
An Efficient Algorithm for Runtime Minimum
Cost Data Storage and Regeneration

for Business Process Management in Multiple
Clouds

Junhua Zhang1, Dong Yuan2, Lizhen Cui1(&), and Bing Bing Zhou2

1 School of Computer Science and Technology, Shandong University,
Jinan, China

z.jh@mail.sdu.edu.cn, clz@sdu.edu.cn
2 School of Information Technology, The University of Sydney,

Sydney, Australia
{dong.yuan,bing.zhou}@sydney.edu.au

Abstract. The proliferation of cloud computing provides flexible ways for
users to utilize cloud resources to cope with data complex applications, such as
Business Process Management (BPM) System. In the BPM system, users may
have various usage manner of the system, such as upload, generate, process,
transfer, store, share or access variety kinds of data, and these data may be
complex and very large in size. Due to the pas-as-you-go pricing model of cloud
computing, improper usage of cloud resources will incur high cost for users.
Hence, for a typical BPM system usage, data could be regenerated, transferred
and stored with multiple clouds, a data storage, transfer and regeneration
strategy is needed to reduce the cost on resource usage. The current state-of-art
algorithm can find a strategy that achieves minimum data storage, transfer and
computation cost, however, this approach has very high computation complexity
and is neither efficient nor practical to be applied at runtime. In this paper, by
thoroughly investigating the trade-off problem of resources utilization, we
propose a Provenance Candidates Elimination algorithm, which can efficiently
find the minimum cost strategy for data storage, transfer and regeneration.
Through comprehensive experimental evaluation, we demonstrate that our
approach can calculate the minimum cost strategy in milliseconds, which out-
performs the exiting algorithm by 2 to 4 magnitudes.

Keywords: Cloud computing � Business Process Management �
Datasets storage and regeneration

1 Introduction

In recent years, the emergence and proliferation of cloud computing provides users on
demand, redundant, inexpensive and scalable resources [1]. However, along with the
convenience brought by using on-demand cloud services, users have to pay for the
resources used according to the pay-as-you-go model, which can be substantial for
complex applications and data intensive applications [2], such as BPM Systems [3],

© Springer Nature Switzerland AG 2019
F. Daniel et al. (Eds.): BPM 2018 Workshops, LNBIP 342, pp. 348–360, 2019.
https://doi.org/10.1007/978-3-030-11641-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11641-5_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11641-5_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11641-5_28&domain=pdf
https://doi.org/10.1007/978-3-030-11641-5_28

which aim to be a “holistic management” approach to satisfy the needs of users in
organization’s business process and can generate variety of datasets of large amount.
These generated data contain important intermediate or final results of computation,
which may need to be stored for reuse and sharing [4]. The fast-growing cloud com-
puting market along with more and more cloud service providers enable BPM system
to have flexible ways to utilize multiple cloud services with different prices of com-
putation, storage and bandwidth resources [5]. An efficient storage strategy which can
cut the cost of multi-cloud-based data management in a pay-as-you-go fashion is in
need for deploying applications in multi-cloud computing environment.

Furthermore, due to the dynamic property of usage of data, some data in the
application could be more popular to the users at a certain time, some other data could
be less popular, the usage frequency of data could vary from time to time, such as the
data in BPM system [3], the efficiency of the data storage strategy that was efficient in a
previous time could also degrades. To this end, an efficient algorithm that can generate
the minimum cost storage strategy at runtime to keep low resource cost is very
important for online data intensive applications in multi-cloud environment.

Finding the trade-off among computation, storage and bandwidth costs to achieve
minimum total cost in multi-clouds is a complicated problem [6]. Different cloud
service providers have different prices on their resources and datasets have different
resource usage and generation dependencies. Even worse, the dynamic data usage
frequencies demand that the storage strategy should be updated in time to avoid per-
formance degradation. For this problem, our previous work [6] has proposed GT-CSB
which can find the optimal storage strategy that has the minimum overall cost, how-
ever, this approach is impractical for runtime storage strategy due to high computation
complexity. Therefore, it is necessary to design a highly efficient runtime algorithm that
can find optimal storage strategy at runtime to adjust the data storage status in real time.

