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1	 �Naturally Infected Animals

Naturally infected animals presenting with typical BU lesions have so far only been 
described in Australia and there only in one major endemic focus, the central coastal 
Victoria close to Melbourne. Between 1980 and 1985, 11 M. ulcerans positive koa-
las (Phascolarctos cinereus) in a population of approximately 200 koalas on 
Raymond Island were described as having ulcers on the face, forearm, rump, groin 
or foot pad [1, 2]. More recently, examination of common ringtail (Pseudocheirus 
peregrinus) and common brushtail (Trichosurus vulpecula) possums from Point 
Lonesdale, a small BU endemic region with a recent human outbreak, revealed that 
38% of the analyzed ringtail possums and 24% of the brushtail possums had 
laboratory-confirmed M. ulcerans skin lesions and/or their feces tested positive for 
M. ulcerans DNA by PCR. Lesions were found on tails, toes, feet and noses with the 
majority occurring on the tail [3]. Another study by O’Brien et al. showed that M. 
ulcerans bacteria were present in possum lesions and from 90% of the animals with 
lesions, positive cultures could be obtained [4]. The high number of possums with 
skin lesions suggests that possums may represent an animal reservoir for M. ulcer-
ans in south-eastern Australia [3–5].

Sporadically, M. ulcerans positive lesions were also diagnosed in domesticated 
animals like dogs [6], a cat [7], horses [8] and alpacas [9]. In the dogs, lesions were 
found on the feet, legs and the rump and diagnosis was done by IS2404 real-time 
PCR (qPCR). Molecular typing in three animals confirmed that the infection was 
caused by disease-causing human strains [6]. The cat presented with a lesion on the 
nose and acid fast bacilli (AFB) staining as well as molecular methods confirmed 
the infection with M. ulcerans [7].

Despite considerable effort, several studies conducted in Africa were not able to 
corroborate the findings from Australia [10–12].
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2	 �The Mouse (Mus musculus) Model

2.1	 �History of the BU Mouse Model

Already with the first documentation of BU and its causative agent M. ulcerans, the 
description of potential animal models was published. Besides the report of the 
clinical picture and the cultivation of the new mycobacterial species, MacCallum 
et al. dedicated two separate chapters of their publication in 1957 to “Experimental 
investigations in laboratory animals” and the description of the “pathology of the 
experimental lesions in the rat” [13]. In their attempt to grow the unknown myco-
bacteria, the researchers conducted a series of experiments in guinea pigs, rats and 
mice, mostly injecting ground-up tissue of a patient lesion or exudate from a 
patient’s ulcer. As a next step they serially passaged a saline extract of lung tissue 
from infected animals that had died. None of the rats showed any signs of disease. 
Curiously, the rat of the fourth passage was forgotten and 16 months after intra-
peritoneal (i.p.) injection developed edematous and ulcerated limbs and the tail 
sloughed off. Microscopic examination of ulcers revealed high numbers of AFB, 
thus the rat became the first animal to sustain M. ulcerans and characterize the bac-
teria while optimal in vitro growth conditions still had to be found [13]. Beside the 
rats, the scientists also reported the infection of 16 white mice, 12 guinea-pigs, two 
rabbits, one fowl and three lizards and made observations that would be re-confirmed 
in many more animal studies to follow: mice seemed more susceptible to infection 
than rats and guinea-pigs.

The actual development of the most commonly used animal model in BU 
research today, the mouse (Mus musculus), traces back to Fenner [14], who used it 
primarily for the evaluation of available antimicrobial compounds against the newly 
discovered M. ulcerans bacteria [14, 15]. In those early days of BU research, the 
mouse model was used to study all the major aspects of the disease that would later 
regain interest: chemotherapy testing [16], characterization of the immune response 
against M. ulcerans [17] and pathogenesis [18].

During the next 20 years, animal models in BU research were only occasion-
ally used, but importantly, the knowledge gained from previous studies served 
as a basis for the development of the mouse model for Mycobacterium leprae 
infection, the cause of leprosy [19]. A first grading system for assessing dis-
ease severity in the mouse model was described in 1972 in the context of drug 
testing [20] and further refinement of the mouse model to how it is mainly used 
today (foot pad injection) was then described in 1975 [21], a publication that 
reconfirmed the relative resistance of guinea pigs to M. ulcerans infection once 
more.

