
Chapter 8
Quantitative Reasoning and Its Rôle
in Interdisciplinarity

Robert Mayes

Abstract TheReal Science, Technology, EngineeringMathematics (STEM)Project
was conducted inmiddle schools and high schools in Georgia, USA. The project sup-
ported the development of interdisciplinary STEM modules and courses in over 20
schools. A project focus was development of five 21st century STEM reasoning abil-
ities. In this chapter, I provide classroom activities from the Real STEM project that
exemplify each form of reasoning: complex systems; model-based; computational;
engineering design-based; and quantitative reasoning. Quantitative reasoning plays a
critical rôle in authentic real-world interdisciplinary STEM problems, providing the
tools to construct data informed arguments specific to the problem context, which
can be debated, verified or refuted, modelled mathematically and tested against real-
ity. Yet quantitative reasoning is often misrepresented, underdeveloped, and ignored
in STEM classrooms. The chapter finishes with a discussion of the impact of Real
STEM.

Keywords Quantitative reasoning · STEM reasoning · Authentic teaching ·
Learning progression

8.1 Introduction

Interdisciplinary Science, Technology, Engineering, and Mathematics (STEM)
teaching and learning is a national obsession in the United States. There are calls
to have STEM integrated into all schools from elementary level through to univer-
sity. Why? First, there is the economic driver of increasing the number of students
pursuing STEM areas to address growing STEM workforce needs. Second, there is
the desire for STEM literate citizens, who can make informed decisions about grand
challenges facing the next generation, challenges such as global climate change,
clean water and the future of energy. Third, there is the proposed positive benefit of
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increasing student engagement, and persistence, in STEM areas through authentic
teaching approaches, that provide hands-on, collaborative opportunities for students.
The National Science Teachers Association, and the National Council of Teachers of
Mathematics, promote standards that support STEM, including the Next Generation
Science Standards (NGSS Lead States, 2013) and the Common Core State Standards
for Mathematics (National Governors Association, 2010).

Mathematics is fundamental to interdisciplinary STEM, providing the processes
to quantify a science problem, analyse engineering designs, and model large data
sets. Applying mathematics to real-world interdisciplinary STEM problems requires
more than knowledge of isolated mathematical algorithms. It requires the student
to quantify the STEM context, and to select the appropriate mathematical tool for a
given problem. The ability to apply mathematics within a real-world context is at the
core of quantitative reasoning. Unfortunately, many students observed in our Real
STEM Project, did not have good quantitative reasoning skills, not even those who
were skilled at manipulation and calculation.

From Spring 2013 through to Spring 2017 the Real STEM Project supported over
39 teachers in 20 partner schools in creating and offering interdisciplinary STEM
research, and design, experiences for students from age 12 to 18. The project advo-
cated that quantitative reasoning is essential in integrating interdisciplinary STEM
into school curricula. The Real STEM project went further by identifying five 21st
century STEM reasoning modalities, that are of high demand in the work force, and
support being a STEM literate citizen. These five STEM reasoning modalities are:
complex systems reasoning, scientific model-based reasoning, technologic compu-
tational reasoning, engineering design-based reasoning, and mathematical quantita-
tive reasoning. In this chapter, I begin by discussing what interdisciplinary STEM
teaching and learning means, present these five STEM reasoning modalities and
provide authentic problem-solving situations in which these reasoning modalities
were explored by students in partner schools. This chapter structure enables me to
illustrate problem-based learning and place-based education in authentic settings as
experienced by Real STEM project teachers and students. Teacher (n � 39) and stu-
dent responses (n � 898) to increased engagement through interdisciplinary STEM
problems was very positive and the chapter concludes with a discussion of how to
take such work forwards.

8.2 Interdisciplinary STEM: Authentic Teaching
and Reasoning Modalities

STEM is the collective study of science, technology, engineering, and mathemat-
ics, with the goal of equipping students with the knowledge and skills to solve tough
problems, gather and evaluate evidence, andmake sense of information (U.S. Depart-
ment of Education, 2015). STEM is, first and foremost, interdisciplinary. The term
STEM is not needed if you have a great science programme, just call it a great science
programme. STEM occurs when two, or more, of the areas of science, technology,
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Fig. 8.1 STEM occurs in the intersections of the Venn diagram, not the single set spaces

engineering, and mathematics are brought to bear on a problem (Fig. 8.1). STEM
engages students in authentic learning, by engaging them in real-world problems that
are student centred and, when possible, tied to the student’s context.

