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Abstract How far has the didactics of mathematics developed as a scientific disci-
pline? This question was discussed intensively in Germany during the 1980s, with
both affirmative and critical reference to Kuhn andMasterman. In 1984, Hans-Georg
Steiner inaugurated a series of international conferences on ‘Theories ofMathematics
Education’ (TME), pursuing a scientific program that aimed at founding and devel-
oping didactics of mathematics as a scientific discipline. Today, a more bottom-up
meta-theoretical approach, the networking of theories, has emerged which has roots
in the early days of discussing the developmental of mathematics education as a
scientific discipline. This article presents an overview of this thread of development
and a brief description of the TME program. Two theories from German-speaking
countries are outlined and networked in the analysis of an empirical example that
shows their complementary nature traced back to the TME program.
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7.1 Introduction

This chapter1 begins with a description of the historical situation of the community of
mathematics education in German-speaking countries. The historical development
and discussions surrounding the concept of theory related to mathematics education
as a scientific discipline are traced from the 1970s up to the beginning of the twenty-
first century, in the German-speaking countries as well as internationally. We will
describe the main points of the Theory of Mathematics Education (TME) program
as introduced by Hans-Georg Steiner. Two theoretical approaches, the theory of
Learning Activity developed by Joachim Lompscher and Willi Dörfler’s semiotic
view of doing mathematics related to diagrammatic reasoning and its semiotic game,
are summarized and concretized through the application of them to the analysis of
an empirical example, a students’ group solution of a mathematical task. Based on
this example, we depict the networking of theories and the subsequent contribution
to the TME program.

7.2 The Role of Theories in Relation to Mathematics
Education as a Scientific Discipline: A Discussion
in the 1980s

On an institutional and organizational level, the time span from the 1970s until the
early 1980s had been a period of considerable change for mathematics education in
former West Germany2—both in school and as a research domain. The Institute for
Didactics of Mathematics (Institut für Didaktik der Mathematik, IDM) was founded
in 1973 in Bielefeld as the first research institute in the German-speaking countries
specifically dedicated to mathematics education research; 1975 saw the inception of
the Society of Didactics of Mathematics (Gesellschaft für Didaktik der Mathematik,
GDM) as the scientific society of mathematics educators in the German-speaking
countries (cf. Bauersfeld et al. 1984, pp. 169–197; Toepell 2004).

The teacher colleges (‘Pädagogische Hochschulen’), being the home of many
mathematics educators at that time, were either integrated into full universities or
developed into universities of education entitled to award doctorates. The Ham-
burg Treaty (‘Hamburger Abkommen’, KMK 1964/71), adopted in 1964 by the
Standing Conference of Ministers of Education and Cultural Affairs (KMK), led to
considerable organizational changes within the German school system. Although

1This chapter presents the ICME-13 Topical Survey ‘Theories in and of Mathematics Education’
(Bikner-Ahsbahs et al. 2016) in a shorter, partly reworked version: Sects. 7.1 and 7.2 are slightly
revised versions (see ibid. pp. 1–9), Sect. 7.3 has been reworked and expanded (see ibid. pp. 10–11).
Sections 7.4 and 7.5 present a summary and intensified rework of Bikner-Ahsbahs et al. (2016,
pp. 13–42).
2For an overview including the development in Austria c.f. Dörfler 2013b; for an account on the
development in Eastern Germany c.f. Walsch 2003.
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the traditional, more vocationally oriented ‘Volksschule’ (a common school cover-
ing both primary and secondary education, grades 1–8) was abolished, a new track
called ‘Hauptschule’ was instituted for grades 5–8, reinstating a third track besides
‘Realschule’ and ‘Gymnasium’ for the years to come. In 1968, the Standing Con-
ference’s ‘Recommendations and Guidelines for the Modernization of Mathematics
Teaching’ introduced profound changes to the content ofmathematics education at all
ages. Along with this, the traditional designation of the school subject as ‘Rechnen’
(translated as ‘practical arithmetic’) was also abandoned for primary school educa-
tion in favour of the subject designation ‘Mathematik’ (cf. Griesel 2001; Müller and
Wittmann 1984, pp. 146–170).

Likewise, there was a vivid interest in discussing how far mathematics educa-
tion had developed as a scientific discipline, as documented in both of the German
language journals on mathematics education founded at that time: Zentralblatt für
Didaktik der Mathematik (ZDM, founded in 1969) and Journal für Mathematik-
Didaktik (JMD, founded in 1980). These discussions mainly addressed two aspects:
the role and suitable concept of theories for mathematics education, and the question
of how mathematics education was to be founded as a scientific discipline and how
it could be further developed. Of course, both aspects are deeply intertwined.

Issue 6 (1974) of ZDM was dedicated to a broad discussion about the current
state of the field of ‘Didactics of Mathematics’/mathematics education. The issue
was edited by Hans-Georg Steiner. It comprised contributions from Bigalke (1974),
Freudenthal (1974), Griesel (1974), Otte (1974) and Wittmann (1974), among oth-
ers. These articles were focused around the questions of (1) how to conceptualize
the subject area or domain of discourse of mathematics education as a scientific dis-
cipline; (2) how mathematics education may substantiate its scientific character; and
(3) how to frame its relation to reference disciplines, especially mathematics, psy-
chology and educational science. While there was a rich variety in the approaches
to these questions, and, likewise, to the definitions of ‘Didactics of Mathematics’
given by the various authors, cautioning against reductionist approaches seemed to
be a common topic of these papers. That is, the authors agreed upon the view that
mathematics education cannot be meaningfully conceptualized as a subdomain of
either mathematics, psychology, or educational science alone.

The role of theorywasmore explicitly discussed about 10 years later in two papers
(Burscheid 1983; Bigalke 1984) and in two comments (Fischer 1983; Steiner 1983)
published in the ‘Journal für Mathematik-Didaktik’ (JMD). As an example of the
discussion about theory of that time, we will convey the different positions in these
papers in more detail.

In 1983, Burscheid used the model from Kuhn and Masterman (cf. Kuhn 1970;
Masterman 1970, 1974) to explore the developmental stage of mathematics edu-
cation as a scientific discipline. He justified this approach by claiming that every
science represents its results through theories and therefore mathematics education
as a science is obliged to develop theories and make its results testable (Burscheid
1983, p. 222). This model describes scientific communities and their development
by paradigms. By investigating mainly natural sciences, Kuhn has characterized a
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paradigm by four components—symbolic generalizations, models of thought, values
and attitudes, and exemplars:

(1) symbolic generalizations as “expressions, deployed without question or dis-
sent […], which can readily be cast in a logical form” (Kuhn 1970, p. 182) or
a mathematical model—in other words: scientific laws, e.g. Newton’s law of
motion;

(2) metaphysical presumptions as faith in specific models of thought “shared com-
mitment to beliefs”, such as “heat is the kinetic energy of the constituent parts
of bodies” (p. 184);

(3) values and attitudes “morewidely shared amongdifferent communities” (p. 184)
than the first two components;

(4) exemplars, such as “concrete problem-solutions that students encounter from
the start of their scientific education” (p. 187)—in other words: textbook or
laboratory examples.