For another 20–30 years BU animal models were nearly forgotten again, before 
an increasing number of publications reflected the regained interest in the topic. The 
animal model that emerged as most commonly used was the mouse. Its applications 
can be roughly split into four different topics as further elaborated in this chapter: 
testing of antimicrobial compounds, vaccine development, study of the pathogene-
sis of BU and studies on the toxin mycolactone.
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2.2	 �Experimental Infection of the Mouse

2.2.1	 �Infection Sites
Very early in BU research and the use of the mouse model it was recognized that M. 
ulcerans needs a relatively cold location to grow in the mouse body [16, 18]. Even 
when animals were inoculated intracerebrally, the most vulnerable site of infection 
remained to be the tail [18]. Conveniently, low temperatures in mice are found in 
places that are not extensively covered with fur: the tail, the hind foot pads and the 
ears. Each of the three sites have their practical advantages and disadvantages; for 
example, the ears are very thin structures, which makes injection of bacteria chal-
lenging but on the other hand processing for histopathology is easy as there are no 
bones that have to be softened by decalcification, like it is the case in mouse foot 
pads. However, mouse ears do not contain a lot of fat tissue; hence they are very 
rarely used as site of infection, as M. ulcerans is mostly located close to fat cell 
areas in the human skin [22, 23]. It appears that nowadays, the few laboratories that 
use mice as animal models for BU have a preference for either infecting the tail 
[24–26] or the foot pads [27–33]. A recent study by Bénard et al. compared a new 
infection site, the hock, to the foot pad and the ear, concluding that in their hands the 
foot pad is the site of choice in the mouse for a well-defined, consistent and repro-
ducible infection [34].

2.2.2	 �Mouse Strains
The mouse strains used for infection with M. ulcerans in different laboratories are 
not overly diverse. While earlier studies had used outbred Swiss mice [28], the vast 
majority of newer studies used immunocompetent inbred strains that are very fre-
quently used in research in general: BALB/c [24, 28, 30, 35–37] and C57BL/6 mice 
[22, 32, 38] provided by different suppliers. Furthermore, a lot of studies did not use 
mixed sex mice but were only conducted in female animals. Again, depending on 
the laboratory, there seems to be a certain preference, rendering female BALB/c the 
most used mice for the BU mouse foot pad model by far. The first publication 
directly comparing the two most commonly used inbred strains, with each other and 
to infection in FVB/N mice was published in 2016 [25]. While infection led to 
ulceration of the tails and subsequent death of the animals in BALB/c and C57BL/6 
mice, FVB/N mice were able to spontaneously heal the developed ulcers and did not 
succumb to the infection, regardless of the different M. ulcerans strains used in the 
study [25]. The only other study published on the specific topic of mouse strain 
comparability reported that C57BL/6 might be slightly more susceptible to the 
infection, displaying increased leukocyte infiltration and bacterial growth compared 
to BALB/c mice [34].

Immunocompromised or transgenic mice were occasionally used to study the 
role of host factors in M. ulcerans infection. TNF receptor P55-deficient mice were 
shown to be equally susceptible to infection with highly virulent M. ulcerans strains 
as wild-type C57BL/6 mice, but showed increased susceptibility to non- and inter-
mediately virulent strains [39]. Bieri et al. documented the infection in interferon-γ 
(IFNγ)-deficient mice (B6.129S7-Ifngtm1Ts/J), identifying the cytokine as critical 
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regulator of early host defense mechanisms against M. ulcerans infection. Compared 
to wildtype mice, IFNγ-deficient mice displayed a faster progression of the infec-
tion with increased tissue necrosis, increased edema formation and a higher bacte-
rial burden [40]. These results were somewhat comparable with an earlier study that 
reported an increased susceptibility of IFNγ-deficient mice to an avirulent 
(mycolactone-negative) and an intermediately virulent M. ulcerans strain [41]. 
Studies in Rag2−/− mice and nude mice done in the same laboratory in Portugal 
showed a year later that lymphocytes are protective against infection with low-
virulence strains but not against infection with highly virulent M. ulcerans [42].

Three more specialized transgenic mouse lines were used to study very specific 
questions in the mouse model for BU: Type 2 angiotensin II receptor knock-out 
mice (AT2R, [43]) were used for studying nerve damage caused by mycolactone but 
the infection in those mice was not further characterized [44]. Similarly, Fas- and 
Bim-knock out (KO) mice were used to establish the mode of action of the toxin 
mycolactone in vivo [45]. Mice lacking the proapoptotic Bcl-2 family member Bim 
did not develop necrotic BU lesions, but were able to control the mycobacterial 
multiplication. Recently a study used ICR mice, an outbred strain, for infection with 
M. ulcerans in order to study questions of BU transmission [46].

2.2.3	 �Mycobacterial Strains Used for Experimental Infection
Compared to the mouse strains used in the foot pad model of BU, the M. ulcerans 
strains used to infect the mice are much more diverse. Again, preferences appear to 
be present in different laboratories, probably mostly dependent on which strains 
were available to the laboratory at some point in time and which strains could be 
maintained without loss of virulence. As repeated passage by in  vitro culture 
prompts some of the M. ulcerans strains to lose their virulence plasmid [47, 48], 
some laboratories opted to passage their strains trough mouse foot pads in order to 
preserve their virulence [49–51]. Alternatively, low passage primary isolates have 
been used for productive infection of mice [52].

