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Abstract. Bone microarchitecture is constantly adapting to environ-
mental and mechanical factors. Changes in bone density and structure
can lead to an increase in fracture risk. Computational modeling of bone
adaptation may provide insight into mitigating aging and preventing dis-
ease. In this paper, the adaptation of bone is modeled as a curve evolution
problem. Curves can be evolved according to the level set method. The
level set method models basic bone physiology by adapting bone accord-
ing to appositional growth following a trajectory in time with a natural
definition of homeostasis. A novel curvature based bone adaptation algo-
rithm is presented for modeling bone atrophy. The algorithm is shown
to be weakly equivalent to simulated bone atrophy. These results gener-
alize surface-driven and strain-driven models of bone adaptation using
a surface remodeling force. Physiological signals (hormones, mechanical
strain, etc.) can be directly integrated into this surface remodeling force.
Remodeling can be naturally restricted around foreign bodies (such as
modeling adaptation around a surgical screw). Future work aims to iden-
tify the surface remodeling force from longitudinal image data.

Keywords: Level set method · Bone adaptation · Cancellous bone
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1 Introduction

Bone is a dynamic organ changing shape and density in time. Constantly, bone
is undergoing a process of remodeling, where cellular processes remove old bone
and lay down new bone [1]. Bone adaptation is driven by many factors, including
genetics, hormones, and mechanical loading [2]. An imbalance in resorption and
formation can lead to a degradation of bone microarchitecture, increasing the
risk of fracture. Computational modeling of bone adaptation can provide insight
into aging and metabolic bone diseases such as osteoporosis.
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In this paper, the physiological process of bone adaptation is modeled using
level set motion. In Sect. 2, a framework is presented for modeling bone adap-
tation as a curve evolution problem. Bone physiology and curve evolution are
reviewed and used to derive a surface-only model of bone atrophy based on mean
curvature and advection. In Sect. 3, numerical techniques for solving the par-
tial differential equation are summarized. In Sect. 4, quadratic surfaces are used
to demonstrate that the algorithm produces physiologically plausible changes.
Finally, in Sect. 5, curvature based bone adaptation is shown to generalize a
classic surface-driven model of bone atrophy using in vivo image data.

2 Bone Adaptation as Level Set Motion

Cancellous bone is a mixture of marrow tissue and trabeculae tissue. Bone can
only remodel at the surface – so-called appositional growth [1]. The interface
between marrow tissue and trabeculae tissue defines a surface. Remodeling of
bone microarchitecture can be conceptualized as an evolution of this surface.

2.1 Bone Microarchitecture as a Curve

First, the trabecular surface is modeled by a planar curve C, which maps the
normalized length along the curve to a two-dimensional coordinate:

C : [0, 1] → R
2. (1)

The curve requires an explicit parameterization, which is typically realized using
splines [3]. The curve can be evolved in time along its normal vector N according
to a force F :

Ct = FN , (2)

where Ct is the time derivative of the curve. Importantly, the force F can depend
on mean curvature, κ. This definition of a curve is inherently limited to pla-
nar curves. Furthermore, parameterized curves cannot change topology without
explicit breaking and merging rules.

Alternatively, a curve can be defined as the level set of an embedding func-
tion [4]. Let φ be an N-dimensional image defined on domain Ω ∈ Z

n and map
each point x ∈ Ω to R. The curve C is defined as the zero level set of the
embedding function φ:

C = {x|x ∈ Ω,φ(x) = 0}. (3)

The level set may be evolved by some force, F , by noting that (3) must hold for
all time [5]:

φ (C(t), t) = 0. (4)

By differentiating (4) with respect to time, the following equation of motion for
N -dimensional curves is found:

φt + F |∇φ| = 0. (5)
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Similar to (2), the force F may depend on mean curvature, κ. Curvature can be
computed directly from the embedding image φ as the divergence of the normal
vectors to the curve [6]:

Fig. 1. Embedding computed tomography data in a level set. Although a two-
dimensional image is shown, the embedding is done on three-dimensional data.