In this paper, by studying the intrinsic property of the minimum cost storage
problem, we propose a dynamic programming algorithm which can reduce the
searching space and find the optimal storage strategy in nearly linear time. We also
propose optimizing strategies, which can help us calculate the (1) minimum regener-
ation cost in O(m2) and (2) the sum overall cost rate of dataset in O(m) (m is the number
of Cloud Service Providers). By conducting extensive experimental studies, we find
that our algorithm has a very good performance and is scalable with large number of
datasets and Cloud Service Providers.

The remainder of this paper is organized as follows: Sect. 2 discusses the related
work. Section 3 analyses the problem and presents some preliminaries. Section 4
introduces the detail of PCE algorithm. Section 5 evaluate PCE algorithm. Section 6
concludes this paper.

2 Related Work

The resource management in clouds becomes a very important research topic, much
work has been done about resource negotiation [7], replica placement [8] and multi-
tenancy in clouds. Foster et al. [9] propose the concept of virtual data in the Chimera
system, which enables the automatic regeneration of data when needed. Recently,
research on data provenance in cloud computing systems has also appeared [10].

An Efficient Algorithm for Runtime Minimum Cost Data Storage and Regeneration 349

Plenty of research has been done with regard to the tradeoff between computation
and storage. The Nectar system [11] is designed for automatic management of data and
computation in data centers, where obsolete data are deleted and regenerated whenever
reused in order to improve resource utilization. In [12], authors firstly propose a cost-
effective strategy based on the trade-off of computation and storage cost. In [13], the
authors propose a dynamic on-the-fly minimum cost benchmarking approach by pre-
storing calculated results with a specially designed data structure.

As the trade-off among different costs is an important issue in the cloud, some research
has already embarked on this issue to a certain extent. In [14], Joe-Wong et al. investigate
computation, storage and bandwidth resources allocation in order to achieve a trade-off
between fairness and efficiency. In our prior work [15], we propose the T-CSB algorithm
which can find a trade-off amongComputation, Storage andBandwidth costs (T-CSB). In
our another prior work [6], we propose the GT-CSB algorithm, which can find a Generic
best Trade-off among Computation, Storage and Bandwidth in clouds.

In this paper, to address above problem, we propose the PCE algorithm, which can
efficiently find a Generic best Trade-off among Computation, Storage and Bandwidth
in multiple clouds with a computation complexity of O(n*|cand|*(m2+log(|cand|))).

3 Preliminaries

In this Section, we first introduce some preliminaries and then the GT-CSB algorithm.

3.1 Preliminaries

In general, there are two types of data stored in clouds, original data and generated
data, in this paper, we only consider generated data.

In this paper, we use DDG [16] (Data Dependency Graph) to represent datasets
generation relationships. DDG [16] is a DAG which is based on data provenance in
applications. Figure 1 depicts a simple DDG, where a node in the graph denotes a
dataset. Edge denotes the generation relationship between datasets, i.e., d4 and d6 are
needed for generation of d7. If there exists a path from di to dj in the DDG, we say di
and dj have a generation relationship, and di(dj) is the predecessor (successor) of dj(di),
we denote it as di!dj, e.g., d1!d4, d5!d7.

In a commercial cloud computing environment, there are generally three basic types
of resource cost in the cloud: computation cost, storage cost and bandwidth cost:

Total Resource Cost ¼ Computation Cost þ Storage Cost þ Bandwidth Cost:

Fig. 1. A simple Data Dependency Graph (DDG)

350 J. Zhang et al.

Assumptions: We assume that the application be deployed with m Cloud Service
Providers, denoted as CSP = {c1, c2 … cm}. Furthermore, we assume there are
n datasets in the DDG, denoted as DDG = {d1, d2,… dn}. For every dataset di 2 DDG,
it can be either stored with one of the cloud service providers or be deleted.