Masterman (1970, p. 65) categorized these components with respect to three types
of paradigms:

(a) metaphysical or meta-paradigms (refers to 2);
(b) sociological paradigms (refers to 3);
(c) artifact or constructed paradigms (refers to 1 and 4).

Each paradigm shapes a disciplinary matrix according to which new knowledge
can be structured, legitimized, and embedded into the discipline’s bodyof knowledge.
Referring to Masterman, Burscheid used these types of paradigms to identify the
scientific state of mathematics education with respect to four development stages of
a scientific discipline (see Burscheid pp. 224–227):

Burscheid described the first stage (Table 7.1) as a founding stage of a scientific
disciplinewhere scientists are identifying the discipline’s core problems, establishing
typical solutions and developing methods to be used. In this stage, scientists struggle
with the discipline’s basic assumptions and kernel of ideas; for instance, with the
methodological questions of how validity can be justified and which thought models
are relevant. In this stage, paradigms begin to develop, resulting in the building of
scientific schools and shaping a multi-paradigm discipline. The schools’ specific
paradigms unfold locally within the single scientific group but do not affect the
discipline as a whole. In stage three, mature paradigms compete to gain scientific
hegemony in the field (Burscheid 1983, p. 226). The final stage is that of a mature
scientific discipline in which the whole community shares more or less the same
paradigm (p. 226).

Following the disciplinary matrix, Burscheid (pp. 226–236) identified paradigms
in mathematics education and features at that time, according to which different
scientific schools emerged and could be distinguished from one another, e.g. accord-
ing to forms, levels and types of schools, or according to reference disciplines such
as mathematics, psychology, pedagogy, and sociology. The constructed paradigms
dealt in principle with establishing adequate theories in a discipline. Concerning
building theories, however, the transfer of the model of Masterman and Kuhn was
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Table 7.1 Stage-model of
the development of a
scientific discipline (p. 224,
translated)a

Stage Paradigm
characteristics

Core description

1 Non-paradigmatic Founding phase of the
scientific discipline

2 Multi-paradigmatic
science

Scientific schools based
on paradigms emerge

3 Dual-paradigmatic
science

Mature paradigms
compete

4 Mono-paradigmatic
science

A mature paradigm
determines the
scientific discipline

aAny translation within this article has been conducted by the
authors unless stated otherwise

difficult to achieve because symbolic generalizations and/or scientific laws can be
built more easily in the natural sciences than in mathematics education. This is
because mathematics education is concerned with human beings who are able to
creatively decide and act in the teaching and learning processes. Burscheid doubted
that a general theory such as those in physics could ever be developed in mathemat-
ics education (p. 233). However, his considerations led to the conclusion that “there
are single groups in the scientific community of mathematics education which are
determined by a disciplinary matrix. […] That means that mathematics education is
[still] heading to a multi-paradigm science” (translated, p. 234).

Burscheid’s analysis was immediately criticized from two perspectives. Fischer
(1983)3 claimed that pitting mathematics education against the scientific develop-
ment of natural science is almost absurd because mathematics education has to do
with human beings (p. 241). In his view “theory deficit” (translated, p. 242) should
not be regarded as a shortcoming but as a chance for all people involved in education
to emancipate themselves. The lack of impact to practice should not be overcome
by top-down measures from the outside but by involving mathematics teachers from
the bottom-up to develop their lessons linked to the development of their personality
and their schools (p. 242). Fischer did not criticize Burscheid’s analysis per se, but
rather the application of a model postulating that all sciences must develop in the
same way as the natural sciences towards a unifying paradigm (Fischer 1983).

Steiner (1983) also criticized the use of the models developed by Kuhn and Mas-
terman. He considered them to be not applicable to mathematics education in prin-
ciple, claiming that even for physics these models do not address specific domains
in suitable ways, and, in his view, domain specificity is in the core of mathematics
education (p. 246). Even more than Fischer, Steiner doubted that mathematics edu-
cation will develop towards a unifying single paradigm science. According to him,

3Fischer also feared that once mathematics education would develop towards a unifying paradigm,
the field of mathematics education were more concerned with its own problems like physics and,
finally, would develop separating its issues from societal concerns.
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Table 7.2 Views on mathematics education as a scientific discipline

Discussant View on mathematics education as a scientific discipline and its development

Burscheid Theories and theorizing are in the core of mathematics education as a scientific
discipline. Taking the development of natural science as a role model, Burscheid
assumes that the development of mathematics education advances by a process
of maturing and competing paradigms

Fischer Fischer dismisses to take natural science as role model for scientific
development since mathematics education has to do with human beings and it is
practice based. It develops from practice bottom-up by the development and
emancipation of teachers

Steiner Steiner dismisses to take natural science as role model for scientific
development of mathematics education because not even physics fits this model
in all respects. Mathematics education as a scientific discipline is systemic and
interdisciplinary at its core. It develops from the inside as a system of
interrelations among mathematics, further disciplines and through the relation
of theory and practice

Bigalke The nature of mathematics education as a scientific discipline follows scientific
principles. Its theory concept consists of an unimpeachable kernel and an
empirical surrounding. From the contextual nature of the scientific knowledge of
mathematics education Bigalke infers the necessity to accept multiple principles
and theories. This knowledge develops from the inside while theories are
inspired by practice and have to prove being successful in research and practice

mathematics education has many facets and a systemic character with a responsibil-
ity to society. It is deeply connected to other disciplines and in contrast to physics,
mathematics education must be thought of as being interdisciplinary at its core. The
scientific development of mathematics education should not rely upon external cat-
egories of description and acceptance standards, but should develop such categories
itself (pp. 246–247); and, moreover, it should consider the relation between theory
and practice (p. 248) (Table 7.2).

One year later, Bigalke (1984) proposed exactly such an analysis from the inside.
He analyzed the development of mathematics education as a scientific discipline
as well, but this time without using an external developmental model. He proposed
a “suitable theory concept” (translated, p. 133) for mathematics education on the
basis of nine theses. Bigalke urged a theoretical discussion, and reflection on epis-
temological issues of theory development. Mathematics education should establish
the principles and heuristics of its practice, specifically of its research practice and
theory development on its own terms. Bigalke specifically regarded it as a science
that is committed to mathematics as a core area with relations to other disciplines.
He claimed that its scientific principles should be created by “philosophical and the-
oretical reflections from tacit agreements about the purpose, aims, and the style of
learning mathematics as well as the problematization of its pre-requisites” (trans-
lated; p. 142), and he emphasized that such principles are deeply intertwined with
research programs and their theorizing processes.
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Many examples taken from the German didactics of mathematics substantiate that
Sneed’s and Stegmüller’s understanding of theory4 (cf. Jahnke 1978, pp. 70–90) fits
mathematics education much better than the restrictive notion of theory according
to Masterman and Kuhn, specifically when theories are regarded to inform practice.
Referring to Sneed and Stegmüller, Bigalke (1984, p. 147) investigated the suitability
of their theory concept for theoretical approaches in mathematics education and
summarized this theory concept in the subsequent way:

A theory in mathematics education is a structured entity shaped by propositions, values and
norms about learning mathematics. It consists of a kernel, that encompasses the unimpeach-
able foundations and norms of the theory, and an empirical component which contains all
possible expansions of the kernel and all intended applications that arise from the kernel and
its expansions. This understanding of theory fosters scientific insight and scientific practice
in the area of mathematics education. (translated, p. 152)

Bigalke (1984) himself pointed out that this understanding of theory allows many
theories to exist side by side providing a frame for a diversity of theories. It was clear
to him that no collection of scientific principles for mathematics education would
result in a ‘canon’ agreed across the whole scientific community. On the contrary, he
considered a certain degree of pluralism and diversity of principles and theories to be
desirable or even necessary (p. 142). Bigalke regarded theories as being inspired by
the practice of teaching and learning of mathematics thus providing the link to this
practice, founding mathematics education as a scientific discipline in which theories
may prove themselves successful in research as well as in practice (Bigalke 1984).
Progress of the scientific discipline results from the challenge to overcome the tension
between the scientific principles and the values and norms in the practice of teaching
and learning mathematics. Theories are the tools to overcome this challenge (p. 159),
hence, allowing various forms of theories to be developed.

7.3 Theories of Mathematics Education (TME):
A Program for Developing Mathematics Education
as a Scientific Discipline

Out of the previous presentation arose the result that the development of theories in
mathematics education cannot be cut off from clarifying the notion of theory and its
epistemological ground related to the scientific foundation of the field. Steiner (1983)
construed this kind of self-reflection as a genuine task in any scientific discipline (cf.
Steiner 1986) when he addressed the comprehensive task of founding and further
developing mathematics education as a scientific discipline (cf. Steiner 1987c). At a
post-conference meeting of ICME-5 in Adelaide in 1984, the first of five conferences
on the topic “Theories of Mathematics Education” (TME) took place (Steiner et al.

4We will not further elaborate on the theory concept by Stegmüller and Sneed as we wish to focus
on the debate conducted at that time.
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1984; Steiner 1985, 1986). This topic is a developmental program consisting of three
partly overlapping components5:

• “Development of the dynamic regulating role of mathematics education as a dis-
cipline with respect to the theory-practice interplay and interdisciplinary cooper-
ation.

• Development of a comprehensive view of mathematics education comprising
research, development, and practice by means of a systems approach.

• Meta-research and development of meta-knowledge with respect to mathematics
education as a discipline” (emphasis in the original; Steiner 1985, p. 16).

Steiner characterized mathematics education as a complex referential system in
relation to the aim of implementing and optimizing teaching and learning of mathe-
matics in different social contexts (p. 11). He proposed taking this view as a meta-
paradigm for the field (Steiner 1985, p. 11; Steiner 1987a, p. 46), addressing the
necessity ofmeta-research in the field. According to Steiner, the field’s inherent com-
plexity evokes reduction of its complexity in favor of focusing on specific aspects,
such as curriculum development, classroom interaction, or content analysis. Accord-
ing to Steiner, this complexity also creates a differential classification of mathemat-
ics education as a “field of mathematics, as a special branch of epistemology, as an
engineering science, as a sub-domain of pedagogy or general didactics, as a social
science, as a borderline science, as an applied science, as a foundational science,
etc.” (Steiner 1985, p. 11). Steiner required clarification of the relations among all
these views, including the principle of complementarity on all layers, which means
considering research and meta-research, concepts as objects and concepts as tools
(Steiner 1987a, p. 48, 1985, p. 15). He proposed understanding mathematics educa-
tion as a human activity, hence, he added an activity theory view to organize and order
the field (Steiner 1985, p. 15). The interesting point here is that Steiner implicitly
adopted a specific theoretical view of the field but points to the multiple perspectives
in the field which should be acknowledged as its interdisciplinary core.

Steiner (1985) emphasized the need for the field to become aware of its own pro-
cesses of development of theories and models and investigate its means, represen-
tations and instruments. Epistemological considerations seemed important for him,
specifically concerning the role of theory and its application. In line with Bigalke, he
proposed considering Sneed’s and Stegmüller’s view on theory as suitable for math-
ematics education, since it encompasses a kernel of theory and an area of intended

5This program was later reformulated by Steiner (1987a, p. 46; emphasis in the original):

– Identification and elaboration of basic problems in the orientation, foundation, methodology, and
organization of mathematics education as a discipline.

– The development of a comprehensive approach to mathematics education in its totality when
viewed as an interactive system comprising research, development, and practice.

– Self -referent research and meta-research related to mathematics education that provides infor-
mation about the state of the art—the situation, problems, and needs of the discipline while
respecting national and regional differences.
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applications to conceptualize applicability being a part of the very nature of theories
in mathematics education (p. 12).

In the first TME conference, theory was an important topic, especially the distinc-
tion between so-called borrowed and home-grown theories. Borrowed theories are
taken from outside mathematics education whereas home-grown theories are those
developed within mathematics education. With respect to this distinction, Steiner’s
complementary view made him point to the danger of one-sidedness. In his view,
borrowed theories are not just transferred and used but rather adapted to the needs
of mathematics education and its specific contexts. Home-grown theories, however,
are able to address domain-specific needs but are subjected to the difficulty of estab-
lishing suitable research methodologies on their own authority. The interdisciplinary
nature of mathematics education requires regulation among the different perspec-
tives but also regulation of the balance between home-grown and borrowed theories
(Steiner 1985; Steiner et al. 1984).

So, what is Steiner’s specific contribution to the discussion of theories and the-
ory development? Like other colleagues, such as Bigalke, he has pointed to the role
of theories as being in the core of mathematics education as a scientific discipline,
and he proposed the notion of theory developed by Sneed and Stegmüller (cf. Jahnke
1978; pp. 70–90; see also Bigalke in this article) as being suitable for such an applied
science. Steiner proposed complementarity to be a guiding principle for the scien-
tific field and required investigating what complementarity means in each case of
the field’s topics. In this respect, the dialectic between borrowed theories and home-
grown theories is an integral part of the field that allows the discipline to develop
from its core and to be challenged from its periphery. In addition, Steiner emphasized
that mathematics education as a system (see Steiner 1987b) should reflect on its own
epistemological basis, its own theory concepts and theory development, the relation
between theory and practice, and the interrelation among all its perspectives. He has
added that the specific view of mathematics education always incorporates some
epistemological model of how mathematics and teaching and learning of mathemat-
ics are understood, and that this is especially relevant for theories in mathematics
education.

