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Abstract. We present a method for automatically determining the posi-
tion and orientation of the articular marginal plane (AMP) of the prox-
imal humerus in computed tomography (CT) images without segmenta-
tion or hand-crafted features. The process is broken down into 3 stages.
Stage 1 determines a coarse estimation of the AMP center by sampling
patches over the entire image and combining predictions with a novel ker-
nel density estimation method. Stage 2 utilizes the estimate from stage 1
to focus on a smaller sampling region and operates at a higher images res-
olution to obtain a refined prediction of the AMP center. Stage 3 focuses
patch sampling on the region around the center obtained at stage 2 and
regresses the tip of a vector normal to the AMP which yields the orien-
tation of the plane. The system was trained and evaluated on 27 upper
arm CTs. In a 4-fold cross-validation the mean error in estimating the
AMP center was 1.30± 0.65 mm and the angular error for estimating the
normal vector was 4.68± 2.84◦.
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1 Introduction

Shoulder arthroplasty is a common orthopaedic procedure indicated in certain
cases of primary and secondary degenerative conditions. The annual rate of
shoulder arthroplasty has been increasing with a steeper increase in total shoul-
der arthroplasty (TSA) compared to hemiarthroplasty since the early 2000s.
In 2008, an estimated 46,951 procedures were performed in the USA (20,178
hemiarthroplasties and 26,773 total shoulder arthroplasties) [1]. Both of these
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Fig. 1. Key dimensions of the proximal humerus: GT = greater tuberosity,
HA = humeral axis, HI = humeral head inclination, HV = humeral head version,
LE = lateral epicondyle, LT = lesser tuberosity, ME = medial epicondyle. Figure (c)
shows the hand-selected points defining the articular marginal plane in blue as well
as the calculated ground truth center and normal in green. (Color figure online)

procedures require replacing the humeral joint surface with TSA addressing the
glenoid surface as well. This paper focuses on determining the location and ori-
entation of the humeral head.

Preservation of articular anatomy with the purpose of maintaining physio-
logic soft tissue tension is the motivation behind humeral implant design. Tradi-
tional long-stemmed monobloc humeral implants have, for the most part, been
replaced by modular versions and more recently short-stemmed, stemless, or
resurfacing implants have gained popularity [2]. These modern implants allow
adjustments that can fit the implant to match the anatomy encountered intra-
operatively. They typically rely on resection of the humeral head along the
anatomic neck, which is approximated geometrically by the articular marginal
plane (AMP). In many cases this resection is done freehand intraoperatively;
however, recognition of the importance of accurately reconstructing the humeral
head anatomically is becoming more relevant, particular with short-stemmed,
stemless, and resurfacing implants [2–4].

Table 1. Normal dimensions of the humeral head.

Parameter Mean Normal range

Radius of curvature 22 to 25 mm 17 to 32 mm

Articular surface arc 150◦ Not provided

Thickness 15 to 20 mm 12 to 24 mm

Inclination 40 to 45◦ 30 to 55◦

Version −18 to − 25◦ 5 to − 60◦
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A high variability exists in the anatomy of the proximal humerus, typical
accepted mean values summarized by Keener et al. [2] are shown in Fig. 1 and
Table 1. Our focus will be defining where the center of the AMP is and its
orientation in space. Further work would be required to define the humeral axis
and epicondylar axis, from which the inclination and version could be defined.
This provides motivation for today’s modular systems which can be adapted to
a wide range of anatomical variations.

With modular systems, often a detailed preoperative analysis of the anatomic
dimensions is not performed except in cases of extreme deformity or small size
where special order or patient-specific components may be required. Simple tem-
plating using X-rays and scaled two-dimensional (2D) drawings of implants to
visually confirm restoration of anatomy is often all that is performed preoper-
atively [3]. The surgeon can adjust the exact orientation and size components
intraoperatively and determine appropriate fit by soft tissue assessment. The
importance of the exact level of accuracy of the humeral component parameters
is not well defined; however, it is suggested that restoration of the physiologic
anatomy and forces would provide most success in restoring the kinematics of the
shoulder and reducing shear stresses on the glenoid component [2,5]. Accurate
measurement of the AMP will likely become more important in cases such as
resurfacing and stemless implants where the implant positioning is based directly
off of the AMP.

Most implant companies provide surgeons with planning software that allows
overlay of implant models on three-dimensional (3D) computed tomography
(CT) data. Manual positioning of the virtual components can allow the surgeon
to determine the appropriate size and position of components preoperatively,
as well as to determine reaming and cutting trajectories. The information from
these systems can currently also be used to produce patient specific guides that
improve reproducibility of glenoid instrumentation guide pins [3].