Denotations: We use X, Y, Z to denote the computation cost, storage cost and
bandwidth cost of datasets respectively. Specifically, for a dataset di 2 DDG:

Xcj
di denotes the cost of computing di from its direct predecessors with cloud cj;

Ycj
di denotes the storage cost per time unit for storing dataset di with cloud cj;

Zck ;cj
di denotes the cost of transferring dataset di from cloud service provider ck to cj.

vdi denote the usage frequency of di, which means how often di is accessed.

Definition 1: In a multi-cloud computing environment, in order to regenerate a deleted
dataset, we need first to find its stored provenance dataset(s), then to choose a cloud
service provider to regenerate it. We denote the minimum regeneration cost of dataset
di as minGenCost(di).

Definition 2: Cost Rate of a dataset is the average cost spent on this dataset per time
unit in clouds. For di 2 DDG, we denote its Cost Rate as CostR(di), which is:

CostR dið Þ ¼ minGenCost dið Þ � vdi ; == di is deleted

Ycj
di
; == di is stored in cj

(
:

The Total Cost Rate of a DDG is the sum Cost Rate of all the datasets:
TCR ¼ P

di2DDG CostR dið Þ.
Definition 3: Storage strategy of a DDG is the storage status of all datasets in the
DDG, i.e. whether dataset is stored, and which cloud the dataset is stored.

Definition 4: Minimum cost of a DDG is the minimum Total Cost Rate for storing and

regenerating datasets in the DDG, which is denoted as TCRmin ¼ min
P

di2DDG
�

CostR dið ÞÞ.

3.2 GT-CSB Algorithm

The GT-CSB algorithm proposed in our prior work [6] can find the best trade-off among
computation, storage and bandwidth costs inmulti-clouds. The core idea of GT-CSB is to
convert aminimum cost storage problem to a shortest path problem over a Cost Transitive
Graph (CTG) graph. In the CTG graph, for each dataset in DDG, there are m nodes each
representing that the dataset is stored in the corresponding cloud, and two virtual vertexes,
start vertex and end vertex, are used to represent the start point and end point of the
shortest path problem. For any two vertexes belonging to different datasets, there is an
edge between them. An edge signifies that the datasets between the edge are deletedwhile
the end datasets of the edge are stored in the corresponding cloud. Each path from the start
vertex to the end vertex in the CTG corresponds to a storage strategy of the datasets in the
clouds. By sophistically setting the edge weight, which represents the sum Cost Rate of

An Efficient Algorithm for Runtime Minimum Cost Data Storage and Regeneration 351

those datasets between the end nodes of the edge, we can get the minimum cost storage
strategy by solving shortest path problem over the graph, the length of the shortest path
corresponding to the minimum Total Cost Rate of datasets in DDG.

4 PCE Algorithm

In this section, we first detailed introduce our PCE algorithm and some optimizing
strategies in Section; then we analyze the complexity of PCE algorithm.

4.1 Provenance Candidates Elimination (PCE) Algorithm

In this section, we will first elaborate the minimum cost dataset regeneration in Mul-
tiple Clouds Environment and baseline approach for optimal data storage strategy, and
then introduce the detail of PCE Algorithm and optimizations.

Dataset Regeneration with Multiple Clouds. We use Prov(d) to denote the prove-
nance of dataset d, the provenance of d is the nearest stored predecessor(s) of d and is
used to generate d when d is reused. The Minimum cost to regenerate a dataset is the
minimum cost of generating the dataset from its provenance with multiple clouds,
which includes the bandwidth cost for transferring datasets among the clouds and the
computation cost for regenerating datasets from its predecessors.

Definition 5: We use vercs
dj;ckð Þdi to denote the minimum cost of generating di on cloud

cs from its provenance dj which is stored in ck, or simplify it as vercsdi in the context
without ambiguity.

