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Abstract. Many knowledge-intensive processes are driven by business
entities about which knowledge workers make decisions and to which they
add information. Artifact-centric process models have been proposed to
represent such knowledge-intensive processes. Declarative artifact-centric
process models use business rules that define how knowledge experts
can make progress in a process. However, in many business situations
knowledge experts have to deal with uncertainty and vagueness. Cur-
rently, how to deal with such situations cannot be expressed in declara-
tive artifact-centric process models. We propose the use of fuzzy logic to
model uncertainty. We use Guard-Stage-Milestone schemas as declarative
artifact-centric process notation and we extend them with fuzzy sentries.
We explain how the resulting fuzzy GSM schemas can be evaluated by
extending an existing GSM engine with a tool for fuzzy evaluation of
rules. We evaluate fuzzy GSM schemas by applying them to an existing
fragment of regulations for handling a mortgage contract.

1 Introduction

Many business processes are performed by knowledge workers, who are responsi-
ble for making decisions and adding information, for instance by analyzing data.
These knowledge-intensive processes [6] are centered around certain key busi-
ness entities to which information is added and about which decisions are made,
for instance a production order or a request for quotes. Artifact-centric process
models have been proposed to model such knowledge-intensive processes [18].
Business artifacts combine data and process aspects of key entities in a holis-
tic way [14]. To allow flexibility, such knowledge-intensive processes are often
modeled in a declarative way with rules [9], rather than a procedural way.

Business artifacts contain business rules that specify conditions under which
actions are taken [5]. However, these rules are modeled in a classical way, assum-
ing clear-cut boundaries between different states of the world. The variables in
the rules may in reality have some degree of uncertainty or may not be described
precisely. This is caused by either having insufficient data or lacking concrete def-
initions of the considered concepts. For example, is there a unique loan amount
that distinguishes small loans and big loans? Or in case we only have a small
sampling of the requested loan amounts, then how reliable will it be to use a
crisp number as the boundary for small and big loans?
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Several approaches for modeling uncertainty exist, notably probabilistic and
fuzzy modeling [12]. Probabilistic models rely on frequency-based quantitative
analysis while fuzzy models deal with uncertainties in a qualitative way, mod-
eling the imprecise way of human reasoning [12,15]. We propose to model the
uncertainties in decision-intensive processes using fuzzy rather than probabilistic
models since there is a lack of rich data to generate probabilistic models and a
need to support the use of knowledge from human experts.

Fuzzy models describe the universe of discourse using linguistic terms with
corresponding linguistic labels instead of specifying precise numerical values
(including 0–1 binary representations) [12]. Each linguistic label has a member-
ship function defined in the universe of discourse. These linguistic labels may be
“large”, “high”, or “most”, depending on the context. Another important point
of use of fuzzy modeling is to model the decision-making of knowledge work-
ers which leads to the extraction of their domain expertise. Modeling expert
knowledge properly is clearly beneficial to enable automated decisions of high
quality.

For instance, suppose a loan is classified as large if it exceeds 100$, and not
large otherwise. In reality, it can be uncertain what exactly comprises the class
of large loans. A loan of 99K$ is not large according to the classification, but
obviously “more” large than a loan of 10K$. Knowledge workers may have their
own understanding of when a loan is large or small, which fuzzy modeling can
capture [15].

The goal of this paper is to explore the use of fuzzy modeling for declarative
artifact-centric process models. We define how to “fuzzify” such artifact models
by using fuzzy rules. As host notation for modeling declarative artifact-centric
schemas, we use Guard-Stage-Milestone (GSM) schemas [11]. The language GSM
schemas has inspired CMMN, the OMG standard on Case Management [4], so
the results can provide a stepping stone for incorporating fuzzy reasoning in
CMMN schemas. As we explain in Sect. 4, existing GSM engines can support
fuzzy GSM schemas by invoking fuzzy rule evaluators.