If we consider the research (practice) in mathematics education as an activity
of the discipline, then Steiner has addressed two intertwined sub-activities to be
relevant for the foundation and development of mathematics education as a scientific
discipline: theorizing in research develops theories, and reflecting on and in the
system develops the system of mathematics education; however both activities are
related. The following diagram tries to capture Steiner’s view on the two activities
developing mathematics educations as a scientific discipline (Fig. 7.1):

7.4 Post-TME Period

In the following decade, from 1992 up to the beginning of the twenty-first century,
the discussion on theory concepts died down in the German community of mathe-
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Fig. 7.1 A tentative diagram of Steiner’s view on two necessary and related activities in mathe-
matics education as a scientific discipline

matics educators while the theoretical diversity in the field grew. A comprehensive
overview of theories used within different (and ever-evolving) strands of mathe-
matics education research in the German-speaking countries over the last 30 years
would necessarily go beyond the scope of this paper. We can only give a few cursory
examples here, and any selection of such examples is at least prone to subjective
selectiveness and personal bias. Therefore, the reader is highly encouraged to con-
sider the other articles in this volume for a more complete picture of the theoretical
backgrounds referenced in the respective strands of mathematics education research.
Considering the two main scientific journals, we identified scientific contributions
from several theoretical communities addressing three topics related to the TME
program (without any claim to completeness):

(1) Methodology: methodological and thus theoretical aspects in interpretative
research (Beck and Jungwirth 1999), interviews in empirical research (Beck
and Maier 1993), multi-methods (Wellenreuther 1997); explaining in research
(Maier 1998), methodological considerations on large scale assessments such
as e.g. Third International Mathematics and Science Study (TIMSS) (Knoche
and Lind 2000);

(2) Methods in empirical research: e.g., two special issues of ZDM in 2003 edited
by Kaiser presented a number of methodical frameworks;

(3) Issues on meta-research about what mathematics education is, can, and should
include: considerations on paradigms and the notion of theory in interpretative
research (Maier and Beck 2001), comparison research (Kaiser 2000; Maier
and Steinbring 1998; Brandt and Krummheuer 2000; Jungwirth 1994), and
mathematics education as design science (Wittmann 1995) and as a text science
(Beck and Maier 1994).

This short list indicates that—at that time—distinct theoretical communities
seemed to share the need for methodological andmeta-theoretical reflection. In some
cases, these theoretical considerations transcended the borders of the distinct theo-
retical community and led to critical response and discussion:
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• Kirsch (1977/2000) and Becker (1978) are some of the rather sparse examples
of meta-theoretical reflection on Stoffdidaktik (“subject matter analysis”) from
proponents of this traditional strand ofmathematics education research inGerman-
speaking countries. Both the notion of “concentration on the mathematical heart
of the matter” (Kirsch 1977, 2000) and the sense and purpose of working out
mathematically elaborated background theories for school mathematics (Becker
1978) have been questioned froma systems theory perspective in Steinbring (1998)
and Steinbring (2011).

• In their discussion of the use of interviews in interpretative research, Beck and
Maier (1993) also presented an account of ‘understanding’ in mathematics class-
rooms (as process and product) developed according to the interpretative paradigm.
Weigand (1995) contrasts this view with more traditional, normative accounts of
‘understanding’ developed just within the aforementioned framework of Stoffdi-
daktik. Weigand raises the question whether interpretative notions of ‘understand-
ing’, originally developed in social science and cultural contexts, can in principle
meet the particularities of mathematical thinking and learning, and stresses the
complementarity of interpretative and Stoffdidaktik-approaches.

• Knoche and Lind (2000) introduced models of item response theory which were
used within the TIMS-Study (Trends in International Mathematics and Science
Study) and subsequently were and are used in the Programme for International
Student Assessment (PISA) to a broader audience of mathematics education
researchers in German speaking countries. Since then, these models have become
morewidely adopted, and their benefits for assessing and analyzing students’math-
ematical competence have been discussed, e.g. in Knoche et al. (2002), Büchter
and Pallack (2012) and Leuders (2014). On the other hand, the appropriateness
of these models for conceptualizing mathematical learning and the theoretical
assumptions related to mathematical learning and student performance underly-
ing these models have been challenged fundamentally, e.g. in Meyerhöfer (2004),
Bender (2005), Vohns (2012) and Wuttke (2014)—some of the articles leading to
rebuttals and rejoinders.

To reiterate, these are just some cursory examples of theoretical discussions across
different strands of mathematics education research, and the reader may again be
referred to the other articles in this volume for a more complete and balanced view
on theoretical issues that have arisen and been discussed within and between the
respective strands.

In order to provide a deeper insight into theory strands of German-speaking coun-
tries, we summarize two examples presented during the ICME-13. Both theoretical
approaches are then reconsidered and linked in an analysis of an empirical example,
as it is usually done in the Networking of Theory strands to show how different theo-
riesmay be used to better grasp the complexity of teaching and learningmathematics.
Referring back to Steiner and his TME program, we will use the insight gained from
this exercise to describe how mathematics education as a scientific discipline could
reflect on its own epistemological basis, and do meta-research as Steiner proposed
to clarify the specificities and roles of its theories and their relations to practice.
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7.5 Two Theories, Their Origins and Their Purposes

In the survey on theory strands in German-speaking countries (Bikner-Ahsbahs and
Vohns 2016), two theories are described in detail and used for the analysis of an
empirical example. The first theory, presented by Bruder and Schmitt (2016), is that
of Learning Activity, originally developed by Joachim Lompscher in the German
Democratic Republic (GDR). The second approach, presented in the same survey
by Dörfler (2016), is an example of theorizing mathematics as a semiotic way of
doing mathematics by referring to the concept of diagram introduced by Peirce and
relating this to the idea of semiotic games by Wittgenstein (1999). For the purpose
of this article, we will give a brief overview of both approaches.

7.5.1 Learning Activity

Bruder and Schmitt (2016) discuss the theory of Learning Activity developed by
Lompscher within the theory culture of activity theory introduced by soviet psychol-
ogists, e.g. Vygotski, Leont’jev and Luria (Lompscher 2006). This theory culture
takes activities as meaningful, purposeful, culturally and historically coined com-
ponents of an activity system. Driven by a general motive, an activity brings itself
about collectively by actions which are goal oriented and linked to the individuals’
psychological development. These actions are influenced by the social and cultural
environment in which they are conducted. They are mediated by practical or mental
tools available in the cultural environment and directed towards goals; they consist
of operations determined by the specific situated conditions (Giest and Lompscher
2006, p. 39), and are often conducted unconsciously (Hasan and Kazlauskas 2014,
p. 10). The relation between subject and object is at the core of any activity. This rela-
tion, together with actions, goals and available means, structure the activity (Giest
and Lompscher 2006, pp. 37–41). Through activities, the subject actively acquires
cultural knowledge and knowing, and in the same process this cultural knowledge
and knowing is transformed by the individual. Thus, internalisation and externali-
sation are mutual processes of transformation (Lompscher 1985a, p. 25). Examples
of activities are playing activity, learning activity, and working activity (Giest and
Lompscher 2006, p. 55).