Based on the definition, if a provenance di is stored in cloud cs, the minimum
generation cost of dataset on cloud can be iteratively computed as:

verckdiþ 1
¼ Zcs;ck

di þXck
diþ 1

verckdj ¼ minmh¼1 verCh
dj�1

þ Zch;ck
dj�1

n o
þXck

dj

8<
: ð1Þ

where dj 2 DDG ^ di+1 ! dj ^ Prov(dj) = di, ck 2 {c1, c2,…cm}.

Fig. 2. DDG with multiple clouds

352 J. Zhang et al.

Based on Definition 5, the minimum regeneration cost of dj with provenance di is:

minGenCost dj
� � ¼ minmh¼1 verchdj

n o
ð2Þ

Baseline Algorithm

Lemma 1. In a linear DDG, if dataset di 2 DDG is stored in cloud, then the sum Cost
Rate of di’s successors (predecessors) is independent of the storage status of di’s
predecessors (successors).

According to the definition and the iterative calculation of the minimum regeneration
cost of a dataset in Eqs. (1) and (2), a deleted dataset is computed from its provenance,
since di is stored in cloud, any of di’s predecessor cannot be a provenance of di’s successor,
so the overall cost of di’s successors is independent of the storage status of di’s prede-
cessors. The regeneration cost or storage cost of di’s predecessors is also independent of
di’s successor. Hence, if a dataset, e.g. di, is stored in cloud, we can compute its prede-
cessors’ storage strategy and its successors’ storage strategy independently.

Assume a dataset di is stored in cloud ck, we use di.preCost to represent the
minimum total cost of di’s predecessors, and a tuple (di, ck) to represent that dataset di is
stored in cloud ck, and the storage strategy S of a DDG in multi-clouds is represented
by a set of tuples S = {(di, ck)|di 2 DDG ^ ck 2 CSP ^ di is stored in ck}. The
provenance, e.g. dj, and the provenance stored place, e.g. ck, of di is represented by a
tuple di.Prov = (dj, ck).

Baseline Algorithm starts by creating two virtual nodes d0 and dn+1 as starts dataset
and end dataset respectively (line 1), the two datasets have 0 size and 0 computation

An Efficient Algorithm for Runtime Minimum Cost Data Storage and Regeneration 353

cost, they are created only for ease of illustration. For each dataset in DDG and dn+1, e.g.
di, Baseline-Algorithm computes its minimum preCost and Prov (line 5–11). After the
iteration process on all datasets, dn+1.preCost is the minimum total cost of all dn+1’s
predecessors and is also the minimum total cost of DDG, then the optimal storage
strategy can be collected by a reverse traverse from dn+1 with Prov (line 13–17). When
computing preCost and Prov of a dataset, e.g. di, preCost is first initialed as infinite, then
Baseline-Algorithm iterates on all di’s predecessors and all CSPs to determine di’s
provenance and the stored cloud service, e.g. di.Prov = (dj, ck), that can make di.preCost
minimum (line 4–11).

In Baseline Algorithm, let n be the number of dataset and m be the number of CSPs,
minGenCost can be compute in O(m2n). When deciding Prov of a dataset, Baseline-
Algorithm have to iterate all its predecessors and all Cloud Service Providers, this
procedure can be done in O(m3n3), and there are n datasets, so the final time complexity
of Baseline-Algorithm is O(m3n4).

Provenance Candidates Elimination Strategy. Based on the definition of minimum
regeneration cost in multiple clouds, we find that the more distant the Prov(dj) is from dj,
the higher the minimum regeneration cost of dj will be.

Theorem 1: In multi-cloud scenarios, without loss of generality, if exists an optimal

storage strategy S1* for datasets {d1, d2…dj}, i.e.,
Pj
i¼1

CostR dið Þ, is minimum with S1*,

assuming the last stored dataset of S1* is dh and is stored in cloud cr, then the last stored
dataset and its stored cloud of optimal storage strategy S2* for datasets {d1, d2…dj, dj+1}
cannot be (dk, ci) with vercscr ;dhð Þdjþ 1

\vercsci;dkð Þdjþ 1
for all cs 2 CSP.