κ = ∇ · N , (6)

κ = ∇ ·
( ∇φ

|∇φ|
)

. (7)

There are many possible choices of φ. Here, φ is defined as the signed distance
between a voxel and the curve:

φ(x) = ±d (x, C) . (8)

The distance ±d (x, C) is a signed Euclidean distance such that d < 0 is inside
the curve and d > 0 is outside the curve. The image φ can be computed in linear
time from a binarized image of cancellous bone [7]. Figure 1 demonstrates the
concept of embedding trabecular bone in a level set.

The level set formulation of curve evolution has many advantages. First, the
definition is non-parametric. More precisely, the curve is implicitly parameterized
by the domain of the image instead of relying on a parameterization such as
splines. Second, the level set method implicitly handles changes in topology.
This is important for modeling the resorption of trabecular bone because thin
trabecular rods can completely resorb, changing the topology of the bone [8].

2.2 Functional Adaptation as Curve Evolution

Functional bone adaptation is defined as the ability of bone to form or resorb
according to local mechanical strain [9]. The curve force F of functional bone
adaptation is a surface remodeling rate modulated by local physiological sig-
nals (e.g. mechanical strain, hormones, etc.) [2]. Micro-computed tomography
can resolve individual trabeculae (on the order of 100 µm) in three dimensions
(3D) enabling visualization and quantification of bone adaptation [10,11]. The
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cancellous bone can be binarized using a density threshold on the computed
tomography data. Using finite element modeling [12] with an assumed loading
condition, strain energy density can be computed at each voxel. Relating strain
energy density to surface remodeling rate gives the curve force F in (5) [13].
Although finite element modeling is not performed in the following experiments,
it is important to recognize that the level set method is a general framework for
modeling strain- and surface-based bone adaptation.

Importantly, these models present bone adaptation as an initial value prob-
lem: ⎧⎨

⎩
∂φ(x, t)

∂t
= −F |∇φ(x, t)|,

φ(x, 0) = φ0(x).
(9)

The initial value problem implies that bone adapts according to a trajectory
in time. Knowing the state of the bone at time t0 and knowledge of how bone
functionally adapts (by force F at the surface), a unique solution can be found
for all t. Furthermore, the curve stops updating when the force F goes to zero
(that is, φt = 0). This implies a state of homeostasis, important for modeling
metabolic diseases such as osteoporosis [14]. The surface remodeling rate F is the
fundamental measure needed to understand functional bone adaptation [15–17].

2.3 Bone Adaptation by Advection and Mean Curvature

Surface-based models of bone adaptation are important for understanding lon-
gitudinal changes in trabecular bone. One such model was simulated bone atro-
phy (SIBA) [8], where one iteration of the remodeling cycle was simulated at
a time. The basis of this approach was that bone remodeling occurs in dis-
crete packets termed Basic Multicellular Units (BMUs). In one remodeling cycle,
a BMU is recruited, osteoclast cells resorb bone mineral, and osteblast cells
replace this bone in a sequential fashion [1]. Given a binary image of bone, SIBA
simulates one remodeling cycle using a Gaussian blur, where a finite impulse
response Gaussian filter smooths the edges of the binary image data produc-
ing a greyscale image. Subsequently applying a threshold, the greyscale data
could be re-binarized. The Gaussian filter standard deviation and support were
chosen on the basis of osteoclast penetration depth. The threshold was chosen
based on osteoblast efficiency, or percentage of bone resorbed by osteoclasts that
osteoblasts replaced, and the time between iterations was chosen as the activa-
tion frequency of BMUs. SIBA can be viewed as a net advection and curvature-
based loss when a threshold less than 50% is chosen and Gaussian smoothing is
included. The approach we present reframes SIBA in the level set motion frame-
work. This is a novel method for modeling age-related bone loss, and importantly
unifies surface-based and strain-based models of bone adaptation.