Real STEM project was based in what is known as Problem-Based Learning
(PBL), a learner-centred approach that empowers learners to conduct research, inte-
grate theory and practice, and apply knowledge and skills to develop a viable solution
to a defined problem (Savery, 2006). Long-term retention, skill development, and
student and teacher satisfaction, have been found to be benefits of problem-based
learning when compared with traditional forms of instruction (Strobel & van Barn-
eveld, 2009). Statistically significant gains in achievement, have been observed for
middle school science students, experiencing science in a problem-based learning
format (Williams, Pedersen, & Liu, 1998). Place-Based Education (PBE) uses the
environment as a context for learning, and allows student input on the selection of
the problem to be researched. Studies have found that PBE resulted in students who
scored higher on standardised tests in reading, writing, mathematics, science, and
social studies (Lieberman & Hoody, 1998; Bartosh, 2003; NEETF, 2000). Other
results, from these PBE studies, indicated that students improve overall Grade Point
Average (GPA), stay in school longer, and receive higher than average scholarship
awards. Authentic learning has a number of qualities, including use of: real-world rel-
evance, ill-defined problems, sustained investigation, collaboration, interdisciplinary
perspective, and time for reflection.

The more student centred and problem-driven the STEM task is, the harder it is to
target specific science, or mathematics, concepts. So, why should science and math-
ematics teachers implement authentic STEM tasks in their classrooms? Potential
affective outcomes of authentic learning are increased student engagement and per-
sistence, but what are the learning outcomes? Important learning outcomes include
critical thinking, problem solving, and the ability to reason. Literally the student
should gain a better understanding of how a scientist, computer scientist, engineer,
and mathematician, solve a problem. Five STEM reasoning modalities are of high
demand in the work force: complex systems reasoning, scientific model-based rea-
soning, technologic computational reasoning, engineering design-based reasoning,
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Fig. 8.2 Starlings flocking in Rome https://youtu.be/V-mCuFYfJdI

and mathematical quantitative reasoning. An exemplar for each reasoning modality
is provided below, together with a focus on the rôle that quantitative reasoning plays
in each.

8.2.1 Complex Systems Reasoning

Birds flocking is an exemplar of a complex system. Starlings flocking in Rome
(Fig. 8.2) organise themselves based on simple interactions between birds (the
agents), the result of which, are beautiful emerging patterns from random bird inter-
actions. Flocking is an adaptation that, among other things, confuses predators such
as the Peregrine Falcon.

Complex systems reasoning is the ability to analyse problems, like flocking
behaviour, by recognising complexity, patterns, and interrelationships within a sys-
tem featuring a large number of interacting components (agents, processes, etc.)
whose aggregate activity is non-linear (not determined from the summations of
the activity of individual components) and typically exhibits hierarchical self-
organisation under selective pressures (Holland, 1992). Complex systems are charac-
terised by a number of elements including: agent-based reasoning, where individual
system elements and their interaction are considered; complexity, with a multi-scale
hierarchical organisation of smaller systems within larger ones; emergence of pat-
terns, from random interaction of agents; and self-organisation, to adapt to the envi-
ronment. If the teacher’s goal is real-world problem-driven experiences for students,
then it is likely the problem lies within a complex system, such as a biological
ecosystem.

https://youtu.be/V-mCuFYfJdI
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Simulations of flocking allow students to explore and discover the three simple
rules of flocking: Cohesion (steering to move toward the average position of local
flockmates); Alignment (steering toward the average heading of local flockmates);
and Separation (steering to avoid crowding local flockmates). A flocking simulation
is provided in NetLogo, an open software programmable modelling environment,
for simulating natural and social phenomena (Wilensky & Resnick, 1999). You can
download NetLogo for free and it comes with an extensive library of simulations and
lessons: https://ccl.northwestern.edu/netlogo/download.shtml.