Proof: Assuming the last stored dataset of S2* is (dk, ci) with vercscr ;dhð Þdjþ 1
\vercsci;dkð Þdjþ 1

for all cs 2 CSP. We can construct a strategy S3 for {d1, d2,…, dj+1} with same storage
strategy of S1* for {d1, d2,…, dj} and dj+1 is deleted with lower sum Cost Rate

than S2*. Since
Pj
i¼1

CostRS1� dið Þ\Pj
i¼1

CostRS2� dið Þ and vercsc2;dhð Þdjþ 1
\vercsci;dkð Þdjþ 1

for all

cs 2 CSP, CostRS3 djþ 1
� � ¼ vdjþ 1 � min

cs2CSP
vercsc2;dhð Þdjþ 1

\CostRS2 djþ 1
� �þ vdjþ 1�

min
cs2CSP

vercsc2;dkð Þdjþ 1
, hence

Pjþ 1

i¼1
CostRS3 dið Þ ¼ Pj

i¼1
CostRS1 dið ÞþCostRS3 djþ 1

� �
\

Pjþ 1

i¼1

CostRS2 dið Þ ¼ Pj
i¼1

CostRS2 dið ÞþCostRS2 djþ 1
� �

, which contradicts the premise. Theo-

rem 1 holds.
According Theorem 1, we propose following Provenance Candidates Elimination

Rules (PCERs).
Consider the Baseline-Algorithm, assume the provenance of a dataset di is di.

Prov = (dj, ck), for di’s successors, i.e., dk, the initial provenance candidates set of dk is
dk.cand = {(dh, cl)| dh! dk ^ dh 2 DDG ^ cl 2 CSP}, we can use the following rules to
pruning the candidates set:

1. For (dh, cl) 2 dk.cand, where dh! di, if ver
cs
dh;clð Þdi [vercs

dk ;cjð Þdi for all cs 2 CSP, then

(dh, cl) can be eliminated from dk.cand.

354 J. Zhang et al.

2. For (dh, cl) dk.cand, where dh! di, if exists (dh′, cl′) dk.cand, dh′! di, that

dh:preCostþ
Pi

p¼hþ 1 min
cs2CSP

vercsdh;clð Þdp

� �
� vdp

� �
þ Ycl

dh

� �
[dh0 :preCost +ð

Pi
p¼hþ 1 min

cs2CSP
vercsdh0 ;cl0ð Þdp

� �
� vdp

� �
þ Ycl0

dh0
Þ and vercsdh;clð Þdi [vercsdh0 ;cl0ð Þdi , then (dh,

cl) can be eliminated from dk.cand.

To better illustrate the PCE Algorithm, we first introduce some new data structures:

• cand is the candidates set to record the possible provenances of the datasets. In the
algorithm, maintaining one cand is sufficient for all datasets, because, for example,
the reduction on a dataset’s provenance candidates di.cand also applies on di’s
successors.

• (dj, ck).MGC is an array where (dj, ck).MGC[cs] is the value of ver
cs
dj;ckð Þdi�1

when dj

is stored in cloud ck and di–1 is generated on cloud cs.
• (dj, ck).sucCost is similar to dj.preCost, it is the sum CostR of datasets from dj+1 to

di�1 : dj; ck
� �

:sucCost ¼ Pi�1
h¼jþ 1 minGenCost dhð Þ � vdh :

An Efficient Algorithm for Runtime Minimum Cost Data Storage and Regeneration 355

In PCE algorithm, the cand is first initialized as {(d0, c0)} (line 4). For each di in
DDG, di.Prov and di.preCost computed in line 6–10, after updating MGC and sucCost
of all the candidates (line 12–16), the PCERs are performed on cand (line 17). At last in
line 19–22, the new candidates, i.e., (di, ck) for all ck in CSP, are initialized and added
to cand.