As in Sect. 2.1, consider a curve, C, defining the marrow-trabecular interface.
To model appositional growth, one seeks to adapt this curve in time by some
force F in the direction of the normal to the curve:

Ct = FN . (10)
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In 3D, the curve can be seen as the level set of an embedding function φ. An
equation of motion for the curve can be found:

φt + F |∇φ| = 0. (11)

The force is chosen to have an advection and curvature loss:

F = a − bκ. (12)

By selecting a positive, the curve will grow, increasing the trabecular bone vol-
ume. Conversely, negative a causes the curve to shrink, decreasing the trabec-
ular bone volume. The curvature term is only well-posed for b positive [6]. a is
measured in units of µm/year and b is measured in units of µm2/year. Combin-
ing (11) and (12), an equation of motion for the trabecular bone surface can be
found:

φt = bκ|∇φ| − a|∇φ|. (13)

Finally, the curve evolution problem can be formulated as an initial value prob-
lem by taking φ0(x) as the signed Euclidean distance transform of binarized
computed tomography data:

⎧⎨
⎩

∂φ(x, t)
∂t

= bκ|∇φ(x, t)| − a|∇φ(x, t)|,
φ(x, 0) = φ0(x).

(14)

Most importantly, the parameters a and b must be selected to represent
physiologically plausible change. As with SIBA, the majority of the loss should
be accounted for by mean curvature [8]. For this reason, bκ should be chosen on
the same order or larger in magnitude than a. Average loss may provide some
insight into the absolute scale of the parameters. For idealized cylindrical rods,
the mean curvature is known to be the inverse of twice the radius. Using this, an
equation for surface remodeling rate l given a cylinder of radius r can be found:

l(r) = a − bκ = a − b

2r
. (15)

Equation (15) is plotted in Fig. 2. Graphically, Fig. 2 demonstrates that the sur-
face remodeling rate accelerates with time for rod-like structures. The mean
thickness of trabecular bone ranges from 150µm to 250µm [18]. Using this
model and knowledge of thickness, the following parameters were selected:
a = −1µm/year, b = 100µm2/year. This gives a loss of −1.5µm/year for a
100µm rod. Note that after one year, the radius decreases and the rate increases
in accordance with (15) and Fig. 2. This leads to a cascading loss.
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Fig. 2. Plot of surface remodeling rate as a function of radius for a rod-like structure
(a = −1µm/year, b = 10µm2/year).

Algorithm 1. Curvature Based Bone Adaptation
Require: φ0, a, b > 0, t > 0
1: φ = φ0

2: elapsed = 0
3: while elapsed < t do
4: φ = Reinitialize(φ)
5: dt = min (t - elapsed, TimeStep(a,b,φ) )
6: for all x ∈ Ω do
7: update = b CurvatureTerm(φ(x)) - a AdvectionTerm(a, φ(x))
8: φ(x) = φ(x)+ dt · update
9: end for

10: elapsed += dt
11: end while
12: return φ

3 Numerical Implementation

The finite difference method is employed to numerically solve (14). Time and
space discretization are described in detail below. Since trabecular bone sur-
face is dense in the image domain, narrow band methods are not employed [6].
The algorithm takes an initial distance transform φ0, the advection and mean
curvature weights a and b, and a total time to iterate t and returns the final
embedded level set. A multithreaded implementation written in C++ and based
on The Insight Segmentation and Registration Toolkit1 is available online2. The
program is summarized in Algorithm 1. In the following sections, the algorithm
is applied to idealized surfaces and in vivo image data.