The most comprehensive study on how the use of M. ulcerans strains from dif-
ferent geographical origin and with different cultivation history influences virulence 
and immune responses induced in experimentally infected mice was published in 
2009 by Ortiz et al. Eleven different M. ulcerans strains isolated from different parts 
of the world over a time span of 47 years were used to infect 6–8 weeks old male 
BALB/c mice in the foot pad. Subsequently, their ability to cause a productive 
infection was reported as well as a detailed characterization of the inflammation 
induced by the different strains [53]. The bacterial strains used in these experiments 
partially overlap with the set of strains which was regularly used in the laboratory 
of Jorge Pedrosa, the only other research group that systematically characterized 
murine infection caused by different strains of M. ulcerans [30, 39, 41, 42, 48, 54]. 
The vast majority of BU mouse model studies were conducted with a single M. 
ulcerans strain. A few of those M. ulcerans isolates warrant mentioning as they are 
especially popular: Cu001 was originally isolated from a BU patient in Adzopé, 
Ivory Coast, in 1996 and has been successively passaged in foot pads of BALB/c 
mice ever since [28, 35]. It is probably the strain most often used for in  vivo 
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antibiotic treatment efficacy testing. Mu1615 is among the oldest isolates frequently 
used in mouse infection studies. It was originally obtained from a Malaysian BU 
patient in the 1960s and produces mycolactone A/B like the African isolates [55, 
56]. A spontaneous mycolactone negative mutant derived from this strain [47] has 
been used as avirulent M. ulcerans strain in the mouse model. S1013 was originally 
isolated in 2010 from a swab taken from the undermined edges of the ulcerative 
lesion of a Cameroonian BU patient [57]. Its passage number has been kept to an 
absolute minimum in order to preserve its virulence for studies in the mouse footpad 
model and the pig model of BU [40, 45, 52, 58–60].

2.2.4	 �Dose and Preparation of the Bacterial Inocula
Similarly to all the other experimental details of the BU mouse model described 
above, preparation of the inoculum, as well as how the number of bacteria in the 
inoculum is quantified varies from laboratory to laboratory. The waxy extracellular 
matrix of M. ulcerans together with the extreme slow growth of the bacteria are the 
two major factors that make preparation and dosing of an inoculum of M. ulcerans 
rather difficult. One strategy that some laboratories employ for dispersing clumps in 
their culture is to vortex the bacteria with glass beads prior to quantification of the 
inoculum [30, 32]. Sonication of the culture is another possible way of reducing 
clumps. However, both methods pose the risk of substantially altering the surface 
structure of the bacilli and with it potentially their interaction with the host after 
inoculation.

For estimating the number of bacteria in the inoculum, colony forming unit 
(CFU) counting or counting of AFB by microscopy are the most commonly used 
methods. The AFB counting method according to Shepard and McRae [61] offers 
the advantage that the actual dose is quantified at the time of injection, while 
2–3 months waiting time for colonies to grow is necessary after plating. On the 
other hand, CFU plating reveals the number of live M. ulcerans (or microclumps), 
which cannot be determined by microscopic enumeration. Hydrophobicity and the 
strong tendency of M. ulcerans to clump affect both methods, as well as dosing 
with the help of optical density (OD) or the so called McFarland standard [62]. 
Because an immediate estimate of how many bacteria are in a solution proved to be 
so difficult, some laboratories opted to produce cell banks of ready to go bacterial 
inocula that were frozen down for later use [63]. While this strategy allows to stan-
dardize inoculation, the freezing may affect to some extent relevant properties of 
the bacteria. In our hands, dosing the infection based on the wet weight of the 
bacterial pellet resulted in the most reproducible infection of mouse foot pads [34, 
40, 52, 58]. A wide range of inoculum sizes has been used. In some studies as few 
as a hundred or a thousand CFU [45, 50, 58] were injected, while others used up to 
105 or 106 CFU [54, 64].

2.2.5	 �Infection Outcomes and What to Measure
With an estimated generation time of 3–4 days in the mouse foot pad [14], animal 
experiments with M. ulcerans often last for a long time. Depending on the infection 
dose and the virulence of the strain injected, development of a visible pathology only 
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starts a few weeks after infection [14, 53], with a typical lag time of 3–4 weeks. 
When foot pads are inoculated, the first visible signs are usually edema on the top of 
the foot pad, followed by reddening of the foot and ankle and swelling to the point 
where foot pads appear to be “leaky”, so that cage bedding material starts to stick to 
the foot pad (Fig. 1). Infected mouse ears do not tolerate high bacterial inocula and 
infection often results in rapid loss of tissue [34]. Similarly, mouse tails do not com-
prise a lot of fat, hence the ulceration described in publications where mice were 
infected in the tail might have limited comparability to human BU lesions [24].