Previous work has defined the AMP by manually selecting points on the
anatomic neck on CT data and producing a best-fit plane to this [6,7]. This
is time consuming and its accuracy is prone to inter-observer variations [8].
Recently, Tschannen et al. [9] sought to automate the process using a random
forest-based method. They compared their method to a manually-assisted atlas-
based method and were able to improve accuracy.

Automated regression of landmarks using deep learning methods has seen
recent success in several applications [10–12]. Automatic and computer-assisted
techniques for determination of the glenoid parameters have been investigated
and shown success in providing accurate information for preoperative plan-
ning [13–15]. The humeral head remains relatively neglected, with Tschannen
et al. [9] being the only study identified regarding automatic parameter recovery.
An attempt to create a system to improve the accuracy of automatic determina-
tion of the AMP utilizing fully convolutional neural networks will be explored.
Our method will rely on a CT scan cropped roughly such that it must include
the humeral head and from this predict the location and orientation of the AMP
automatically.
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2 Materials and Methods

2.1 Method Overview

The aim of the project is to develop a deep learning-based method to automat-
ically determine the AMP given an upper arm CT scan without segmentation
or hand-crafted features. To fully define the AMP we require a point in the
plane and a vector normal to it giving the orientation. We propose a 3-stage,
multiscale, cascaded system to achieve this. Each stage samples patches from
the image and predicts an offset from the patch location to the desired land-
mark. The results are combined to form a prediction for the landmark at each
stage. The first stage processes patches from the CT volume at a low resolution
and combines them to predict a rough estimate for the center of the AMP. The
second stage refines the center estimate by running at a higher resolution and
focusing training at a region of interest (ROI) centered at the stage 1 prediction.
Finally, the third stage runs at the higher resolution to predict the tip of the
normal vector thus giving all the information required to define the AMP.

2.2 Data Description

We used 27 cropped CT scans of right shoulders from the previous work of
Tschannen et al. [9]. The data were collected from the Institutes for Forensic
Medicine of the Universities of Bern and Zurich, Switzerland. The CT scanners
used were a Siemens Emotion 6 R© and a Siemens Somaton Definition Flash R©.
The cropped images typically had a field of view 228.6× 228.6× 450 mm (cover-
ing the area used clinically for assessing the upper arm) and a typical resolution
of 1.27× 1.27× 0.6 mm though there were some scans that varied slightly from
these parameters. All images were resampled into a isometric low and high res-
olution voxel size of 1.25× 1.25× 1.25 mm and 0.6× 0.6× 0.6 mm respectively.

The AMP was defined by 12 manually picked points1 along the margin where
articular cartilage transitions to bone. From these points our regression targets,
the AMP center and the tip of the normal vector, were derived. The original 12
points were shifted to have a mean at the origin. Using singular value decompo-
sition we obtained the orientation of this plane, yielding the normal. Performing
least-squares fitting to a circle of the points projected into this plane defines the
AMP center. The center and normal vector were then shifted back to the origi-
nal location using the original mean.To define a single point for the patch-based
regression, the tip of the normal vector was defined as the point where a normal
emanating from the center of the AMP intersected the surface of the humeral
head. The ground truth points overlaid on a 3D view of the proximal humerus
are shown in Fig. 1(c).

2.3 Network Architecture

Inspired by the landmark regression FCN introduced in our previous work [10],
here we designed patch-based FCNs to solve our problem. More specifically,
1 Performed by an expert in the Tschannen et al. [9] group.
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we opted to utilize a multiscale approach with the regression split into three
stages, each stage processes multiple patches in prediction mode and uses a
modified kernel density estimation (KDE) to combine the information into a
single prediction. The architecture defining our system is shown in Fig. 2.

Fig. 2. The network used is shown with the output being the offset from the patch
corner to the center of the articular marginal plane. Layer dimensions given in the form:
channels @ patch shape. Stages 2 and 3 use the same layout but add an additional
repeat of the convolution/convolution/maxpool structure to match the dimensions.

Stage 1. This low resolution stage utilizes an input patch size of 32× 32× 32
voxels at a voxel size of 1.25× 1.25× 1.25 mm. It generates a rough estimate of
the AMP center location, which allows for a refinement at stage 2. It begins with
a scheme repeated three times consisting of two 3D convolutions (each with a
kernel of 3× 3× 3, a stride of 1, batch normalization, and a rectified linear unit,
ReLU, activation) followed by max pooling (with size 2× 2× 2 and a stride of
2). Next a convolution with kernel 4× 4× 4, stride 1, batch normalization, and
an hyperbolic tangent (tanh) as activation2 reduces the patch dimensions to
1× 1× 1. Another convolution with kernel 1× 1× 1, stride 1, batch normaliza-
tion, and a tanh activation reduces the patch dimensions to 1× 1× 1. Finally, a
convolution with kernel 1× 1× 1, stride 1, no batch normalization, and no activa-
tion3 reduces the patch dimensions to 3 values representing the three coordinates
of the displacement from the patch location to the target landmark.
2 When tested during development tanh produced a better loss than ReLU when used

in these stages. Possibly due to the fact that tanh does not force the output to
positive numbers.