For example, in Fig. 2, the provenance of dj is (dh, c2), the cand now is {(dh–1, c1),
(dh–1, c2), (dh, c1), (dh, c2), (dj–1, c1), (dj–1, c2), (dh–1, cm)…} marked with grey and
green circles. After performing the elimination rules, (dh–1, c2) and (dh, c1) marked with
grey circles are deleted from cand. Then before searching Prov of dj+1, (dj, c1), (dj, c2)
… (dj, cm) marked with blue circles are added to cand.

Incremental Minimum Regeneration Cost and Sum Successors’ Cost. For the
computation of

Pi�1
h¼jþ 1 minGenCost dhð Þ � vdh , we propose incremental computation

for it, it contains two parts: the incremental computation of minGenCost dhð Þ andPi�1
h¼jþ 1 minGenCost dhð Þ � vdh , as was illustrated in line 12–16 of PCE algorithm.
First, for the computation of minGenCost dhð Þ, we use a data structure MGC,

introduced before, to store the minimum regeneration cost of successors of datasets,
e.g. (dj, ck).MGC stores the minimum regeneration cost of successors of dj. In the each
round, MGC is updated accordingly (line 15).

Second, for the computation of
Pi�1

h¼jþ 1 minGenCost dhð Þ � vdh , similar to the
incremental computation of minGenCost dhð Þ, we use sucCost, introduced before, to
store the sum cost rate of successors of a datasets, e.g., dj. In each round, sucCost is
updated accordingly (line 16).

4.2 Analyses

In PCE Algorithm, let n be the number of datasets, m be the number of Cloud Service
Providers and |cand| be the average size of cand, searching of Prov (line 6–10) can be
done in O(|cand|), incremental update(line 12–16) can be done in O(|cand|*m2),
elimination rules (line17) in O(|cand|*m+|cand|*log(|cand|)), adding new candidates
(line 26–29) can be done in O(m2), so the overall time complexity of the Algorithm is
O(n*|cand|*(m2+log(|cand|))). For the size of cand, it mainly depends on the com-
putation cost rate and storage cost rate of datasets and is independent of the number of
datasets n. Our experimental results in Sect. 5.2 (Fig. 4(b)) also demonstrate the
independence of the size of cand and the number of dataset n.

5 Experiments

Our experiment is conducted on Desktop PC with Intel(R) Core(TM) i5-4200M CPU,
RAM 8 GB. The algorithm is implemented in the Java and is run on Windows.

In real world applications, generated datasets may vary dramatically in terms of
size, generation time, usage frequency and the structure of DDG. Hence, we randomly
generate DDGs with different number of datasets, each with a random size from 1 GB
to 100 GB. The computation time of dataset is also random, from 10 h to 100 h.

356 J. Zhang et al.

The usage frequency is again random, from once per month to once per year. This
setting is based on the scenarios of applications of scientific workflow [16] and BPM
system [3].

In addition, we randomly generate 10 cloud service providers with different com-
pute, storage and out-bandwidth price (see Table 1)1.

Our prior work [6] has thoroughly investigated the minimum cost strategy, the
algorithm in this paper calculates the same minimum cost strategy as GT-CSB, the
effectiveness of PCE algorithm will not be evaluated here.

Table 1. The pricing models of 10 cloud services providers

Cloud Service ID 0 1 2 3 4 5 6 7 8 9

Compute cost rate ($/hour) 0.11 0.12 0.15 0.09 0.13 0.15 0.12 0.13 0.12 0.16
Storage cost rate ($/GB*month) 0.1 0.06 0.05 0.08 0.07 0.07 0.06 0.09 0.05 0.04
Transfer cost rate for outbound
($/GB)

0.01 0.03 0.15 0.05 0.06 0.03 0.07 0.02 0.06 0.08

Fig. 3. Comparison of performance with varying settings

Fig. 4. Evaluation with varying settings

1 The prices are set based on popular cloud service provider’s pricing model, e.g., Amazon Web
Services’ prices are: $0.10 per instance-hour for the computation resources, $0.10 per GB-month for
the storage resource and $0.09 per GB bandwidth resources for data downloaded from Amazon via
the Internet. https://aws.amazon.com 2018.