Several approaches to monitor progression of the infection exist. Measuring foot 
pad thickness with a caliper allows for repeated measurements while assessment of 
bacterial proliferation by CFU plating, AFB counting, or qRT-PCR require the 
euthanasia of the animal. For CFU determination the infected tissue is usually 
ground up, sometimes de-contaminated to avoid overgrowth with faster growing 
microorganisms and further processed [22, 52]. Very recently an optimized proce-
dure for extraction and quantification of bacterial RNA from infected mouse tissue 
was published, which provides a surrogate marker for viability of the bacteria [66, 
67]. Parallel to measuring foot pad thickness, a grading system can be applied to 
estimate the severity of the disease (Fig. 1). The grading system as it is used in many 
laboratories today was originally described in 1972 and has not substantially 
changed since then [20]. Both, grading system as well as foot pad thickness mea-
surements have mostly replaced the practice of measuring time to death of the ani-
mals. Instead, animals are monitored on a regular basis and animals are euthanized 
in compliance with laws for protection of experimental animals. If enumeration of 
AFB or quantification of bacterial DNA is not the primary objective of the analysis, 
all infected tissues can be processed for histopathology instead, and a description of 
inflammatory cellular infiltrates, tissue damage, etc. can be done.

For in  vivo monitoring of the infection, Zhang et  al. engineered recombinant 
bioluminescent M. ulcerans strains expressing luxAB from Vibrio harveyi [68]. The 
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Fig. 1  Pathogenesis after subcutanous M. ulcerans injection in the mouse foot pad. Subcutaneous 
(s.c.) injection of acid fast bacilli into the healthy mouse foot pad (0) leads to progressive swelling 
and inflammation. (1) Grade 1, slight swelling; (2 and 2+) Grade 2, swelling with inflammation; (3 
and 3+) Grade 3, swelling with inflammation of the leg; (4) Grade 4, swelling with inflammation 
and possible ulceration, cage bedding sticking to the sole of the foot [65]
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relative light unit count measured for these strains in real-time correlated with the 
CFU counts [68]. The measured bioluminescence represents a suitable real-time 
surrogate marker for viable bacteria in mouse foot pads [33]. While these first con-
structs required exogenous substrate, limiting their utility in vivo, Zhang et al. went 
on engineering alternative bacterial strains that are autoluminescent and showed 
that they could reduce time, effort, animal numbers and costs of BU animal model 
experiments [69].

Another rather new approach proposed for monitoring antibiotic treatment suc-
cess is the detection of mycolactone by thin layer chromatography (TLC) or fluores-
cent TLC [70].

2.3	 �Research Applications for the Mouse Model

2.3.1	 �Antimicrobial Compound Testing
Antimicrobial compound testing is the application for which the BU mouse model 
was most frequently used since the discovery of the disease. Early on, researchers 
were interested in which antimicrobials would work against the newly described 
bacterium, which was the major incentive to have an animal model in the first place 
[15, 71, 72]. When the mouse model saw a revival in the early 2000s, testing new 
drugs in vivo was still its main use.

Systematic testing of different antimicrobial treatments in the mouse foot pad 
model with Rifampin, Rifabutin, Amikacin (AMK), Clarithromycin (CLR) and 
Streptomycin (STR) being the most intensively evaluated actives, showed that a 
combination therapy with Rifampicin (RIF) and AMK or STR might be effective for 
the treatment of human BU [28, 35] and led to the conduction of a human treatment 
trial using RIF and STR [73]. Mice were usually treated right away from the day of 
infection and only when a potential effective combination of drugs was found, later 
treatment starts were evaluated [29, 74]. When doses were administered in different 
time intervals, it became very clear, that the effect on M. ulcerans was significantly 
stronger when mice were treated daily [75]. Therapy durations varied between stud-
ies, but were mostly between 4 and 8 weeks [28, 29, 35, 36, 74, 76, 77]. Finally, 
Lefrançois et al. showed in 2007 that combination treatment with RIF and an ami-
noglycoside (STR or AMK) was able to prevent BU in mice with 8 weeks being the 
optimal duration of treatment [78]. Since the provisional guidelines of the World 
Health Organization (WHO) in 2004, BU patients were treated with a combination 
of RIF and STR [79]. This proved to be an effective treatment for the disease; how-
ever, the fact that STR had to be injected daily was less than optimal. Hence, 
researchers started to look for a cure that could be administered as a fully oral regi-
men and tested them in the mouse model [80–82]. As shown by Ji et al. in 2007 the 
combination of RIF and CLR has the highest potential of replacing the current stan-
dard treatment [82]. The WHO Technical Advisory Group on BU decided in 2017 
that the WHO recommendation for treatment of the disease should be changed to 
RIF and CLR, pending the availability of full results of a treatment trial with this 
drug combination.
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On a few occasions, treatment alternatives to drug administration were also 
tested in the BU mouse model: The effect of corticosteroid-induced immunosup-
pression on therapy with antibiotics was examined [83], phage therapy was shown 
to be effective in mice [54] and even the efficacy of hydrated clays on M. ulcerans 
growth was assessed in vivo on mouse tails [84]. However, as ideal the mouse model 
might be for drug testing and every therapy that can be applied by injection or 
orally, for the evaluation of topically applied therapies, including thermotherapy, 
the mouse model is highly impractical.