The flocking simulation can be found in NetLogo by selecting File—Models
Library—Biology—Flocking—Open. The simulation allows the student to vary pop-
ulation, vision, and the three rules of flocking. Running the simulation shows students
the emerging behaviour of flocking, without the benefit of a lead bird. The concept
of a system organising, without a leader, is surprising to students, and represents a
central concept of complex system reasoning: self-organisation due to agent inter-
action.

So, where is the interdisciplinary STEM in the flocking example? Where is the
mathematics? Science is evident, with biology, and environmental science, serving
as the driver for the problem, while physics can be invoked through a study of flight.
Science is one of the most common drivers in school interdisciplinary STEM tasks.
If students are left to their own devices in exploring the simulation, the result is often
a qualitative science account of flocking. But there is much more to the problem,
if students are directed to view the problem through multiple STEM lenses, and
to provide data-based arguments supporting their analysis. Technology is present
in use of the simulation, the programming behind the simulation, and in engaging
students in extending the model through programming. Engineering design, can be
incorporated by having students engineer flying machines and compare them to
the birds natural design. Mathematics underlies the development of the simulation.
Quantitative reasoning, about the rules governing the interaction of the birds, provides
for rich mathematical discussion.
Questions to ask the students to explore include:

• What is the most efficient minimum separation for flocking? This evokes distance,
measurement, and inequality (distance to nearest bird < minimum separation).

• What is the effect of changing the maximum separation turn degrees? This evokes
geometry.

• How do I calculate alignment of birds? This evokes trigonometry, specifically use
of the arctangent.

• How do I calculate coherence of birds? This evokes use of sine and cosine.

8.2.2 Model-Based Reasoning

This occurs when students construct scientific models in order to explain observed
phenomena (MUSE, 2015). Common problems in teaching the scientific method are

https://ccl.northwestern.edu/netlogo/download.shtml
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that it becomes an algorithm that is followed linearly, and the result of the research
is not related back to the real-world context. For example, a study of a local pond
includes collection of dissolved oxygen data. The students collect the data, create
a plot, and perhaps even determine trends, but they fail to discuss what the level
of dissolved oxygen means for the pond ecosystem. The question of what type of
fish could live in the pond, if dissolved oxygen is varying between 2 and 6 mg/litre
is never addressed. Model-based reasoning is characterised by: development of a
scientific model; revision of the model; determination of the acceptability of the
model, in explaining all observations; predicting behaviour of the system; being
consistent with other science; empirical assessment (the model explains the data
and predicts future results); and conceptual assessment (the model fits with other
accepted models).

Model-based reasoning can be elicited by having students engage in the seven
step, model-based, reasoning process (Schwarz et al., 2009).

(1) Students observe an anchoring phenomenon of which they do not have a com-
plete understanding.

(2) Students construct a model that expresses an idea or hypothesis about what
is happening. This conceptual model includes a picture of the phenomenon
with components identified, connections between components represented, and
variables quantified when possible, which engages the student in quantitative
reasoning.

(3) The students empirically test the model by determining if it reflects the reality
or the phenomenon they observed.

(4) They evaluate the model against any data they have collected.
(5) The students test their model against other scientific ideas, laws, or theories, to

see if it is consistent with known science.
(6) Once the original model is complete, the students are asked to revise the model

to fit new evidence and known laws of science.
(7) Finally, they apply the model to make predictions and explain the phenomenon.

The phenomenon of electrolysis of water, provides a good exemplar for model-
based reasoning. Set up the experiment as in Fig. 8.3, without discussing the concept
prior to student observation of the phenomenon. Have students go through the seven
step model-based reasoning process (Schwarz et al., 2009) described above. Pure
water is an insulator, and the electrolysis may proceed too slowly, so add salt to
speed up the reaction. Using NaCl as an electrolyte results in some impurity in the
form of chlorine gas at the anode, but that should not be important for the purpose
of this demonstration. Bubbles will form at the tips of pencils immediately. Oxygen
gas bubbles (O2) will form at + electrode (anode). Hydrogen gas bubbles H2 will
form at − electrode (cathode). The amount of H2 will be twice the amount of O2.