The remainder of this paper is organized as follows. Section 2 introduces
a running example that is revisited in the remainder of this paper. Section 3
defines GSM schemas and introduces fuzzy modeling. Section 4 explores how
fuzzy modeling can be applied to GSM schemas, using the running example
as illustration. Section 5 evaluates the use of fuzzy GSM schemas by modeling
a fragment of a complex regulated process for handling mortgages. Section 6
discusses related work. Section 7 ends the paper with conclusions and an outlook
for future work.

2 Running Example

We use a running example based on a fragment of a real-world process from
an international technology company, in which business criteria for partner con-
tracts are assessed [8]. The process fragment has the following behavior. First,
data is gathered needed to perform the assessment. Next, three activities are
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Fig. 1. Business Criteria Assessment process (BCAbase) [8]

Table 1. Stages and guards for BCAbase in Fig. 1

Stage Guard

Initial Data Gathering E:AssessmentRequest

Credit Check IDGS

Business Performance Evaluation Check IDGS ∧ employee count ≥ 300

Addressable Market Check IGDS ∧ annual revenue ≥ $500K

Detailed Check PCS

performed in parallel as a pre-check. First, the credit is checked to ensure that
the credit limit of the partner is still valid. Second, the past performance of the
partner is evaluated and checked, but only if the partner has more than 300
employees. Third, the market addressed by the partner is assessed if the annual
revenue exceeds $500K. If the three parallel checks are successful, the pre-check
succeeds and a detailed check is performed, which may either succeed or fail.

Figure 1 shows the lifecycle part of the GSM schema for this Business Criteria
Assessment process BCA [8]. Rounded rectangles denote stages, in which work is
performed. Circles denote milestones, which are business objectives achieved by
completing the work in a stage to which a milestone is attached or by another
external event. Diamonds denote guards, which specify conditions called sen-
tries under which a stage opens. Sentries are also used for milestones to specify
the conditions when they are achieved. Table 1 lists the sentries (guards) of the
defined stages and Table 2 the sentries of those defined milestones that are revis-
ited in the sequel of this paper; the full list for all milestones can be found
elsewhere [8]. Dashed arrows in Fig. 1 denote dependencies between stages and
milestones caused by sentries: for instance, the sentry (guard) of stage Detailed
Check states that the stage is opened if milestone PCS has been achieved, so
stage Detailed Check depends on milestone PCS.

The GSM schema in this paper is modeled in a crisp way: the sentries specify
exact conditions for each stage to be opened and each milestone to be achieved.
In reality, the knowledge worker may use more fluid conditions. In Sect. 4 we
explore how fuzzy logic can model such conditions.
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Table 2. Some milestones and their sentries for BCAbase in Fig. 1. ‘;’ separates different
sentries

Milestone Full name Sentry

... ... ...

CCS Credit Check Successful C:Credit Check ∧ rating ≥ 8

CCU Credit Check Unsuccessful C:Credit Check ∧ rating < 8

PCS Pre-checks Successful CCS ∧ BPECS ∧ AMCS ;

CCS ∧ employee count < 300 ∧ AMCS ;

CCS ∧ BPECS ∧ annual revenue < $500K ;

CCS ∧ employee count < 300 ∧
annual revenue < $500K

PCU Pre-checks Unsuccessful CCU ∨ BPECU ∨ AMCU

.. ... ...

3 Preliminaries

We introduce GSM schemas in more detail, as well as fuzzy modeling.

3.1 GSM Schemas

This section presents formal definitions for the variant of GSM schemas used in
this paper. Given the focus on the integration of sentries with fuzzy modeling, we
have chosen a lightweight GSM variant [8] in which there is no hierarchy and exe-
cutions are monotonic, i.e., each stage and each milestone changes value only once.
However, the classic GSM schemas [5] can be extended in a similar way. Given the
restricted space, the presentation is concise, explaining those GSM details that are
important to understand the remainder of this paper. For an extended introduction
to classic GSM schemas, we refer the interested reader to other papers [5,7,11].