An Efficient Algorithm for Runtime Minimum Cost Data Storage and Regeneration 357

https://aws.amazon.com

5.1 Comparison with Existing Algorithms

We first compare the performance of our strategy with GT-CSB. In this experiment, we
use 5 randomly generated DDGs with 100 to 500 datasets and 3 cloud service providers
with the pricing models listed in Table 1.

The experiment result shown in Fig. 3(a) and (b) demonstrates our strategy can
always finished within 1 s, while the running time of GT-CSB increases fast with the
increase of number of datasets.

In the next experiment, based on the philosophy of our prior work [17], we devise a
method which can derive localized minimum cost instead of a global one. The method
is dividing the DDG into several blocks of the same size, and using the algorithm to
find local optimal storage strategy for each block. We use a DDG with 500 datasets and
divide it into blocks with different block size. Figure 3(c) demonstrate the speed up of
GT-CSB algorithm with small block size, however, it is still not as efficient as PCE
algorithm.

5.2 Evaluation of PCE with Varying Settings

Then we evaluate the efficiency of our strategies with varying number of cloud service
providers.

We use the same datasets as above experiment, but gradually increase the number
of cloud service providers. All cloud service providers are summarized in Table 1. As
can be seen in Fig. 4(a), the run time of our algorithm increase slowly when the number
of datasets or the number of cloud service providers increases. Compared with existing
work, with the pruning effect of provenance candidates elimination and incremental
computation, our algorithm can complete in near linear time in terms of number of
datasets, hence, even if we use 10 cloud service providers and the 500 datasets, we can
get the result in approximate 50 ms.

We demonstrate the effect of provenance elimination strategy by studying the
average number of candidates with varying number of datasets (100–500). The number
of candidates indicates how many times we should check before we could get the
optimal provenance of a dataset, which is a key factor to the algorithm efficiency. In
this experiment, we summarized the average number of candidates with 3 and 10 cloud
service providers separately, as show in Fig. 4(b). With the varying number of datasets,
the average number of candidate remains almost constant, which demonstrate that the
number of candidates is independent of the number of datasets.

6 Conclusions and Future Work

In this paper, we proposed a provenance elimination strategy which can identify a small
set of possible optimal provenance and reduce the search space. Besides, we propose
incremental computations which speed up the algorithm a lot. The experimental results
show that the running time of our algorithm is significantly reduced compared to that of
the GT-CSB algorithm and our algorithm also scales well even the number of dataset is
very large.

358 J. Zhang et al.

In our current work, we only consider the datasets with linear DDG. However, in the
real world, dependencies between datasets can be very complex; they may contain
blocks, sub-blocks and crossed-blocks, the data storage strategy can be very tough to
obtain. Furthermore, extra cost might be caused by the “vender lock-in” issue among
different cloud service providers, large number of requests from input/output (I/O)
intensive applications, etc. In the future, we will consider complexDDG and incorporate
more complex pricing models in our datasets storage and regeneration cost model.

Acknowledgment. The research work was supported by the National Key R&D Program
(2017YFB1400102, 2016YFB1000602), NSFC (61572295), SDNSFC (No. ZR2017ZB0420),
and Shandong Major scientific and technological innovation projects (2018YFJH0506).