Lompscher has applied this theoretical view on teaching and learning in school
(see Bruder and Schmitt 2016; Lompscher 1985a, b, 1989a, pp. 23–32; Giest and
Lompscher 2006, pp. 67–106). Through a learning activity, a student acquires societal
knowledge and cognitive competencies by interacting with other individuals and
the environmental conditions. Lompscher (1989a) emphasizes that knowledge and
competencies are related to “segments of societal experience of the world” (p. 29,
translated). The general motive of a learning activity is self-development according
to the specific cultural requirements (Giest and Lompscher 2006, p. 83), an aspect
that distinguishes learning activity from other activities (p. 93). The teacher is crucial
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for constituting a learning activity: he/she arranges the learning conditions as tasks
and provides the means to solve them. The learning activity on a topic is achieved
by learning actions. These are arranged in steps, building a pathway for a learning
trajectory to shape suitable learning conditions, providing resources for a sequence
of learning actionswhich are supposed to lead to the desired learning goal. Sub-tasks
are to be arranged in a way that the learner can adopt these tasks and their sub-goals
as his/her own. As Lompscher puts it: The outcomes of the individual learning is only
achieved by “the intensity and quality of the learner’s own activity on and with the
learning object, the adequately using resp. shaping or transforming of the learning
conditions, the employment of available learning means resp. changes according to
adequate aims and conditions” (Lompscher 1989a, p. 32, translated, emphasis in the
original).

According to Bruder and Schmitt (2016), Giest and Lompscher (2006) distinguish
three parts of a learning action: the orientation, the performance and the control part
(p. 197), and three types of orientations a student may be able to conduct (Giest
and Lompscher 2006, p. 192; see also Bruder and Schmitt 2016, pp. 16–18): trial
orientation (driven by some kind of trial and error), pattern orientation (a sensitivity
to patterns can be followed in a focused area), and field orientation (knowledge can
be acquired and transferred in a complete knowledge field). A general motive for
a learning activity is the development of field orientation, but this is not so easy to
achieve. Bruder and Schmitt (2016, p. 16) refer to Davydov’s (1990) idea to start
within an initial abstract feature as a means for orientating, exploring and enriching
the abstract with the concrete. Ascending from the abstract to the concrete is regarded
as a strong approach to reach field orientation as early as possible (see Lompscher
2006, 131–205, 1989b).

Lompscher’s research group has undertaken empirical studies in close connection
with the teaching and learning practice in several school domains (Giest and Lomp-
scher 2006). Mathematics was just one of them. The theory of learning activity has
been intensively applied, adapted and further developed in research and develop-
ment for teaching and learning mathematics in various directions (see Bruder and
Schmitt 2016): for example, specifying elementary mental operations by Bruder and
Brückner (1989), developing a comprehensive model for competence development
for modelling, problem solving and argumentation (Bruder et al. 2003), investigating
mathematical problem solving (Collet and Bruder 2008; Bruder and Collet 2011),
developing learning tasks (Bruder 2010), and difficulties in representing functions
(Nitsch 2015), to name just four.

7.5.2 A Semiotic View on Mathematics: Sign Use
and Semiotic Game

The second example, presented byDörfler (2016), is a specific semiotic view referring
to Charles Sanders Peirce and Ludwig Wittgenstein. In the 1990s, Michael Otte
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introduced Peirce’s semiotics as an important view on mathematics to the German
community of mathematics educators (see for example Fischer 2005, p. 375; Dörfler
2016, p. 23; Otte 1997). In the subsequent years, Peirce’s theory of semiotics has also
been taken up by several researchers for different purposes, for example to develop a
semiotic theory on learning (Hoffmann 2001), to illustrate its epistemological nature
(Hoffmann 2005), to include the view on diagrams in the mathematics classroom
(Dörfler 2006), for analysing chat-communication (Schreiber 2006) or investigating
the epistemic role of gestures (Krause 2016).

Dörfler’s theoretical view is rooted in a dynamic understanding of mathematics
itself (Dörfler 2004, 2006, 2008, 2013a, 2016). Similar to Hoffmann (2005), Dörfler
takes the concept of diagram introduced by Peirce as a starting point and describes
doing mathematics as diagrammatic reasoning. However, the specificity in Dörfler’s
elaboration is abstaining from the view on mathematical activity as a mental activity
building abstract objects in the individual learner.

In Peirce’s semiotics, each sign is embedded in a triadic relation between the sign
(as a representamen), an object the sign stands for, and an interpretant—which is
an effect of the sign allotting meaning to it. For example the interpretant may be
produced by an interpreter regarding the sign as standing for an object in some way,
like π may be regarded as an irrational number, the limit of a specific infinite sum or
as representing the proportional relation between the circumference of a circle and
its diameter. The following quote by Peirce (1931–1958) depicts this triadic relation
of signs:

A sign, or representamen, is something which stands to somebody for something in some
respect or capacity. It addresses somebody, that is, creates in the mind of that person an
equivalent sign, or perhaps a more developed sign. That sign which it creates I call the
interpretant of the first sign. The sign stands for something, its object. It stands for that
object, not in all respects, but in reference to a sort of idea, … (CP 2.228, emphasis in the
original)

However, an interpretant does not necessarily need to be produced by a human
being, it can also be produced in the physical world (Nöth 2000, p. 227). But in any
case, the interpretant is the part of the sign that points tomeaning. Peirce distinguishes
between three kinds of signs in relation to the object: a sign can be an icon, an index,
or a symbol. An icon, such as a photo of a person, is a sign that resembles the object:
the material person. An index is a sign that refers to another sign because of its direct
connection to it, like smoke refers to fire. A symbol is a conventionalized sign or a
habitualized sign like the equivalent sign. It links the sign to the object by some kind
of regularity or law (Nöth 2000, p. 66).

Referring to Peirce, a diagram, such as an equation, is built by signs of a represen-
tation system that provides conventionalized rules. It may include all three kinds of
signs described above. A variable in the equation may be viewed as an index refer-
ring to another sign, e.g. a measure. The equal sign may represent the rule that two
things are regarded the same in a specific manner, as an iconic sign it may refer to
a balance scale. In general, a diagram is an inscription representing iconic relations
between different signs: that is, it is a complex sign made of other signs and their
relations as possibilities to be focused on in an interpretant. While all signs in the
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semiotics of Peirce refer to an object, this is not necessarily the case for a diagram
(seeDörfler 2016, p. 23). A diagrammay just refer to an area of collateral knowledge.
Experimenting with a diagram, observing it, and perceiving some new relations may
lead “us to suspect that something is true” (CP 5.162). Peirce describes:

All necessary reasoning without exception is diagrammatic. That is, we construct an icon
of our hypothetical state of things and proceed to observe it. This observation leads us to
suspect that something is true, which we may or may not be able to formulate with precision,
and we proceed to inquire whether it is true or not. (CP 5.162)

Diagrammatic reasoning has been worked out more clearly by Bakker and Hoff-
mann (2005) for mathematics education. As indicated in the quote from Peirce (CP
5.162), they distinguish three steps of diagrammatic reasoning (pp. 340–341): (1)
constructing a diagram to represent relations (diagrammatization); (2) experiment-
ing with diagrams based on rules of the specific sign system, rules that tell us what
can and what cannot be done with the diagram; and (3) observing the results of the
experimentation and reflecting on them (cf. Hoffmann 2005, p. 129). The latter may
lead to the discovery of patterns of relations, “which we may or may not be able
to formulate with precision, and proceed to inquire whether it is true or not” (CP
5.162).