A GSM schema Γ consists of attributes, subdivided into data attributes,
stage attributes and milestone attributes. The latter two represent the sta-
tus of stages and milestones. If a stage attribute is true (false), the stage is
open (closed). If a milestone attribute is true (false), the milestone is achieved
(invalid). Each data attribute a has a type type(a) which is scalar, e.g., string,
character, integer, float, etc. Status attributes have type Boolean.

We assume a propositional condition language C that includes fixed predi-
cates over scalars (e.g., ‘≤’ over integers or floats), and Boolean connectives. The
condition formulas may involve stage, milestone, and data attributes. A status
attribute will take the value True if one of its sentries goes true.

A sentry ψ defines a condition for a status attribute, i.e., a stage or milestone,
to become true. A sentry ψ has one of the three forms: “ϕ”, “C:S”, or “C:S ∧ϕ”,
where ϕ is a condition formula ranging over the attributes of Γ . Here “C:S” is
called the completion event for stage S. Also, C:S (if present) is the completion
event for ψ and ϕ (if present) is the formula for ψ.
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Definition 3.1. A GSM schema is a tuple Γ = (A = AD ∪ AS ∪ Am, E , sen)
where:

– A is a finite set of attributes.
– AD is a finite set of data attributes.
– AS is a finite set of stage attributes.
– Am is a finite set of milestone attributes.
– E = { C:S | S ∈ AS } is the set of stage completion events.
– The sentry assignment sen is a function from AS ∪ Am to sets of sentries

with formulas in the condition language C ranging over A. Each element of
set sen(v) for v ∈ AS ∪ Am is called a sentry of v.

Sentries define dependencies between stage and milestone attributes of Γ .
For a1, a2 ∈ AS ∪Am, a dependency (a1, a2) signifies that there is a sentry of a2

that references a1. The dependencies are visualized as dashed arrows in Fig. 1.

Definition 3.2. For a GSM schema Γ = (A, E , sen) a snapshot is a mapping
σ from A into values of appropriate type. For stage and milestone attributes,
the only permitted values are False and True. Initially, all stage and milestone
attributes are False.

Let Γ = (A, E , sen) be a GSM schema. Let ψ = C:S ∧ ϕ be a sentry for a status
attribute v ∈ AS ∪ Am, so ψ ∈ sen(v). Given a snapshot σ of Γ and a stage
completion event C:S′ that occurs, σ |= ψ denotes that C:S = C:S′ and σ |= ϕ,
so σ satisfies the formula ϕ of sentry ψ.

If in a snapshot a stage completion event occurs of an open stage, then
several sentries may become satisfied. If the sentry of a status attribute becomes
satisfied, the status attribute becomes true. Then sentries referencing the status
attribute may also become true, which in turn means that the status attributes
that own the sentries become true. For instance, stage Credit Check is open and
milestones BPECS and AMCS have been achieved, then the completion event
C:Credit Check with payload 〈rating, 9〉 results in achieving milestone CCS, which
in turn leads to achieving milestone PCS, which in turn opens stage Detailed
Check. In the resulting snapshot, no sentries are satisfied and the evaluation
of sentries stops and the system waits for the next stage completion event of
C:Detailed Check. Thus, the evaluation of sentries has a cascading effect, which
is called a Business-step, of B-step for short [5].

To properly compute B-steps, dependency graphs are used [5]. For each com-
pletion event C:S of stage S, a dependency graph DG(C:S) is created whose
nodes are V = AS ∪Am and an edge (v1, v2) exists if there is a sentry of v2 that
references v1. If stage completion event C:S occurs, then the sentries of v1 must
be evaluated before those of v2, in order to ensure that each change in status
attribute is justified when examining the starting and ending snapshots of the
B-step [5].
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3.2 Fuzzy Modeling

In real-world decision making, obtaining precise parameters for decision mod-
els may be hardly possible or precise values for some threshold may not be
meaningful. A classical example is assessing whether the weather is hot, cold or
medium based on the temperature. The same value of temperature can result in
different assessments for different countries. For instance a temperature of 30◦

is considered hot in the Netherlands, but medium in Turkey.