2.3.2	 �Vaccine Development
Including a vaccination phase prior to infection of mice with M. ulcerans further 
prolongs the overall time of the animal experiments, resulting in experiments that 
often last for several months. For example a single experiment including two immu-
nizations with an adjuvanted formulation of recombinant protein followed by infec-
tion with a low dose of bacteria results in almost five months of experiment time, 
not counting the time needed for specimen processing and follow up analyses [58]. 
An important factor determining the time span is the time researchers allow between 
the last immunization and the infection with M. ulcerans. Three weeks is generally 
agreed on as the minimum waiting time, although some research laboratories have 
published longer intervals, lasting up to 16 weeks [32, 85]. Mostly, protective effi-
cacy of the tested vaccines is assessed by comparing the speed and severity of the 
infection between mice receiving the candidate vaccine and a placebo group, very 
similarly to testing of antimicrobial compounds, where non- or mock-treated ani-
mals are used as negative controls.

After a first attempt of protecting rats and mice with Mycobacterium fortuitum 
against experimental M. ulcerans infections in 1985 [86], vaccination against BU 
was not experimentally addressed for another 15 years. Evidence in the literature of 
a partial protective effect of Bacillus Calmette-Guérin (BCG) vaccination in humans 
against BU prompted the research group of Kris Huygen to experimentally address 
this question in the mouse model and to become the major driver of the search for a 
BU vaccine in the following years [87, 88]. Tanghe et al. showed that intravenous 
vaccination with BCG (106 CFU) or intra-muscular vaccination with plasmid DNA 
encoding the BCG version of antigen 85A (Ag85A) both reduced the bacterial bur-
den in foot pads of infected mice [32]. Although BCG vaccination has been repeat-
edly shown to reduce CFU numbers in experimentally infected mice and/or slow 
down pathogenesis [24, 48, 51], the protection conferred by BCG was always only 
partial, of only relatively short duration and could not be prolonged by a booster 
vaccination [85]. Furthermore, a comparison between BALB/c mice and C57BL/6 
mice revealed that the efficacy of BCG vaccination against M. ulcerans may vary 
with both choice of host and pathogen strain [27]. A single sub-cutaneous vaccina-
tion with a mycolactone-negative M. ulcerans strain two months prior to foot pad 
infection with a virulent isolate was found to lead to a similar delay in foot pad 
swelling as a single BCG immunization [48], countering arguments that a homolo-
gous immunization would be more efficient than a heterologous with the M. bovis 
derived BCG.  Nevertheless, Hart et  al. further pursued this approach with some 
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success, as they were able to show that a prime vaccination with recombinant BCG 
expressing M. ulcerans Ag85A followed by a similar recombinant Mycobacterium 
smegmatis boost conferred superior protection against in vivo challenge than BCG 
alone [89]. While in this study immunizations were done intra-venously, the follow 
up study showed that a single sub-cutaneous injection with a BCG strain overex-
pressing two M. ulcerans antigens significantly prolonged survival times of mice 
compared to vaccination with the previously tested vaccination strains and applica-
tion routes [63]. Even though the observed differences in bacterial burden at some 
point during the experiment were correlated with longer survival of the mice, none 
of the vaccination strategies tested so far was able to completely protect against 
experimental infection with M. ulcerans.

Besides DNA-vaccines [24, 32, 51, 90] and immunization with live BCG and/or 
mycolactone negative M. ulcerans, a few other attempts have been made at develop-
ing a vaccine against BU: Mice were exposed to Naucoris aquatic insect bites or 
sensitized to Naucoris salivary gland homogenates [26], immunized with recombi-
nant virus replicon particles [52], adjuvanted recombinant proteins [58] or dewaxed 
whole-cell vaccines [64], all with limited protective efficacy at best.

2.3.3	 �Study of the Pathogenesis of Buruli Ulcer and the Immune 
Response to the Disease

While BU in humans results in different clinical presentations, pathogenesis in 
experimentally infected mice usually follows a defined pattern that is shaped by the 
virulence of the M. ulcerans strain used for infection. Two histopathological hall-
marks of the human disease are the presence of large extracellular clusters of AFB 
and the almost complete absence of inflammatory infiltrates in the center of the 
lesions [91, 92], but not necessarily in the periphery of lesions [93]. While acquir-
ing human tissue specimens from early BU cases is challenging due to practical 
and ethical reasons [93], the mouse model of M. ulcerans infection allowed to 
describe the early events in the pathogenesis of M. ulcerans infection in detail. In 
the mouse, at least some of the inoculated M. ulcerans bacteria are initially cap-
tured by phagocytes at the injection site and transported to the draining lymph 
node. The importance of initial intracellular stages prior to the emergence of extra-
cellular clusters [22] is not entirely clear. Infection with virulent strains in mice 
then leads to the fast influx of neutrophils and to some degree of monocytes/mac-
rophages, thus an early acute inflammatory response is induced [22, 30, 31]. Even 
though cellular responses are initiated in the draining lymph nodes, the progression 
from this initial acute to a more chronic inflammation with a predominance of 
mononuclear cells and/or lymphocytes is obstructed [30] because mycolactone is 
driving the cellular infiltrates into apoptosis. As a consequence AFB become extra-
cellular and proliferate in the developing necrotic and acellular subcutaneous 
lesion. At the boundary between the expanding necrotic areas and the surrounding 
healthy tissue, acute inflammatory infiltrates and intracellular bacteria are found 
[30]. This belt of immune cells remains a site of constant interaction between the 
pathogen and the immune system. As the infection progresses in infected mouse 
foot pads, edema becomes a prominent feature in histopathology, which is 
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macroscopically reflected by the onset of foot pad swelling [30, 31]. Swelling then 
extends to the ankle and the lower part of the leg, at which point mice are usually 
euthanized for ethical reasons [31]. Treatment of infected mice with RIF-STR rap-
idly leads to changes in the histopathological appearance of the infected tissue. The 
predominantly neutrophilic immune response changes to an infiltration dominated 
by lymphocytes and macrophages with prominent B-lymphocyte clusters and mac-
rophage accumulations surrounding the bacteria, which loose solid Ziehl-Neelsen 
staining and viability [31, 94, 95].