3 Foregoing the activation function allows this stage to produce the full range of floats
as possible outputs.
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Stages 2 and 3. These higher resolution stages utilize the same network struc-
ture as stage 1 with the exception that they take as input a patch size of
64× 64× 64 voxels at a voxel size of 0.6× 0.6× 0.6 mm in order to produce a
regression with higher accuracy. To divide the larger patch size to the same out-
put there are 4 repetitions of the input stages instead of 3. Stage 3 utilizes the
same network definition as stage 2; however, it is trained to regress the tip of
the normal vector instead of the center of the AMP.

2.4 Training

Previous work has suggested that limiting patch selection to points on edges has
the potential to improve training time and accuracy [10,16]. We adopted this
by generating Canny edge maps for each image, sampling patches only from the
voxels located on edges. Additionally, the region nearer to the humeral head is
likely to have more relevant information on its pose [9], so we designed a new
sampling strategy to sample more points in regions nearer to the humeral head
as described below.

During training all patches were obtained from a spherical region of radius
rmax separated into shells of equal width, rshell, centered at the ground truth
center of the AMP as illustrated in Fig. 3. Each batch consisted of a number
of samples, ns, from a single image divided equally among the shells so that
more patches were sampled from regions nearer to the center. The parameters
for sampling for each stage are listed in Table 2.

Table 2. Sampling parameters (ROI: region of interest).

Stage Batch size ns ROI radius
rmax (voxels)

Shell width
rshell (voxels)

1 128 64 16

2 32 64 16

3 32 32 16

During each epoch, each image was visited once in a newly randomized order
and a different random sampling of patches was obtained. The mean-squared
error loss function was used representing the Euclidean distance between pre-
dicted displacement and the ground truth displacement. The Adam optimizer
algorithm with an exponential decay of the learning rate was employed [17].
Each stage is trained independently.

2.5 Testing

Testing proceeds in a cascaded fashion as shown in Fig. 4. Given an unseeen CT
volume, stage 1 samples patches uniformly over the entire volume and generates
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(a) Stage 1 training. (b) Stage 2 training. (c) Stage 3 training.

(d) Stage 1 testing. (e) Stage 2 testing. (f) Stage 3 testing.

Fig. 3. During training an equal number of patches are sampled from each spherical
shell centered at the ground truth center with a smaller region of interest in each
subsequent stage. During testing stage 1 samples randomly from the entire volume and
generates a rough center prediction, c1. Stage 2 prediction uses shells centered at c1 to
predict c2 which is used in turn as the center for the sampling shells in stage 3.

a prediction at the lower resolution for the center of the AMP. This prediction
is used as a center for the spherical sampling ROI in stage 2, concentrating the
higher resolution patches at the region around the humeral head. From stage 2
we obtain a more accurate estimate of the AMP center which we also use as the
ROI center for stage 3 sampling. Stage 3 finally produces a prediction for the
normal vector tip. Sampling is illustrated in Fig. 3 and the parameters used are
in Table 2.
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Fig. 4. Pipeline of predictions using the 3-stage network.

At each stage 1024 patches are sampled and processed to generate a single
prediction. The network returns a 3D offset vector to the predicted landmark
location for each processed patch. Each patch in the sample set has a known
location and thus generates an independent prediction for the location of the
landmark. To improve the accuracy, the independent predictions are combined
using an approximate KDE to generate a 3D probability map as described below.

Fast KDE Implementation. Typical KDE implementations are computation-
ally intensive, a novel algorithm was implemented to generate a probability map
by only calculating the kernel to 2 standard deviations along each direction.
The standard deviation for each direction was approximated from the covari-
ance in the distribution of landmark locations from the prediction sample set.
This clipped Gaussian kernel was added to a 3D array of zeros the same size
as the image centered at each prediction location generating a non-normalized
approximate probability distribution. The location of the maximum value in this
array was taken as the prediction of the landmark. The typical appearance of a
prediction at each stage is shown in Fig. 5.

2.6 Implementation Details

The network described was trained and tested using Tensorflow 1.5 [18] in
Python 3.6.5 on a Tesla 1080 Ti GPU using an Ubuntu Linux 16.04 workstation
with an Intel Core i7-7700 CPU at 3.60 GHz and 32 GB RAM.