References

1. Zhang, Q., Zhani, M.F., Boutaba, R., Hellerstein, J.L.: Dynamic heterogeneity-aware
resource provisioning in the cloud. IEEE Trans. Cloud Comput. 2(1), 14–28 (2014)

2. Szalay, A., Gray, J.: 2020 computing: science in an exponential world. Nature 440(7083),
413–414 (2006)

3. Weske, M.: Business process management architectures. Business Process Management,
pp. 333–371. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28616-2_7

4. Burton, A., Treloar, A.: Publish my data: a composition of services from ANDS and ARCS.
In: Fifth IEEE International Conference on e-Science, pp. 164–170. IEEE (2009)

5. Agarwala, S., Jadav, D., Bathen, L.A.: iCostale: adaptive cost optimization for storage
clouds. In: 4th International Conference on Cloud Computing, pp. 436–443. IEEE (2011)

6. Yuan, D., Cui, L., Li, W., Liu, X., Yang, Y.: An algorithm for finding the minimum cost of
storing and regenerating datasets in multiple clouds. IEEE Trans. Cloud Comput. 6, 519–531
(2015)

7. Deng, K., Song, J., Ren, K., Yuan, D., Chen, J.: Graph-cut based coscheduling strategy
towards efficient execution of scientific workflows in collaborative cloud environments. In:
Proceedings of the 2011 IEEE/ACM 12th International Conference on Grid Computing,
pp. 34–41. IEEE Computer Society (2011)

8. Li, W., Yang, Y., Chen, J., Yuan, D.: A cost-effective mechanism for cloud data reliability
management based on proactive replica checking. In: Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012),
pp. 564–571. IEEE Computer Society (2012)

9. Foster, I., Vockler, J., Wilde, M., Zhao, Y.: Chimera: a virtual data system for representing,
querying, and automating data derivation. In: Proceedings of 14th International Conference
on Scientific and Statistical Database Management, pp. 37–46. IEEE (2002)

10. Muniswamy-Reddy,K.-K.,Macko,P.,Seltzer,M.I.:Provenancefor thecloud,pp.14–15(2010)
11. Gunda, P.K., Ravindranath, L., Thekkath, C.A., Yu, Y., Zhuang, L.: Nectar: automatic

management of data and computation in datacenters. In: OSDI, pp. 1–8 (2010)
12. Yuan, D., Yang, Y., Liu, X., Chen, J.: A cost-effective strategy for intermediate data storage

in scientific cloud workflow systems. In: Parallel & Distributed Processing (IPDPS),
pp. 1–12. IEEE (2010)

13. Yuan, D., Liu, X., Yang, Y.: Dynamic on-the-fly minimum cost benchmarking for storing
generated scientific datasets in the cloud. IEEE Trans. Comput. 64(10), 2781–2795 (2015)

An Efficient Algorithm for Runtime Minimum Cost Data Storage and Regeneration 359

http://dx.doi.org/10.1007/978-3-642-28616-2_7

14. Joe-Wong, C., Sen, S., Lan, T., Chiang, M.: Multiresource allocation: fairness-efficiency
tradeoffs in a unifying framework. IEEE/ACM Trans. Netw. (TON) 21(6), 1785–1798
(2013)

15. Yuan, D., et al.: An algorithm for cost-effectively storing scientific datasets with multiple
service providers in the cloud. In: 2013 IEEE 9th International Conference on eScience
(eScience), pp. 285–292 (2013)

16. Yuan, D., Yang, Y., Liu, X., Chen, J.: On-demand minimum cost benchmarking for
intermediate dataset storage in scientific cloud workflow systems. J. Parallel Distrib.
Comput. 71(2), 316–332 (2011)

17. Yuan, D., et al.: A highly practical approach toward achieving minimum data sets storage
cost in the cloud. IEEE Trans. Parallel Distrib. Syst. 24(6), 1234–1244 (2013)

360 J. Zhang et al.

	An Efficient Algorithm for Runtime Minimum Cost Data Storage and Regeneration for Business Process Management in Multiple Clouds
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Preliminaries
	3.2 GT-CSB Algorithm

	4 PCE Algorithm
	4.1 Provenance Candidates Elimination (PCE) Algorithm
	4.2 Analyses

	5 Experiments
	5.1 Comparison with Existing Algorithms
	5.2 Evaluation of PCE with Varying Settings

	6 Conclusions and Future Work
	Acknowledgment
	References