Fig. 2. Membership functions of linguistic terms of Temperature

Fuzzy logic has been proposed to capture this uncertainty in precision [15].
Fuzzy logic uses linguistic variables, i.e., variables whose values are different
linguistic terms that are defined in terms of a base variable. For a linguistic
variable x, each linguistic term t is defined in terms of a membership function μt :
dom(X) → [0, 1], which maps each value of X to the degree in which term t holds,
zero meaning t is not applicable at, one that t is completely applicable. Figure 2
shows the membership functions for the linguistic terms “hot”, “medium”, “cold”
for the linguistic variable Temperature. These definitions apply for countries like
the Netherlands; for a country like Turkey, the membership functions would
be different. For instance, μhot,TR(30) = 0.75 < μhot,NL(30) = 1, where TR
represents Turkey and NL the Netherlands.

In fuzzy logic, logical statements contain fuzzy operands, indicating that
uncertain or poor information is available. The two states of the satisfaction of
a logical statement, namely True (1) and False (0), are extended to take value
in the interval [0, 1]. This requires defining fuzzy aggregation operators, that are
the fuzzy counterparts to logical operands like AND and OR.

Fuzzy Aggregation: The logical aggregation of AND and OR operators are
generalized in fuzzy logic by using t-norm (conjunctive) and t-conorm (disjunc-
tive) operators, respectively [12,15]. These are most commonly used, although
there are other aggregation operators, like compensative, non-compensative, and
weighted operators. By definition, any conjunctive (disjunctive) operator should
come up with one value that is not greater (smaller) than any individual value
in the aggregation. So the highest (smallest) value is delivered in a conjunc-
tive (disjunctive) aggregation, by minimum (maximum) operator. Besides these
basic optimistic operators for an aggregation, other operators are proposed in
the literature [12,15]. In this paper, we use product operator for the conjunctive
aggregation, and the influence of the aggregation operators on the decisions is
not contained in the scope of our work.
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4 Fuzzifying GSM Schemas

In this section we show how the GSM schema in Sect. 2 can be modeled using
fuzzy logic, i.e., how the sentries of both stages and milestones can be fuzzified.

4.1 Linguistic Modeling of Variables

Artifact models are abstractions of real-world procedures that include uncer-
tainty due to several reasons like insufficient sampling size, involvement of human
perception and so on. Thus, in classic GSM schemas values of crisp variables can
actually carry considerable uncertainty. These variables can therefore be bet-
ter modeled as linguistic variables with various linguistic labels such as “low”,
“medium”, “high”, and so on. The range of values for each linguistic label may
vary across different organizational units, hence it is usually not easy, perhaps
even impossible, to accurately capture these different states in a quantitative
manner.

First, let us consider the relation between number of employees and company
size. In the crisp GSM schema in Sect. 2, the sentry “employee count ≥ 300” is
used to classify a company as big, if the result of this check is true. Now, 300 is
a somewhat arbitrary number and specified by a human expert as the threshold
value. However, a razor sharp classification of a company to be small or big may
not be a wise thing to do. For the sake of extracting more knowledge from an
expert, the following question can be asked: “For what employee numbers is a
company considered to be big to what extent?”.

Then the answer will lead us to define the membership function in part (b) of
Fig. 3. Consequently, the binary check “employee count ≥ 300” is replaced with
the fuzzy statement “the company is big” with a given degree of correctness
μbig(employee count) ∈ [0, 1], a so-called membership value that can be read
from part (b) of Fig. 3.

employee_count>=300

(a) Crisp

company is big

(b) Fuzzy

Fig. 3. Binary and fuzzy logic for employee count check
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We define a procedure to fuzzify the crisp variables of a given GSM schema:
1: Pick a crisp variable.
2: Find different numerical checks involving that crisp variable.
3: Interpret every check linguistically.
4: Define membership functions of the linguistic labels based on either expert

knowledge or a limited sample, if no expert knowledge is available.
Let us apply the above procedure for another crisp variable in our GSM

example of Fig. 1.

