CPNs) to assign
formal behavioral semantics to such models. The compliance rules are properties
that must not be violated, and we formalize them as Computational Tree Logic
(CTL) formulas. The formal rules and the formal model are then consumed by
a model checker, which verifies the properties.

Fig. 2. Schematic description of the general model checking approach (cf. [21])

4.1 Requirements and Challenges for Formalizing Decision-Aware
Process Models

A formalism for a decision-aware process comprises the behavior of the process
as well as the logic of the decisions, which is why we chose CPNs for this task.
CPNs can model conditions and operations on data. Since we assume decision
tables to be unique—i.e., its rules are non-overlapping—the set of rules of a
table extensionally define a function, mapping an input to exactly one output.
Therefore, decisions are just data operations. Further, the structure and tempo-
ral and casual constraints of process models can be captured in a (colored) Petri
net [13]. Consequently, CPNs are suited for formalizing decision-aware process
models.
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To model check a Petri net for compliance rules, one needs to investigate its
state space which in case of Petri nets is called occurrence graph. This graph
must be complete in order to find all possible violations of a compliance rule, i.e.,
every possible trace has to be represented. However, decisions operate on data
attributes, which may have large domains (such as the integers). Representing
every possible instance explicitly leads to large state spaces (i.e., 232 × |states|,
if a single integer is involved). Thus, model checking can become infeasible and
a proper abstraction is required.

Some model checkers, such as NuSMV, support symbolic abstraction [12].
Instead of considering each possible instance separately, an attribute is repre-
sented by a symbol (i.e., Offer.Lead Time= N). Whenever the state space extrac-
tion reaches a condition or operation, it is applied to the abstract symbol (i.e.,
Offer.Lead Time= {n ∈ N|n < 2} after executing the first rule the decision). If
alternative conditions exist, the state space branches. Each branch considers one
alternative [5]. But no symbolic model checker for CPNs exists. To overcome this,
we incorporate the abstraction into our formalization and implemented required
operations and conditions for symbolic execution [12].

4.2 Mapping Decision-Aware Process Models to CPNs for Symbolic
Execution

This paper’s mapping of decision-aware process models to CPNs builds upon
the mapping of process models to Petri nets given by Dijkman et al. in [13]. In
this section, we highlight major differences especially those caused by the data-
awareness of CPNs and the use of symbolic abstraction. For one, a data object
is represented by exactly one colored token on exactly one place. When the state
of the object (or an attribute) is updated, the color of the token changes, but
the location remains the same. A formal mapping is described in [14].

Fig. 3. Mapping of a sample task and a sample decision task linking a decision table

An activity has a set of input sets and a set of output sets. Consequently,
the chosen output set is reflected in the process state. For this reason, we map
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an activity to a set of transitions—one for each output set. The precondition
given by the input set is checked by the transitions’ guards. Figure 3a shows the
mapping of the task calculate young driver fee. It has exactly one input set (Fees
in state determined) and one output set (Young Driver Fee in state calculated)
and is therefore mapped to one transition.

Fig. 4. Generic mapping of a decision task including the decision logic

The outcome of a decision task depends on the decision logic. At this point, we
assume that the decision logic determines the output set and may also set other
attributes. Figure 4 contains the generic mapping: we create a CPN transition
for each row. The transitions can fire if the condition of the rule is fulfilled. Since
data objects are described by symbols, it is enough if only one instance fulfills
the condition. However, we need to update the input’s symbolic abstraction
respectively. We denote this by update(i,cond) where i is an input and cond
the corresponding condition. Further, we update the symbols for the outputs
according to output value of the corresponding rules (expr(i) where i is the
input and expr the output expression).

Consider the decision task Decide Early-Bird Special and its corresponding
decision table (Table 1a). The formalization is depicted in Fig. 3b: for the three
rules we create three transitions. Each transition corresponds to one rule and
has a respective guard. For the first rule, the symbol for Offer.Lead Time must
comprise at least one value that is less than two. If the transition fires, the token
o for Offer is updated so that Offer.Lead Time describes only the values less
than two. Further, the output data objects are updated. For the first rule, the
transition sets the state of Special Offer to rejected.

Finally, also XOR splits are treated differently than in [13], namely similar
to decision tasks: they are like decisions with no output. Thus, they must read
all the data required for the branching and may update the respective symbols.
In contrast to decision tasks, each transition created for the XOR split has a
separate control flow place.
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4.3 Compliance Checking for CPN Formalism

Since CPNs have formal semantics, it is possible to extract their state spaces,
given that they are finite. In case of (colored) Petri nets, the state space corre-
sponds to the net’s occurrence graph. That is to say, the current state of the net
is given by its current marking, and by firing a transition in the net a state tran-
sition in the state space is performed. Our approach checks the compliance of
the decision-aware process by verifying temporal logic queries against the state
space.

Compliance rules can originate in laws, guidelines, or regulations. Table 2
lists some compliance rules for the sample process, and Table 3 the corresponding
CTL formulas. A rule can restrict the occurrence or order, and a rule can be
conditional: its restriction must only be satisfied given certain data conditions.
So, how does decision-awareness influence the compliance of a process model?