Dörfler (2016, p. 23) precisely describes how his theoretical view on working
with mathematical diagrams represents doing mathematics. He argues that language
is a sign system that just mediates between individuals and diagrams. In his view,
diagrams are “extra-linguistic signs” (Dörfler 2006, p. 27) with a spatial structure
representing relations and providing rules for inventing, exploring and transforming
them. As these rules are taken to be without contradictions, mathematical inferences
appear consistent and strict. Mathematical meanings are at stake in these transforma-
tions as transforming rules. These rules can be exposed linguistically, but their mean-
ings are more directly expressed in the relations of the diagrammatic inscriptions.
However, individuals can build a relationship with these diagrams, while explor-
ing, perceiving or talking about them. According to Dörfler, diagrammatic reasoning
expresses the nature of doing mathematics, and it is highly creative. Dörfler rejects
the existence of mathematical objects as abstract mental objects. Instead, mathemat-
ical objects, in his view, manifest in the relations of the diagrams and the rules of
their transformations. Thus, “Diagrammatic reasoning is a rule-based but inventive
and constructive manipulation of diagrams for investigating their properties and rela-
tionships” (Dörfler 2016, p. 26). Hence, it is at the core of the dynamic semiotic view
on mathematics, for example when equations are produced they can be transformed
into other equations by transformation rules and allow features to be observed and
rules to be identified in the diagrams.

Referring to Wittgenstein (1999, according to Dörfler 2016, p. 27), Dörfler
strengthens his theoretical view on diagrammatic reasoning by describingmathemat-
ics as a semiotic game. This way he sharpens the notion of mathematical meanings:
they are in the rules that are the basis for establishing the semiotic game and for
building relationships among the signs. Mathematical diagrams are the “essential
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and constitutive” (p. 30) means in this game and meanings are in the use of rules.
Consequent ensues Dörfler’s view on learning mathematics:

Thus for Peirce, to learn mathematics would be to acquire expertise in diagrammatic rea-
soning, and for Wittgenstein, it would be to participate in the many various sign games and
their techniques. In both cases, which are closely related, it is of great importance to stick
meticulously to establish rules…mathematics is thereby fundamentally shown to be a deeply
social and socially shared cultural activity and product: sign activity can be executed with
others and shown to others in public form. This is very different from imaginingmathematics
as a kind of abstract and mental activity. (Dörfler 2016, p. 30)

7.6 Reconsidering the TME Program by Networking
the Two Theoretical Views

In line with the TME-program, we will now present a piece of meta-research to
clarify the nature of the two theories above and their relation to inform practice and
to raise the awareness of the epistemology on hand. “(…) Steiner (1985) has empha-
sized the need for the field to become aware of its own processes of development
of theories and models and investigate its means, representations, and instruments”
(Bikner-Ahsbahs and Vohns 2016, p. 9). This kind of awareness can be achieved by
meta-research: that is, research on the research. To do so, we will use the Network-
ing of Theories approach developed since 2006 (see Bikner-Ahsbahs et al. 2014,
2017; Dreyfus 2009). The Networking of Theories approach also emphasizes meta-
research. However, it does not explicitly want to advance the field, although this may
happen in small steps during the practical process in research. Its main aim is to show
a way to solve complex problems for which more than one theory is needed, and
reflect on the very process. In order to includemeta-research as an additional practice
into research, research practices have to be broadened to address also the theories
themselves, their methodologies, and the research practices as research objects. The
purpose for this kind of meta-research may vary, for example it may be important to
obtain methodological or theoretical clarity in a multi-theoretical approach (Kidron
et al. 2014; Bikner-Ahsbahs and Kidron 2015), to solve an apparently contradicting
problem (Sabena et al. 2014), to clarify the nature of research results or the specificity
of the particular epistemology in the study. A nice example for exploring the com-
plementary relation of individual and social processes in an inquiry-based classroom
has been presented by Tabach et al. (2017).

In the following section, wewill explainwhat wemean by networking theories. To
undertake a networking case, we will present a small piece of data: a students’ group
solution for amathematical problem.This data setwill be analysed fromLompscher’s
perspective of Learning Activity and from Dörfler’s perspective of semiotic game
and diagrammatic reasoning according to the common question of how the process of
problem solving yields the result. By comparing and contrasting the two theoretical
views rooted in the analyses, and the analyses presented, we want to contribute to the
TME program and show the added value of the networking of theories for obtaining
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an in-depth understanding of the two theories as well as the manner in which they
inform teaching and learning practice.

7.6.1 Networking Theories Approach

The Networking of Theories is a research practice of relating different theoretical
approaches to each other and uncovering underlying assumptions, describing their
particular identities and boundaries and, beyond this, contributing to an in-depth
dialogue among theory cultures of mathematics education (see Bikner-Ahsbahs and
Prediger 2014; Prediger et al. 2008), and achieving new kinds of results. For such an
approach, pairs of networking strategies have been developed and ordered according
to their integration potential (Fig. 7.2).

Each theory provides particular knowledge to the field, paying attention to some
aspects while leaving other aspects aside. Therefore, the main assumption in the Net-
working of Theories approach is to respect the diversity of the theories in the field as
richness (Bikner-Ahsbahs 2009). Neither unifying theories nor ignoring other theo-
ries should be part of this practice. The Networking of Theories, say for example the
twoapproaches above, ismore a dialoguebetween theory cultures inmulti-theoretical
research. This ‘dialogue’ (Kidron and Monaghan 2012) can be approached by the
four pairs of networking strategies (Prediger et al. 2008) positioned in between the
two poles of the landscape in Fig. 7.2 and ordered according to their degree of integra-
tion. Networking of theories begins with understanding the other theory and making
one’s own theory understandable. What does this mean? For example, it means that
assumptions which often are implicit should be explicated, or that historical roots
as well as paradigmatic empirical cases can offer access to clarify the essential con-
cepts of the theory (cf. Bikner-Ahsbahs and Prediger 2014). However, sometimes
there are limits. If concepts emerge within an educational culture, it may be difficult
or even impossible to explain them to another culture (Bikner-Ahsbahs et al. 2017,
p. 2689). By comparing and contrasting theories, their similarities, commonalities
and differences can be identified, hence, contribute to deepening the understanding
of both theories. The intermediate step to integration is combining and coordinating

Fig. 7.2 Networking strategies (Prediger et al. 2008, p. 170; Bikner-Ahsbahs and Prediger 2010,
p. 492)
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the theories. This step is not always possible; for instance, when theories cannot be
combined in a compatible way because this would lead to contradictory results in
research. But for instance if the theories address complementary views on the teach-
ing and learning processes (Tabach et al. 2017), the process of improving mutual
understanding may progress. The final step is the strategy pair of local integration
and synthesizing. Local integration sometimes can be achieved when boundary con-
cepts (cf. Akkerman and Bakker 2011), which can be understood from both theories,
are identified (Sabena et al. 2014), orwhen theoretical concepts of two theories can be
integrated into a new theoretical framework (Shinno 2017). As Shinno has shown,
the step of integration may have losses and gains: the concepts in the integrated
framework may change their notion, but open up new directions of research.