– Crisp variable: annual revenue
– Numerical checks: annual revenue ≥ $500K
– Linguistic interpretation: “company’s financial size is big”

– Membership function: μbig(ar) =

⎧
⎨

⎩

0, if ar ≤ 400
ar−400

100 , if 400 ≤ ar < 500
1, if 500 ≤ ar,

where ar = annual revenue.

4.2 Condition Formula of Sentries with Fuzzy Aggregation

We explain how to compute the truth value of a sentry with linguistic variables.
First, we show how to write the completion event of a stage in the fuzzy

notation. Practically, we keep the completion event crisp, but the notation is
adapted to have a single consistent notation for fuzzy sentries. The completion
event of stage S has the corresponding fuzzy linguistic statement “Completion
event of Stage S has occurred”. Then we define the discrete fuzzy membership
function for the linguistic label “occurred” as

μoccurred(C:S) = {(True, 1), (False, 0)}.

The reason why we interpret the completion event in a binary fashion is
that there is no uncertainty regarding the completion of a stage: a stage has
either completed or not. However, it can make sense to allow stages to gradually
complete. We plan to study gradual completion of stages in future research.

In the classical GSM schemas, sentries may contain logical “and” and “or”
operators in their condition formula. In our fuzzy modeling of GSM schema, con-
dition formulas are computed using fuzzy aggregations, introduced in Sect. 3.2.
For example, the sentry “C:Credit Check ∧ rating ≥ 8” of milestone CCS in
Table 2 can be transformed into

“C:Credit Check has occurred” and “rating is high”

where rating is modeled as linguistic variable with a linguistic label “high” that
can be interpreted as “being approximately greater than or equal to 8”.

Computation of a fuzzy aggregation is performed by using conjunctive and
disjunctive operators, as mentioned in Sect. 3.2. So the condition formula is
computed as

μCCS = μoccurred(C :CreditCheck) × μhigh(r)
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where r denotes the crisp value of rating, and the “product” t-norm operator is
used in the above conjunctive fuzzy aggregation.

Note that condition formulas may also contain the satisfaction value of other
condition formulas as a component in the aggregation. For example, the fuzzifi-
cation of the sentry “CCS ∧ BPECS” of the milestone PCS is done as

μPCS = μCCS × μBPECS

where again the “product” t-norm operator is used.
Given a stage or milestone a ∈ AS∪Am, evaluating a fuzzy sentry ϕ ∈ sen(a)

results in a fuzzy value between 0 and 1. Defuzzification is needed to derive a
crisp Boolean value that denotes whether a becomes true or value. Assuming
a general threshold value α ∈ [0..1] for the entire GSM schema, we define a
defuzzification function that assigns a status attribute true if its fuzzy value
μ(a) exceeds the threshold α:

defuzzify(a) =
{

1, if μ(a) ≥ α
0, otherwise.

4.3 Incorporating Fuzzy Sentries in the GSM Execution

So far, we have presented how sentries can fuzzified. We now sketch a potential
solution how the evaluation of fuzzy sentries can be done at run time (cf. Fig. 4).
The only difference with the regular GSM semantics, in which sentries are eval-
uated to perform a B-step (see Sect. 3.1) is that sentries are now evaluated using
fuzzy reasoning, consisting of three steps that are standard in evaluating fuzzy
rules [15]: fuzzify the crisp input to determine the values of the membership
functions of the fuzzy variables referenced in the sentry, then evaluate the sen-
try, and next defuzzify the input by applying the change for which the sentry
is a condition, if the sentry exceeds the threshold value. The functions used in
these steps have been defined above.