Both, immune response and pathogenesis observed in M. ulcerans mouse infec-
tions are strongly influenced by the toxin mycolactone. Mycolactone-negative bac-
teria are faster phagocytosed, no prominent necrosis is developing and the initial 
neutrophilic response becomes readily replaced by a predominantly lymphocytic 
and macrophagic infiltrate [22, 30]. Goto et al. examined whether nerve invasion 
occurred after infection of mouse foot pads with M. ulcerans and concluded, that 
the reported painlessness of BU might partially be attributed to intraneural invasion 
of bacilli [96]. Another study used injection of mycolactone rather than bacilli to 
study the effects of the toxin more directly in vivo [97].

3	 �Other Animal Models

3.1	 �Guinea Pig (Cavia porcellus)

Guinea pigs have been used as model for M. ulcerans infection as early as in 1974, 
when the presence of an exogenous diffusible toxin, nowadays known as mycolac-
tone, was proposed [98, 99]. Culture filtrate intradermally inoculated into guinea pig 
skin caused focal necrosis and inflammation, which closely resembled the skin 
lesions developing after injection of viable organisms as well as human BU skin 
lesions [98, 99]. In later experiments the effect of extracted mycolactone was com-
pared to the effects caused by infection of the skin with wild type and mycolactone-
deficient M. ulcerans bacteria. It became clear that the histopathological effects 
observed were largely attributable to the polyketide toxin mycolactone, the main 
virulence factor of M. ulcerans, which induced apoptosis as demonstrated by TUNEL 
staining [100–102]. Macroscopic changes in the guinea pig after an intradermal 
injection of 106 and 107 M. ulcerans bacteria included the occurrence of a nodule 
after three days and the presence of ulcers after 8–12 days. Histopathological hall-
marks were described as the occurrence of central necrotic areas with extracellular 
AFB, which enlarged during the six weeks observation time and were surrounded by 
inflammatory infiltrates [100]. Recovery and re-growth of bacteria from the skin 
lesions was possible until week six after infection, but viability decreased substan-
tially during the observation period [100]. In a time-lapse study conducted by Silva-
Gomes et al. in which the ear and the back of the guinea pigs were subcutaneously 
inoculated, the early nodule-like structures progressed to ulcers with overlying scabs 
which healed between day 18–26 post-inoculation and were accompanied by bacte-
rial clearance regardless of the strain or the infectious dose used [103].
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One proposed potential way of contracting BU is the contamination of existing 
open wounds with M. ulcerans through exposure to a contaminated environment. In 
order to test this hypothesis, the skin of guinea pigs has been abraded and cultured 
M. ulcerans cells were applied on the open superficial wounds [104]. However, 
topical application failed to establish an infection during the 90 days of observation 
and all abrasion sites healed during the first week post exposure. In contrast, from 
all the sites intradermally injected with 106 M. ulcerans bacteria as positive control, 
re-cultivation was possible 90 days post infection [104].

Overall, guinea pigs seem to be quite resistant to M. ulcerans infections, and are 
far less frequently used as BU research model than mice.

3.2	 �Pig (Sus scrofa)