This landscape of networking strategies will now be used to network the two the-
ories, Learning Activity and doing mathematics as a semiotic game of diagrammatic
reasoning.

7.6.2 Try to Find a Fraction Representing
√
2

Figure 7.3 represents the solution of the task to try to represent
√
2 as a fraction, done

by a pair of students at grade 9. The initial task of the lesson before was to construct√
2 on the number line by the length of the diagonal of the square with a side length

of 1 unit. This was done in a whole class discussion. In the following lesson, the
teacher posed the task: Work in pairs and try to represent

√
2 by a fraction. His aim

was to prepare the students for the subsequent proof on the irrationality of
√
2 as an

initial step to expand the rational numbers towards the real numbers.

7.6.3 The Semiotic Game Analysis

We first theorize the solution process in Fig. 7.3 by applying Dörfler’s elaboration
on doing mathematics as a semiotic game of diagrammatic reasoning and learning
mathematics as gaining expertise therein. To do so, we have to analyse the diagrams
as they are transformed step by step, and identify the rules represented explicitly or
implicitly in the transformations and relations expressed in the diagrams.

The students begin solving the task with the statement that
√
2 has to be bigger

than 1 but it is not clear where this comes from. They start with the fraction 5
4 being

bigger than one (line 1), as a kind of tentative true rule that ‘this is taken as being
equal to

√
2’.

In step 1 the tentative equation is transposed by conventionalized transformation
rules of equations. The equation obtained is 32� 25, which is wrong. The inequality
is recognized by the students; but their inference ‘the fraction is too big’ is alsowrong
(line 2), since the original fraction is smaller than

√
2. The implicit rule ‘taken as

equal’ was too vague. This kind of reasoning ‘building a tentative equation for
√
2,



7 Theories of and in Mathematics Education 189

Steps:

Step 1:

Step 2

Step 3

Step 4

Step 5

Solution off the student pair Transl

m

2: Is no

3: No, t

4: still!

5: Still d
6: Wors

7: Fits a
8. henc

9: Strat

ation of the

ust be bigge

t right, is

oo small

oes not fit,
e than before

lmost,
e

egy: to make

comment

r than 1

too big.

[the] fraction

s

n fit

Fig. 7.3 A case of diagrammatic reasoning

changing it to remove the square root and interpreting the result’ is repeated in the
following steps but with creative changes in constructing arithmetic equations as
diagrams.

In step 2, both the nominator and the denominator are changed at the same time
by increasing both by 1. Since the nominator is bigger than the denominator, the new
fraction has become smaller, but we cannot assume that the students know this. The
new inference from the resulting equation 50 � 36, that the fraction is “too small”,
is now correct (line 3).

In step 3, the diagram is worked out according to the same rules as before, but
this time only the denominator is reduced by 1. If we take this as an interpretant of
the previous inference, then the underlying rule is to make the next fraction slightly
bigger. From the resulting equation 32 � 36, the students infer now that it is “still”
too small (line 4), but this is wrong. The new fraction has indeed become bigger than√
2.
Step 4 reacts to the previous false inference, since the fraction is now made even

bigger by increasing only the nominator by 1. The result 32 � 49 “still does not fit”
(line 5) and it is even “worse than before” (line 6). “Worse” seems to indicate that the
difference between 32 and 49 is bigger than the one between 32 and 36 taken from
step 3. That the fraction now is bigger than

√
2 does not appear as an interpretant.

Meanwhile a number of rules have emerged: increasing the nominator of the
fraction by 1 and reducing the denominator of the fraction by 1 make the fraction
bigger, reducing the nominator by 1 and increasing the denominator by 1 make
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the fraction smaller. The tentative rule ‘take the two numbers as being equal’ is
a pragmatic rule which can be falsified by the inequality of the result. However,
the inferences about the kind of inequality are inconsistent. From step 3 onwards,
the rule for changing the fractions seems to be ‘change either the nominator or the
denominator by 1 according to the previous result’.

In step 5, we would expect that either the nominator is reduced by 1 or the
denominator is increased by 1. Reducing the nominator would reveal the previous
fraction, hence, this transformation does notmake sense. In fact, the students increase
the denominator by 1. Since the manipulation of the equation now leads to the
two numbers 50 and 49 close to each other the students’ result is

√
2 ≈ 7

5 . The
approximately-equal sign and doubling the underlining indicate that an approximate
result is accepted.

Through diagrammatic reasoning, two kinds of rules are put into effect: (1) if the
equation is true, then themanipulation of it will lead to an equation which is also true.
Otherwise the result will indicate how to approach the next iteration. (2) Finding an
iteration of fractions to box

√
2 is a quasi-systematic way to determine a fraction

close to
√
2.

The students’ interpretations are expressed in linguistic terms, taken as infer-
ences or interpretants, which show that they sometimes interact with the diagrams in
an ambiguous way (line 2 to line 4). The visible transformations, the rules used and
produced, are not precisely expressed. Conventionalized rules for transforming equa-
tions are used as routine actions not addressed in the students’ comments. Only the
results are interpreted, but partly ambiguously. It turns out that the mistakes in steps
3 and 4 are not relevant because the underlying rule to change either the nominator
or the denominator in an opposite direction revealed a result where the mistakes did
not harm the process. The final strategy of approximating

√
2 by boxing it through an

iteration of fractions emerged as a heuristic rule that resonates well with the students’
overall strategy “to make [the] fraction fit” (line 9).

7.6.4 The Learning Activity Analysis

Let us now add the analysis from the perspective of the theory of LearningActivity. In
contrast to Dörfler’s semiotic approach, this theory addresses the complete course of
learning, from the teacher’s planning to the goals, whether they are achieved andwhat
comes next. This planning already startswith the question ofwhich cultural-historical
knowledge should be learned, whether this knowledge is already accessible, and how
the goal should be approached. Specifically the history of teaching and learning in
the class has to be considered in the preparation of this course. The teacher in our
example has initially constructed

√
2 on the number line. His next goal is the proof of

the irrationality of
√
2 as a prerequisite for achieving his final goal: the introduction

of real numbers. In this teaching course, the task above is a sub-task with the sub-goal
yielding the insight that a fraction which exactly represents

√
2 cannot possibly exist.
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Lompscher has emphasized the mutual dependency of the leaning actions, the
learning goals, and the learning objects in the learning conditions that together
provide an arrangement in which the students may constitute their own learning
activity. Not surprisingly, this open task has produced three more types of solutions
in the class. One student pair used their calculator to find an approximate fraction.
A second pair tried to find a finite decimal fraction to represent

√
2 but failed, and

therefore showed by the last digits that this does not work: they got stuck. A third pair
used the factorizing of prime numbers in a fraction to find a representation for: they
also failed, but tried to find a reasonwhy. Given this situation, only the solution above
would prepare the teacher’s intended proof, although at this stage the proof-lesson
could be prepared in a way that also builds on the students’ diverse solutions.