For classical GSM schemas, the only change is that sentries are evaluated
using classical logic [5], so (de)fuzzification does not apply. Thus, the proposed
extension is conservative: GSM engines only need to invoke a fuzzy evaluation
tool that implements the (de)fuzzification and aggregation functions defined
above.

Knowledge-intensive 
process

GSM schema 
with fuzzy 
sentries

payload (crisp)

fo
se

ir
tn

e
S

ni
se

do
n

)
E(

G
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 w
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Crisp change of 
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Fig. 4. Evaluation of fuzzy sentries in GSM execution
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Fig. 5. Part of GSM schema for processing regulated mortgage contracts

5 Evaluation

As a first evaluation step, we apply the approach to some of the rules defined
by the Financial Conduct Authority in the UK as part of the Mortgage Code
of Business (MCOB) for financial firms that offer regulated mortgage contracts:
www.handbook.fca.org.uk/handbook/MCOB. Below we show a few MCOB reg-
ulations for regulated mortgage contracts that financial firms use to decide
whether they have to adhere to the code of business for the customer. We show
how they are formalized with the fuzzy modeling approach advocated in this
paper.

1.2.3. In relation to a regulated mortgage contract for a business purpose
(1) MCOB applies if the customer is not a large business customer; and
(2) if MCOB applies, a firm must comply with MCOB in full, taking into
account tailored exceptions and provisions.

1.2.6. In determining whether a customer is a large business customer, a
firm will need to have regard to the figure given for the customer’s annual
turnover in the customer’s annual report and accounts or business plan.
In addition, a firm may rely on information provided by the customer
about the annual turnover, unless, taking a common-sense view of this
information, it has reason to doubt it.

Figure 5 shows part of a fuzzy GSM schema that operationalizes these regu-
lations. As additional customer info, we consider the profit and the number of
employees an organization has. First, we define the linguistic terms and corre-
sponding labels in Table 3. Then for every linguistic label a membership function
is defined based on expert/domain knowledge.

The most important element, milestone LargeCustomer, has two fuzzy sentries:

– Business sales volume is high
– Business sales volume is high and Customer financial situation is good and

Customer team size is big

www.handbook.fca.org.uk/handbook/MCOB
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Table 3. Converting crisp variables to linguistic terms and labels

Crisp variable Linguistic term Label Membership function

turnover Business sales volume high µhigh(turnover)

profit Customer financial situation good µgood(profit)

employee count Customer team size big µbig(employeecount)

The second sentry requires a three-component fuzzy aggregation:

μLargeCustomer = μhigh(turnover) × μgood(profit) × μbig(employeecount)

where the product operator is used for the t-norm operation. Next, defuzzi-
fication as defined below results in an binary output of the milestone Large-

Customer which directly determines if the stage Follow MCOB, which has sentry
“¬LargeCustomer” turns to True.

defuzzify(LargeCustomer) =
{

1, if μLargeCustomer ≥ α
0, otherwise,

where α is the threshold introduced in Sect. 4.
In a classical GSM schema, the decision of when a customer is large is natu-

rally modeled by having an atomic stage, that has the relevant data attributes
as input, and upon completion achieves either milestone LargeCustomer or Non-

LargeCustomer. The actual decision logic is then hidden in the atomic stage. Using
fuzzy logic, the reasoning behind the decision can be represented in sentries, so
the fuzzy GSM model forces to make the reasoning rules explicit.

This first evaluation step shows that fuzzy GSM schemas can be used to rep-
resent uncertainty that is inherent in real-world regulations. We plan to evaluate
the approach in industrial case studies.

6 Related Work

Fuzzy modeling has been applied to many different application domains, such as
control and decision making and optimization [15]. However, only a few papers
have applied fuzzy modeling in the context of BPM.