1 www.itk.org.
2 https://github.com/Bonelab/Bone Adaptation as Level Set Motion.

www.itk.org
https://github.com/Bonelab/Bone_Adaptation_as_Level_Set_Motion
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3.1 Time Discretization

The forward Euler method can be used for time discretization. However, the
spatial discretization of mean curvature and advection require special care [4]:

φ(x, t + Δt) = φ(x, t) + Δt [bκ|∇φ(x, t)| − a|∇φ(x, t)|] . (16)

3.2 Advection Term

The advection term will be spatially discretized using the upwind scheme [4].
Let φi ≡ ∂φ(x,t)

∂xi
denote the derivative of φ with respect to direction xi. The

gradient magnitude can be written as such:

|∇φ(x, t)| =
√∑

i

φ2
i . (17)

An upwind finite difference method is used to compute the first order partial
derivatives. This is done by calculating the derivative on the edge to which the
wave moves. This scheme is known to capture shocks in the evolving wave front.
First, forward edge and backwards edge derivative operators are defined:

D+
i φ =

φi+1,j,k − φi,j,k

Δxi
, (18)

D−
i φ =

φi,j,k − φi−1,j,k

Δxi
. (19)

The squared partial derivative is estimated by taking into account the direction
of wave propagation:

φ2
i =

{
max

(
D−

i φ, 0
)2

+ min
(
D+

i φ, 0
)2

, if a ≥ 0,

min
(
D−

i φ, 0
)2

+ max
(
D+

i φ, 0
)2

, if a < 0.
(20)

3.3 Curvature Term

The curvature term is spatially discretized using central differences [6]. The
curvature can be calculated from the level set as the divergence of the normal:

κ = ∇ · N , (21)

κ = ∇ ·
( ∇φ

|∇φ|
)

, (22)

κ =
�φ

|∇φ| − 1
|∇φ|3

∑
i

∑
j

φiφjφij , (23)

where �φ = ∇ · ∇φ denotes the Laplacian of φ and φi,j ≡ ∂2φ(x,t)
∂xi∂xj

denotes the
second derivative of φ with respect to xi, xj . Using (23) and assuming φ has
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continuous derivatives such that φij = φji, the mean curvature term can then
be reduced to the following:

κ|∇φ(x, t)| = |∇φ|
⎛
⎝ �φ

|∇φ| − 1
|∇φ|3

∑
i

∑
j

φiφjφij

⎞
⎠ , (24)

κ|∇φ(x, t)| =
1

|∇φ|2

⎛
⎝∑

i

φ2
i

∑
j �=i

φjj − 2
∑

i

∑
j=i+1

φiφjφij

⎞
⎠ . (25)

The derivatives in (25) are discretized using central differences since the value
depends on cross derivatives in different spatial directions [6]:

φi =
φi+1,j,k − φi−1,j,k

2Δxi
, (26)

φij =

{
φi+1,j,k−2φi,j,k+φi−1,j,k

(Δxi)2
, if i = j,

φi+1,j+1,k−φi−1,j+1,k−φi+1,j−1,k+φi−1,j−1,k
4ΔxiΔxj

, if i �= j.
(27)

3.4 Courant-Friedrichs-Lewy Condition

The level set method provides a strong numerical basis for choosing time steps
based on the speed of curve evolution relative to image spacing. The so-called
Courant-Friedrichs-Lewy (CFL) condition requires that the numerical domain of
dependence includes the analytic domain of dependence [19]. Using an upwind
finite difference for the advection term and central differences for the mean
curvature term, the following CFL condition must be met for each voxel [6]:

α = Δt

( |a|
min{Δx,Δy,Δz} +

2|b|
min{(Δx)2, (Δy)2, (Δz)2}

)
< 1. (28)

For these experiments, the CFL number was set to a conservative α = 0.5 [6].

3.5 Reinitialization

Finally, introduction of a mean curvature term with forward Euler time dis-
cretization can cause φ to deviate from a signed distance function. Periodically,
reinitialization is needed to return the level set to a signed distance function [6].
The technique used here solves the following reinitialization equation [20]:

φt + S (φ) (|∇φ| − 1) = 0, (29)

S (φ) =
φ√

φ2 + |∇φ|2ε2 , (30)

where ε = min{Δx,Δy,Δz}. Reinitialization updates the embedding function
to maintain the property that for a signed distance function, |∇φ| = 1. The term
S (φ) is the regularized sign of the embedding function.
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4 Quadratic Surfaces

To gain insight into the correctness of the resorption algorithm, simple represen-
tations of rods and plates will be created using quadratic surfaces. The implicit
function of a quadratic surface can be used to instantiate an idealized rod or
plate in image data. Below, quadratic surfaces are defined according to physical
properties of a rod or plate. The instantiated image data can be created with
varying image resolutions, but will not be explored here.