In contrast to Dörfler’s view, the interplay of the subject and the object is at the
core of the learning activity leading to the individual student’s personal development.
Therefore, we have to ask, what kind of knowledge and competencies have the stu-
dents previously built, and prospectively are to build in the future. In the solution
presented in Fig. 7.3, two elementary acquisition actions (stressed by Lompscher) are
shown, identifying and realizing: The students identify a fraction close to

√
2, they

realize transpositions of equations and build an iteration of fractions for approxi-
mating

√
2. They use heuristic strategies and transforming equations as heuristic

means, and thus realize an argumentation similar to that of a proof of contradic-
tion. In their task solution, the two students show trial orientation at the beginning
including errors. But through heuristic strategies (equations as heuristic means and
systematically changing the starting conditions of the next step) they quickly begin to
systematically build an approximation boxing

√
2 into subsequent fractions, probably

not yet conducted quite consciously. However, the way they transform the diagrams
systematically depicts their ability of pattern orientation in the way boxing is real-
ized, based on the interpretation of previous inequality. Field orientation does not
seem to be touched yet because the theme of irrational numbers has just started to
be in the scope of learning.

Can we finally confirm that the students have built their own learning activity
through changing the conditions and resources given?We cannot exactly answer this
question, but we may find indicators for this outcome. The students used heuristic
strategies that are not required, such as equations as heuristicmeans, and as-if-actions
as a heuristic strategy to reveal necessary conditions. They systematically scrutinized
themanipulation of equations and checked the results to continuewith a slight change
of the conditions in the next step. Through heuristics, they constructed conditions
which enabled them to proceed in the solving of the problem. In fact they show quite
proficient problem solving actions leading to a result that could raise the question as
to whether it would be possible to represent

√
2 by a fraction, and whether or not

a final solution could be reached algorithmically. All these aspects indicate that the
students really have established their own learning activity yielding their solution of
the task. However, they might not be aware yet that representing

√
2 by a fraction

is impossible. The theory of Learning Activity would now focus on the teacher’s
actions of how to systematize all the students’ results and provide further tasks and
resources to prepare the intended proof.
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7.6.5 Undertaking a Networking Analysis

Networking both theories based on the empirical analyses confirms the results already
achieved by the analyses done with another empirical case presented in the ICME-13
survey (Bikner-Ahsbahs 2016).

The semiotic approach elaborated by Dörfler starts from a specific home-grown
account of the dynamics of doing mathematics and presents an approach which
describes this doing, however, by adapting the work of two philosophers. The theory
of Learning Activity is a more comprehensive theory elaborated for many subjects,
borrowed and applied to mathematics to develop students’ competencies in doing
mathematics. It explicitly includes learning goals to be achieved. In terms of the
semiotic game view, the students and their mental activities are not at the core of
the analysis. The process of diagrammatic reasoning and the transformation rules
expressed in the diagrams are addressed rather independently of the students’ indi-
vidualwayof interpreting the situation. The inferences can be taken as amathematical
part of the diagrams, thus, of diagrammatic reasoning. We may even state that the
relationships shown in the diagrams, in which the next step can be regarded as an
interpretant to the previous one, advance the transformation process and constitute
the rules. In contrast, the Learning Activity analysis focuses more on the learners, the
cultural-historical conditions and the context in the course of teaching and learning
in which the students may be able to develop themselves by creating an own learning
activity.

Whereas diagrammatic reasoning and the rules obtained belong to the kernel of
the theory’s identity of Dörfler’s semiotic approach, the individual students and their
abilities belong to the theory’s periphery. In Lompscher’s theoretical view, this is the
other way round: the students’ development is at the core of the theory of Learn-
ing Activity, whereas the diagrams are resources belonging to the conditions of this
development. This has considerable consequences for research: the research question
posed must be interpreted differently by the two approaches, and the methodolog-
ical and conceptual tools used to gain scientific knowledge in research also differ.
However, the two approaches could be used in a complementary way.

This complementarity (see Steiner 1985, 1987a) can be described with the
metaphor of “zooming-out and zooming-in” (Prediger et al. 2010, p. 1533, referring
to Jungwirth) when looking at the grain sizes of relevant processes. This is possible
because both approaches share a certain sensitivity towards acting or doing. Coming
from the teacher’s long term planning, wewould zoom in onDörfler’s view to observe
and analyze the diagrammatic reasoning on a micro level, in order to reconstruct the
rules shown in the semiosis. The students’ interpretation may indicate aspects of
their development when the Learning Activity theory is considered. We then would
have to zoom out again in order to take the whole course of teaching and learning as a
complementary view into account. If Lompscher’s view is considered, we would ask
what was learned before the task is posed, what kinds of resources are available, and
which resources have to be made available for the students to reach the sub-goals,
which conditions are to be met, and how they can be changed to accomplish the
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overall goal. Most importantly, the aim would be to construct the course of sub-goals
and sub-actions in a way that constitutes a suitable learning activity for reaching the
learning goal and revealing field orientation.

7.7 Conclusions

What can be learnt from this networking case for advancing the field bymeta-research
in the sense of the TME program?

The debate surrounding the developmental stage of mathematics education as a
scientific field in the 1980s already showed contrasting views. While the analysis
of Burscheid based on the model of Kuhn and Masterman indicates that a mono-
theoretical view was desirable for advancing the field, Bigalke and Steiner empha-
sized the multi-theoretical or even the interdisciplinary character of mathematics
education as a scientific field with a specific focus on complementarity, in which the
practice of teaching and learning of mathematics plays a significant role. If research
is used to inform the practice of teaching and learning or to address diverse cultures,
multi-theoretical views may be much more useful to grasp the complex nature of the
settings in the field. Such an approach could help to gain complementary knowledge
to inform practice regarded from different angles, as Steiner has pointed out. In this
sense, the networking of theories is a kind of meta-research and a challenging way
of research practice, when added to normal research. Its purpose is to contribute to
the improvement of solving problems in the field of mathematics education. For that,
it is necessary to advance theoretical and methodological clarity on the one hand,
and the communication among the theory cultures and among theory and practice on
the other. The previously presented networking example shows that the metaphor of
‘zooming in and zooming out’ may guide research with complementary theoretical
approaches of different grain sizes heuristically.

In the TME program, Steiner has elaborated a more general top-down view for
advancing the field but it does not show how this program can be implemented; that
is, how meta-research can be conducted in a way to advance the field. The TME
program could rather serve as an orientation scheme, whereas the Networking of
Theories regarded as an additional research practice provides examples of concrete
meta-research showing how it improves solving problems in the field and why this
kind of meta-research is useful. The Networking of Theories approach has been
predominantly developed by several European researchers (see Bikner-Ahsbahs and
Prediger 2014), but there are forerunners in the theory tradition of German-speaking
countries, for example interesting cases of the networking of theories were presented
by Bauersfeld (1992a, b) and Maier and Steinbring (1998). Advancing the field as a
scientific domain as Steiner has attempted may be the byproduct of such deep and
careful case-based meta-research.

The Networking of Theories strand has started to provide concrete examples for
such a research practice, pointing to its benefit and being at the same time sensitive
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about the difficulties and limits a multi-theoretical approach may bring with it (see
for example Bikner-Ahsbahs et al. 2017).
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