Thomas et al. [1,17] explore the combination of fuzzy modeling and Event-
driven Process Chains (EPCs). They advocate that the resulting fuzzy workflows
replace the classical, crisp workflows. Ye et al. [20] propose the use of fuzzy
logic to handle exceptions in workflow management, using fuzzy Petri nets as
underlying model. They focus on extending existing crisp workflow models and
crisp workflow systems to incorporate fuzzy reasoning. In contrast to these works
[1,17,20], we propose that the fuzzy sentries are only used as front end to decide
the truth value of sentries, so a non-fuzzy GSM engine is still used to drive
the execution. Furthermore, these works consider procedural process models,
whereas we consider declarative, artifact-centric process models.
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Fuzzy logic has also been applied to represent uncertainty for simula-
tion [2,19] and analysis [21] of business processes. Landry et al. [13] apply fuzzy
logic to distributed workflows to support collaborative crisis management under
uncertainty. Slav́ıcek [16] presents a fuzzy ontology-based workflow system. The
focus is on integrating fuzzy workflow systems with fuzzy ontologies. None of
these papers focuses on declarative, artifact-centric processes.

In the broader area of BPM, fuzzy modeling has been applied as well. For
instance, Hakim et al. [10] present a methodology based on fuzzy logic to select
processes for reengineering while Bazhenova et al. [3] define how to extra fuzzy
decision models from event logs. However, in these papers the processes them-
selves are not modelled in a fuzzy way.

7 Conclusion

We have proposed fuzzy GSM schemas as technique for modeling uncertainty
in declarative artifact-centric process models. The added value of fuzzy GSM
schemas over classical GSM schemas is twofold. Firstly, they are capable of cap-
turing expert knowledge via defining rules in linguistic terms that match human
understanding of the problem domain better than the rules in classical GSM
schemas. Secondly, fuzzy GSM schemas are more useful for the cases where it
is hard, even impossible, to collect enough information to make concrete deci-
sions while performing the business process. The resulting uncertainty is better
captured using linguistic variables in decision making, as done in fuzzy models,
rather than relying on crisp variables as used in classical GSM schemas. We also
discussed how existing GSM engines can support fuzzy GSM schemas by invok-
ing fuzzy rule evaluators. Thus, the proposed GSM extension is lightweight and
does not require any redefinition of existing GSM engines.

For future work, we plan to explore the use of fuzzy stages and milestones
for fuzzy GSM schemas. This also will affect the execution of GSM schemas, i.e.,
the notion of Business step needs to be adjusted accordingly. Moreover, we plan
to incorporate fuzzy inference systems into fuzzy GSM schemas involving highly
complicated decision making parts. Finally, we plan to apply the approach in
several case studies in organizations.
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18. Vacuĺın, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declarative
business artifact centric modeling of decision and knowledge intensive business
processes. Proc. EDOC 2011, 151–160 (2011)

19. Völkner, P., Werners, B.: A simulation-based decision support system for business
process planning. Fuzzy Sets Syst. 125(3), 275–287 (2002)

20. Ye, Y., Jiang, Z., Diao, X., Du, G.: Extended event-condition-action rules and
fuzzy Petri nets based exception handling for workflow management. Expert Syst.
Appl. 38(9), 10847–10861 (2011)

21. Zakarian, A.: Analysis of process models: a fuzzy logic approach. Int. J. Adv.
Manuf. Technol. 17(6), 444–452 (2001)

https://doi.org/10.1007/978-3-662-48616-0_18
https://doi.org/10.1007/978-3-662-48616-0_18
https://doi.org/10.1007/978-3-540-89900-6_23
https://doi.org/10.1007/978-3-642-35843-2_44
https://doi.org/10.1007/978-3-642-35843-2_44

	Modeling Uncertainty in Declarative Artifact-Centric Process Models
	1 Introduction
	2 Running Example
	3 Preliminaries
	3.1  GSM Schemas
	3.2 Fuzzy Modeling

	4 Fuzzifying GSM Schemas
	4.1 Linguistic Modeling of Variables
	4.2 Condition Formula of Sentries with Fuzzy Aggregation
	4.3 Incorporating Fuzzy Sentries in the GSM Execution

	5 Evaluation
	6 Related Work
	7 Conclusion
	References