4.1 Cylindrical Rod

A rod of constant thickness can be modeled as a cylinder of radius r. This rod
will have some length l, which clips the implicit function:

x2 + y2 − r2 = 0. (31)

4.2 Resorbing Rod

A rod thinning in the center can be modeled as a one sheet hyperbola:

b2x2 + b2y2 − a2z2 = 1. (32)

The equation is determined by three parameters: the length of the rod, l; the
radius at the ends of the rod, R; and the radius at the center of the rod, r:

a =
2
l

√
R2

r2
− 1, (33)

b =
1
r
. (34)

4.3 Resorbing Plate

Finally, a plate can be modeled as a torus. Given below is the equation of a
torus: (√

x2 + y2 − R
)2

+ a2z2 = r2. (35)

By varying R with respect to r, the size of the hole through the torus can be
controlled. If r > R, the hole can be closed.

The equation of the torus is determined by three parameters: the diameter
of the plate, l; the resorption distance, d; and the plate thickness, t:

r =
l − d

4
, (36)

R =
l + d

4
, (37)

a =
l − d

2t
. (38)

If the resorption distance is negative, the hole in the torus will be closed.
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4.4 Proof-of-Principle

Three surfaces are generated to visualize the curvature based bone adaptation
algorithm. The cases are outlined in Fig. 3. For each case, the implicit functions
above are used to generate a representation of the surface in a binary image.
The spacing of the images are set to an isotropic resolution of 61µm. Fifty
years of aging are simulated using the parameters a = −1µm/year and b =
100µm2/year. The surfaces are visualized directly from the embedding function
φ using the Marching Cubes algorithm [21].

Fig. 3. Plot of ideal structures adapting in time. Three cases are demonstrated:
(a) Cylindrical rod (l = 1 mm, r = 200µm). (b) Resorbing rod (l = 1 mm, R = 200µm,
r = 100 mm). (c) Resorbing plate (l = 1 mm, d = 100 mm, t = 200 mm).

Many important features of the algorithm are demonstrated in Fig. 3. The
resorbing rod (Fig. 3(b)) and plate (Fig. 3(c)) are completely removed while the
cylindrical rod (Fig. 3(a)) thins. This agrees with the intuition behind (15) and
Fig. 2 that higher curvature structures resorb faster. Additionally, the topological
change in the resorbing rod is handled implicitly. Handling topolgical changes
is a critical feature for any algorithm modeling bone adaptation. Finally, the
resorbing plate reduces to a ring. Both the outer and inner portions of the ring
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resorb. Curvature based bone adaptation demonstrates physiologically plausible
changes to idealized rods and plates.

5 In vivo Experiments

5.1 Data Collection

Curvature based bone adaptation is applied to in vivo human data as a model
of aging. The left, distal tibia of ten subjects were imaged using second genera-
tion high-resolution peripheral quantitative computed tomography (HR-pQCT;
XtremeCT II, SCANCO Medical AG, Switzerland). Second generation HR-
pQCT is capable of directly assessing human trabecular bone [18]. The nominal
resolution was 61µm isotropic. 50% (5) of the subjects were female. Age ranged
from 56 to 67 years. Total bone mineral density ranged from 279.6 mg HA/ccm to
317.5 mg HA/ccm. Age- and sex-matched normative total bone mineral density
ranged from 48.3% to 53.5% [22].

5.2 Pre-processing

Cortical and cancellous masks for each tibia volume were generated using the
dual thresholding technique [23]. Masks were visually inspected and manually
corrected. Image data was binarized using a threshold of 320 mg HA/ccm.