Decisions encode information about the data attributes, which are repre-
sented as abstract symbols in our CPN and accordingly in our state space. In
decision-aware compliance checking, we consider these attributes; consequently,
the state space grows (it is larger than the decision-independent one). However,
decisions also encode instance-level dependencies. These dependencies restrict
the possible traces of the process further to the existing control flow. For this
reason, a decision-independent state space can have more traces than its decision-
aware counterpart.

If compliance rules only constrain the occurrence and order of activities (with
or without data conditions), each trace contributes to the result. If traces are
removed, a rule that previously held will still hold, but a rule that did not
hold must be reevaluated because all violations could be part of the removed
traces. As an effect, decision-awareness can reduce the number of false negatives
(compliance rules that are violated in the model, but not in reality).

For example, consider rule c3: if a discount applies, a last minute fee must
not apply. The CTL formula says that in all traces, if Apply Discount is exe-
cuted, Calculate Last Minute Fee must not be executed. However, if we ignore
decisions it is impossible to infer whether the two XOR-splits are independent.
Hence, we have to consider the trace in which Special Offer.State = discount
and Fees.lmf=true. In that trace, the rule is violated. If, however, we take deci-
sions into consideration, this would imply that Offer.Lead T ime ≥ 4 and
Offer.Lead T ime < 1. This is a conflict, and such a trace is not part of the
state space. Hence, the decision-aware process model is compliant to c3.

Furthermore, based on decision-aware processes, we are able to check rules
based on data object attribute values (cf. rule c4). This was previously not
possible, because the process model does not reference this attribute and every
knowledge about its valuation is based on the decision model. Since our mapping
of decision-aware processes includes decision models, we can now verify rules
involving data attribute conditions. We only need to check if one value contained
in the symbolic abstraction satisfies the data condition. For instance, the sample
process is compliant to rule c4.



Compliance Checking for Decision-Aware Process Models 503

Table 3. Compliance rules for the sample process expressed as CTL formulas

Fig. 5. Screenshot showing partly the colored Petri net and a compliance rule including
the compliance checking result

4.4 Prototype

This paper’s approach is a CPN based method for compliance checking of
decision-aware processes. We applied this approach using CPNTools. Process
models were manually translated to CPNs to extract the state space, and formal
compliance rules were specified as ASK-CTL queries to be checked (cf. Fig. 5).
ASK-CTL is an extension of CPNTools, that allows to evaluate CTL formulas
on the state spaces of CPNs.

CPNTools does not support symbolic execution. Therefore, respective data
types, comparisons, and operations need to be defined. We added the function-
ality for int, bool, and real to show the feasibility of the approach. Since large
sets (such as int) cannot be represented explicitly, we use intervals to describe
the current abstraction of a symbol. Examples (including compliance rules) are
provided online3.

5 Discussion and Conclusion

In comparison to other design-time compliance checking approaches, decision-
aware compliance checking reduces the number of false alarms. Since decisions

3 Example CPNs: https://owncloud.hpi.de/index.php/s/negAQyTLYPj45xH.

https://owncloud.hpi.de/index.php/s/negAQyTLYPj45xH
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encode relationships that might not directly be visible in the process model,
the possible traces are further restricted. If less traces exist, fewer violations of
occurrence-based and order-based compliance rules can occur.

Although the knowledge about decision logic allows inferring attribute-level
information on used data objects leading to more states, it is impossible that the
decision-aware process model produces traces that are not part of the decision-
independent model. Since we treat everything that is unknown using the open-
world assumption, additional knowledge can be only equally restrictive or more
restrictive. However, there are some edge-cases in which decision-aware com-
pliance checking is too restrictive: violations can stay undiscovered if the envi-
ronment changes the value between to occurrences in the process model (e.g.,
between a decision task and an XOR gateway).

Decision-awareness can also lead to problems in the model checking process.
Translating a process model to a CPN that uses symbolic abstraction allows
finding the right data abstraction during the state space extraction. In general,
decision-aware process models are Turing-complete. As the execution of a Turing-
complete program is undecidable, the symbolic execution is also undecidable.
Research in symbolic abstraction presents methods (e.g., loop summarization)
to support more models [5].

To summarize, this paper presents a decision-aware compliance checking app-
roach. At design-time a process model and complementary decision-models are
formalized as a CPN and model checking is applied to verify the model with
respect to compliance rules. Thereby, symbolic abstraction is used to reduce the
state space.

Tools, such as CPNTools, can model and analyze (e.g., apply model checking)
to CPNs. However, it uses proprietary formats and requires expert knowledge.
The manual formalization is an error-prone step. Future work should automate
formalizing decision-aware process models and checking compliance, respectively.

CPNTools model checking extension provides only Boolean feedback. A rule
holds or it is violated, but the cause of the violation is not exposed. Future work
can overcome this by extending the model checking capabilities, using a different
model checker, or integrating other approaches such as anti patterns. The latter
finds all violating traces in a process model, which is a super set of the violations
in a decision-aware setting [3].

Altogether, we showed that decision-aware compliance checking can improve
the results compared to traditional design-time compliance checking.
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