2.7 Experimental Design

We evaluated the accuracy of the present approach using a standard 4-fold cross-
validation experiment. To this end, the set of 27 images provided was split into 3
groups of 7 images and 1 group of 6. For every fold of study, 3 out of 4 groups of
data were used for training and the left-out group were used for testing. Stage 1
and 2 were trained 500 epochs and stage 3 was trained 100 epochs. The accuracy
was evaluated by comparing the prediction for each of the images as described
in Sect. 2.5 to the corresponding ground truth.
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(a) Stage 1 (b) Stage 2 (c) Stage 3

Fig. 5. Example of predictions shown in the xz-plane through the ground truth loca-
tion. The first row shows a typical kernel density estimation heatmap, the second shows
the ground truth position (×) and the predicted location (+).

The error in the center of the AMP and vector tip predictions are defined as
an L2 distance from the prediction to the associate ground truth. The angular
error is determined by solving the cosine relationship for the angle between the
predicted normal and the ground truth θ:

θ = arccos
(

u · v
|u| · |v|

)
. (1)

3 Results

The mean error for estimating the center of the AMP is 1.30± 0.65 mm. The
mean angular error was 4.68± 2.84◦. A scatter plot showing the distribution
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for each prediction grouped by fold is shown in Fig. 6. Figures 6 and 7 demon-
strate the distribution of our error measurements for the center of the AMP,
the vector tip, and the angular error, respectively. In order to compare the
estimation uncertainty of different quantities, we calculated the coefficient of
variations (CV ) for each quantity. We found CVcenter = 50%, CVvector = 42.1%,
and CVangular = 60.7%, respectively, suggesting higher uncertainty in our angu-
lar error results. The uncertainty in estimating the normal vector is increased
by the fact that we are compounding the error of the location of both the AMP
center and the normal tip (calculated by 2 separate networks) when we compute
the normal vector (Table 3).

1 2 3 4
Fold

0

1

2

3

4

5

D
is
ta
nc
e
[m

m
]

AMP Center Error

1 2 3 4
Fold

0

1

2

3

4

5

D
is
ta
nc
e
[m

m
]

Normal Tip Error

1 2 3 4
Fold

0

2

4

6

8

10

12

14

D
eg
re
es

Angular Error

Fig. 6. Error shown for each prediction in the dataset, grouped by validation fold.
Mean displayed as a blue line, mean of random forest-based method shown as a green
dashed line for comparison. (Color figure online)

Table 3. Mean error of each validation fold.

Fold Center error (mm) Vector tip error (mm) Angular error (◦)

1 1.66± 0.54 1.84± 0.74 3.01± 1.79

2 1.12± 0.77 1.76± 0.67 4.21± 1.84

3 1.28± 0.65 1.99± 0.42 6.45± 1.79

4 1.12± 0.41 1.58± 1.04 5.1± 4.08

All 1.30± 0.65 1.78± 0.75 4.68± 2.84

[9] 2.4± 1.2 Not applicable 6.51± 3.43

4 Discussion

Accurate location and orientation of the AMP are key to planning the resection
of the humeral head in both TSA and hemiarthroplasty. The level of accuracy
needed in final humeral head orientation for a successful outcome is not fully
defined; however, it is certainly an important factor in preserving the anatom-
ical orientation of the proximal humerus which is key to successful kinematics
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Fig. 7. Distribution of error in predictions.

and glenoid loading [2,5]. Modern modular humeral implants as well as short-
stemmed, stemless, and resurfacing techniques are focus attention on anatomi-
cal replacement of the humeral head [2]. To date, more work has been directed
toward computer-assisted planning methods for the glenoid component. The
only automated method for determining the parameters of AMP identified was
Tschannen et al. [9].

Our results of a mean error for the center of the AMP of 1.30± 0.65 mm
and a mean angular error of 4.68± 2.84◦ are an improvement on the prior work.
Additionally, our choice to restrict the ROI to an area around the humeral head
in training seems to have supported Tschannen et al. [9] in assuming this is the
area containing the most relevant information for determining the parameters of
the AMP.

The data from this technique also yields the height of the humeral head
directly as the length of the normal vector, though this was not assessed for
accuracy at this time. Additional information, such as the radius of the AMP,
could be regressed with the given ground truth information simply by regressing
an additional point in a similar fashion to stage 3. With this information one
could fully define the parameters of humeral head. An additional system could
be developed to define the orientation of the humeral shaft, combined with our
approach this could fully define the humeral implant parameters as per Fig. 1.
Our work could be integrated into computer-assisted surgery systems to pro-
vide a cutting plan for resection of the AMP. Deep learning methods offer an
extendible, highly accurate method of regressing parameters from medical imag-
ing data that does not rely on hand-selected features. They may be more readily
extended to new applications than traditional machine learning techniques.
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