5.3 Simulation

For each subject, 30 years of bone loss was simulated. The simulation parameters
were unchanged (a = −1µm/year, b = 100µm2/year). However, a mask of the
trabecular bone was included to restrict the remodeling force F to the trabecular
region. Outside the trabecular mask, F was set to zero. Image data was generated
at every decade, and bone volume fraction in the cancellous compartment was
quantified. Additionally, the bone surface area to volume ratio was quantified for
the measured data. The surface area to volume ratio is a measure of the shape
of the trabecular bone and is a strong determinant of bone loss in SIBA [8].
The surfaces were visualized directly from the embedding function φ using the
Marching Cubes algorithm [21].

5.4 Results

The change in morphometry with simulated aging is analyzed. A plot of tra-
becular bone volume fraction with simulated age is shown in Fig. 4(a). Each
subject experiences monotonic bone loss with age. Subjects appear to lose bone
at the same absolute rate. This can be explained by having selecting the same
parameters (a and b) for each subject. Figure 4(b) shows the percent bone loss
over 30 years as a function of original bone surface to volume ratio. 99% of the
variation in lost bone volume fraction is explained by the original bone surface
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Fig. 4. Change in bone morphometry with simulated age. (a) Trabecular bone volume
fraction decreases with simulated age for ten subjects. (b) Original bone surface to
bone volume ratio predicts percentage bone loss (R2 = 0.99).

to volume ratio (p < 0.05). This is a key finding in the original work on SIBA [8].
Curvature loss for one subject is shown in Figs. 5 and 6. The subject is a 60 year
old male with an original bone volume fraction of 22.9% and a bone surface to
volume ratio of 10.7 mm−1. No loss is seen in the cortical bone where the curve
force was set to zero. This is an important feature for modeling complex interac-
tions such as adaptation around a surgical screw. Qualitatively, more bone loss
is seen in the center of the bone than the endosteal surface (Fig. 5). This loss
visually corresponds with a thin, rod-like initial structure. Plates connected by
thin trabecular rods can become disconnected, a feature also present in SIBA.
Trabeculae disconnect, holes in plates widen, and loss is seen throughout the
structure (Fig. 6). Curvature based bone adaptation appears to model the same
mechanism of bone loss as the SIBA algorithm.

Fig. 5. Change in microarchitecture under curvature based bone adaptation for one
subject at (a) baseline, (b) 10 years, (c) 20 years, and (d) 30 years.
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Fig. 6. Microarchitecture loss visualized for a 49 × 49 × 49 (26.7µm3) volume for one
subject at (a) baseline, (b) 10 years, (c) 20 years, and (d) 30 years.

6 Discussion

In this paper, bone adaptation is presented as level set motion. Functional adap-
tation is reviewed in the context of level set motion. A new algorithm for curva-
ture based bone adaptation is presented. This algorithm is shown to generalize
simulated bone atrophy using level set motion. The algorithm was applied to
idealized structures and in vivo image data. Level set methods were previously
used to model functional bone adaptation. While one study did not explicitly
mention level set motion but derived all components [15], the other only men-
tioned its use in passing [24]. Level set methods have been well characterized. In
general, they can be used to model Hamilton-Jacobi type equations from classi-
cal mechanics [4]. Traditionally, bone adaptation is presented as an optimization
problem where the bone tries to maintain “mechanical competency” while min-
imizing mass [2]. However, under level set motion, an interesting future area of
research is to reframe bone adaptation using principles of least action.

Finally, level set motion presents a general method for adapting the bone sur-
face according to some force. However, identification of the surface force remains
elusive [15–17]. Ideally, the motion force F could be determined uniquely given
two longitudinal images. This would allow one to uncover the surface remodeling
rate of bone directly from the image data. To the best of our knowledge, very
little work towards solving the identification problem has been completed [25,26].

7 Conclusion

Level set motion is a general framework for surface-based and strain-based mod-
eling of bone adaptation. The method matches the basic physiology of bone
adaptation: appositional growth. A novel algorithm is presented for modeling
bone atrophy using mean curvature and advection.

Acknowledgements. B.A. Besler acknowledges support from Alberta Innovates
Health Solutions and NSERC CGS-D.
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