The pig has only recently been evaluated as a model to study BU [59, 60]. Pig and 
human skin share many similarities like thickness, general structure of the epider-
mis, dermis and the subcutaneous tissue, blood supply and the adnexal structures 
[105–109]. Moreover, the porcine immune system resembles the human immune 
system much more than the murine immune system [110]. This has made the por-
cine skin a preferred model for burn and wound healing studies [111–113]. In the 
studies conducted by Bolz et al. that represent the first description of the pig (Sus 
scrofa) as a model to study M. ulcerans infection, eight  week old piglets were 
infected subcutaneously with 100 μl of different numbers (2 × 103 to 2 × 107) of M. 
ulcerans bacteria [60]. For injections, both flanks [59, 60] as well as the upper and 
lower legs (unpublished results) were used to study up to 24 individual inoculation 
sites on a single pig, which greatly reduces the number of animals needed for indi-
vidual experiments. After 2.5 weeks macroscopic examinations revealed elevated, 
movable and firm nodular structures with the highest inoculation doses. After 
6.5  weeks these lesions presented either as indurated plaques or had ulcerated. 
Histopathological analysis showed that all key features typically found in early 
human BU lesions [93] were also present in the pig 2.5 weeks after inoculation 
(Fig.  2) [60]. At the inoculation site a necrotic core structure containing mainly 
extracellular clusters of AFB (Fig. 2a) and fat cell ghosts developed. The core as 
well as some infiltrating cells were strongly stained by the TUNEL method 
(Fig. 2b), indicating the presence of large numbers of apoptotic cells. The necrotic 
core was surrounded by a dense belt of infiltrating cells, which were mainly com-
posed of macrophages and CD3 positive T-cells (Fig. 2c) [59]. Inside the necrotic 
core debris of neutrophils was still detectable [59]. At week 6.5 the infiltration was 
even more organized, with the necrotic core being surrounded by a belt of neutro-
phils followed by a belt of macrophages and the outermost belt being mainly com-
posed of CD3 positive T-cells. Some of the pig lesions had ulcerated during this 
observation time. Although the majority of bacteria and necrotic slough were 
expelled during that process, small necrotic areas with AFB remained and under-
mined edges started to form. A slight epidermal hyperplasia was already observed 
after 2.5 weeks, however at later time points it was much more pronounced [60]. 
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Fig. 2  Histopathological appearance of a typical pig BU lesion two weeks after subcutaneous 
injection of 7 × 107 M. ulcerans bacteria. (a) Ziehl-Neelsen staining revealed the presence of large 
extracellular clusters, globi like structures and single intra- and extracellular AFB (pink rods). (b) 
The TUNEL staining method for apoptotic cells revealed a strong staining of the necrotic core as 
well as some TUNEL positive cells in the surrounding infiltration belt. (c) CD3 positive T-cells are 
only present in the outermost area of the infiltration and start to form a belt around the lesion core, 
which develops further until week 6

M
. u

lc
er

an
s 

(Z
ie

h
l-

N
ee

ls
en

)
A

p
o

p
to

ti
c 

ce
lls

 (
T

U
N

E
L

)

M. Bolz and M.-T. Ruf



171

Injection of synthetic mycolactone into pig skin induced a comparable dose depen-
dent effect in the tissue, with the formation of a necrotic core surrounded by inflam-
matory cells ([60] and unpublished results). In follow up studies cultivation of M. 
ulcerans bacteria re-isolated from infected pig skin was only possible up to 3 weeks 
after inoculation, and no chronic infection developed. The pig model thus seems to 
reproduce very well the early pathogenesis but not the chronic, necrotizing nature of 
human lesions.

3.3	 �Grasscutter (Thryonomys swinderianus)

Addo et al. [62] used the small hystricomorph rodent Thryonomys swinderianus, 
commonly called grasscutter, as a model for BU. The abundance of these animals in 
sub-Saharan Africa, the already existent establishment as laboratory animals and 
the substantially larger body size than mice (1.5–5  kg) were major reasons for 
choosing these animals. Grasscutters were subcutaneously inoculated into the 
shaved right thigh with 200 μl M. ulcerans suspension (1.0 and 5.0 McFarland stan-
dards) [62]. Progressive skin lesions (erythema, papule, nodule, edema, and under-
mined ulcer) developed in all inoculated animals with onset and severity of the 
lesions correlating with the infection dose. After the development of a nodule and a 
scab (40 to 154 days after inoculation), which was demonstrated to contain AFB, 
infection stalled and an inactive phase (265 to 371 days) occurred. Relapse occurred 
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in 90% of the animals and a fulminant progression of the disease with the formation 
of undermined ulcers was observed 441 to 540 days post inoculation. No systemic 
spread of bacteria was observed, with blood, urine and feces consistently being 
AFB-negative whilst the exudate and pus of the lesions was consistently AFB-
positive. In histopathological analyses typical features of an M. ulcerans infection 
in the skin were observed together with rather untypically strong inflammation, 
neurogenic atrophy and osteomyelitis [62]. Re-cultivation of AFB from the infected 
animals however was not done and therefore viability of the AFB detected in exu-
date could not be determined.

3.4	 �Anole Lizard (Anolis carolinensis)

Based on the fact that M. ulcerans grows best at temperatures of 30–32 °C, and 
poikilothermic animals have a preferred body temperature of 32 °C, Marcus et al. 
tested the anole lizard, Anolis carolinensis, as a model to study BU [114, 115]. 
Lizards were inoculated with an M. ulcerans solution containing 103 CFU into the 
right lateral thorax, caudal to the edge of the right scapula. Five times a week lizards 
were incubated at 32 °C for 6–8 h. Six weeks post inoculation three different kind 
of lesions could be distinguished by histopathology [114]: a diffuse non-
encapsulated, non-necrotizing granulomatous reaction with intracellular AFB (67% 
of the animals), a diffuse necrotizing granulomatous myositis of the thoracic wall 
with large numbers of extracellular AFB (24% of the animals) and the presence of 
several small, discrete, non-necrotizing encapsulated granulomas on the superficial 
surface of the supraspinatus nerve containing few intracellular AFB (4.8% of the 
animals). Lizards inoculated with dead M. ulcerans bacteria also developed non-
necrotizing, non-encapsulated lesions, however, nearly all bacteria were found 
intracellularly. In contrast to the human disease, lesions did not develop inside the 
subcutaneous tissue but on the thoracic wall. Re-cultivated bacteria after single pas-
sage in the anole lizard showed a more rapid growth in vitro and were more virulent 
when introduced into mouse foot pads [114].

3.5	 �Nine-Banded Armadillo (Dasypus novemcinctus)

The nine-banded armadillo is a well-studied and characterized animal model in lep-
rosy research [116] with a body temperature of 30–35.8 °C. Walsh et al. showed that 
it can also be used to study BU in vivo [117]. In this study animals were intrader-
mally infected with 3 × 103 to 3 × 108 M. ulcerans into the lower abdominal and 
medial thigh regions. Injection sites were observed every 2–4  weeks for up to 
six months or death of the animal. 37% of the armadillos developed progressive 
cutaneous lesions, 15.5% developed evanescent papule-nodular lesions, 15.5% died 
within one week after inoculation and 32% of the animals developed no clinical 
signs [117]. Progressive cutaneous lesions presented with clinical signs comparable 
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to the human disease like undermined edges and extensive necrosis. All animals 
which developed ulcers died between four and six months after inoculation due to 
unidentified reasons. Histopathologically, lesions showed coagulating necrosis of 
the deep dermis, panniculitis, edema, sparse inflammation, fat cell ghosts and AFB, 
mainly present as extracellular clumps. Three months after inoculation, cultures of 
one animal on Loewenstein-Jensen media were negative, although AFB were still 
present [117].

3.6	 �Cynomologus Monkey (Maca fascicularis)

In a study with only one monkey it was shown that intradermal inoculation of M. 
ulcerans (2.2  ×  108) induced the formation of a papule which ulcerated within 
2–4 weeks after inoculation [118]. In biopsies, infiltration, edema, inflammatory 
infiltrates and extracellular bacteria were observed. Ulcers healed spontaneously 
between eight and 12 weeks post infection. At week six, cultures on Loewenstein-
Jensen medium were negative, indicating that the cynomolgus monkey is only mod-
estly susceptible to M. ulcerans [118].

3.7	 �African Rat (Mastomys natalensis)

The common Africa rat was used by Singh and colleagues because of its abundance 
in sub-Saharan Africa. Inoculation of different doses into the tail vein led to ulcer-
ation and eventually the loss of the tail [119]. Supposedly due to the naturally sup-
pressed immune system, internal organs (lung, spleen, liver) as well as the footpads 
were involved in a small number of individuals [119].

3.8	 �Common Brushtail Possum (Trichosurus vulpecula)

Due to the lower body temperature and a high susceptibility of Trichosurus vulpec-
ula to M. tuberculosis and M. bovis, researchers infected these animals in two exper-
imental series with M. ulcerans. Inoculation with patient material into the hind leg 
of one possum led to the formation of a deep ulcer. Material from this lesion was 
used to inoculate four more animals, subcutaneously or intraperitoneally. Cutaneous 
ulcers and lesions at peripheral sites developed and AFB were recovered from them 
[120, 121]. In the second series it was shown that also non-inoculated T. vulpecula 
which were housed together with M. ulcerans inoculated animals developed ulcers 
from which AFB could be isolated [120]. Recent reports showed that wild possum 
species (Pseudocheirus peregrinus, Trichosurus vulpecula, Trichosurus cunning-
hami) in BU-endemic areas of Victoria, Australia are infected with M. ulcerans. 
Most clinically apparent cases were adults with ulcerative cutaneous lesions, gener-
ally confined to body areas without fur [4].
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4	 �Conclusions

Overall, none of the currently used animal models fully reflects the spectrum of 
human BU disease. The mouse model is the most widely used animal model for BU 
in research because it is cheaper than the other models, bacteria are multiplying well 
and the onset of the disease is relatively fast. Especially for drug and vaccine stud-
ies, that both require large numbers of animals, this model is most advantageous. 
However, due to the lack of subcutaneous fat tissue and limited tissue depth, the 
clinical and histopathological appearance of the lesions in mouse foot pads and 
mouse tails are quite different from human BU lesions. In contrast, in the pig and 
guinea pig models both clinical and histopathological appearances of BU resemble 
the human situation, making both species a good model for the characterization of 
the early pathogenesis of BU. However both species are only modestly susceptible 
to M. ulcerans infection and do not develop chronic infections. All other animal 
models described in this chapter have not been studied well enough to conclude for 
which purposes they would be more suitable than the well-established mouse foot-
pad model.
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