In this experiment science is again the driver, with chemistry and physics being
evident. Technology, as computational reasoning, does not play a rôle. Engineer-
ing design, could be integrated into the experiment, by asking students to design
an apparatus that allows them to collect and measure the gases being generated.
Expect that student’s initial models will be qualitative accounts, which include the
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Fig. 8.3 Electrolysis of
water experiment

key components of the experiment, provide an explanation of what is generating the
bubbles, and may label the gases being generated. Most likely, it will not include
a quantitative account, unless specifically prompted. Quantitative analysis of the
electrolysis of water phenomenon includes rate of gas production, amount of gas
produced, and balancing chemical equations that represent the reaction. The authen-
tic, real-world, aspect of the experiment is the production of hydrogen as a renewable
energy resource. This elicits questions of the feasibility of large scale production,
and the cost of transforming electric energy into hydrogen, as a fuel source. Both
of these provide further opportunities for integrating quantitative reasoning into the
task.

8.2.3 Computational Reasoning

Computational reasoning is an analytical approach grounded in the computer sci-
ences, that includes a range of concepts, applications, tools, and skills, that allow us
to solve problems strategically, design systems, and understand human behaviour, by
following a precise process, that engages computers to assist in automating a wide
range of intellectual processes (Wing, 2006). Computational reasoning and large
database analysis, are considered new paradigms of science, expanding beyond the
traditional experimental and theoretical science paradigms. Computational reason-
ing is often viewed by teachers as programming, but, there is more to how computer
scientists reason, than programming. Elements of computational reasoning include:
abstraction by stripping a problem down to its bare essentials, then transferring the
problem solving process to a wide variety of problems; algorithm design; automa-
tion of repetitive tasks to perform them quickly and efficiently; decomposition of
a problem into steps that are implementable by machines; parallel processing; pro-
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gramming, simulation, and modelling; visualisation of large data sets; and capture
and curation of data.

Computer programming is the most common activity implemented in class-
rooms to engage students in computational reasoning. Object oriented program-
ming languages, such as Scratch (https://scratch.mit.edu/), make programming more
approachable for students even at the 9–11 years of age level. However, teaching
computational reasoning does not require expensive technology, or programming.

Computer scientists have their ownways of solving real-world problems.Asmuch
as scientists use model-based reasoning, and engineers use design-based reasoning,
computer scientists employ algorithmic reasoning. An algorithm is a set of instruc-
tions designed to perform a specific task. For example, computer scientists are often
asked to sort a list given some criteria, for example putting names into alphabetic
order. Sorting allows the user to find a name more efficiently. There are many meth-
ods for sorting a list, some more efficient than others. The following sorting task
engages students in creating their own sorting algorithm, and testing it against oth-
ers, to see which sorts most efficiently. Provide the students with 8 film canisters of
the same size but with different weights (e.g. filled with different amounts of sand)
and a simple balance scale. Determine the best method of sorting the 8 containers
provided so they are in order from lightest to heaviest. Make a comparison of effi-
ciency with another group by swapping sorting algorithms and seeing who can sort
the containers in the fewest moves. Clarity of the algorithm will be essential for oth-
ers to complete the sort, so students need to determine if the algorithm was detailed,
and clear enough, to follow easily.

This is a great computational reasoning task, but is it interdisciplinary STEM?The
task does not include science, but engineering design could be incorporated if students
are asked to engineer a measuring device for sorting the containers. Technology
is emphasised by requiring algorithmic reasoning, and exploring different sorting
algorithms. There are a number of sorting algorithms studentsmight discover, such as
the selection sort (lightest weight is found and removed, then repeat with remaining
canisters) or the insertion sort (with each sort the new canister is placed in the
appropriate position in the previously sorted canisters). Other sorts include the bubble
sort, quick sort, and the mergesort. But where is the mathematics in the sorting task?
The quantitative reasoning arises in the efficiency count. Ask students to provide a
quantitative account of the efficiency of their algorithm. This engages the students
in the discrete mathematics area of combinatorics (counting without counting). For
example, for the insertion sort the students can begin by calculating the efficiency for
an increasing number of containers. For 3 containers it is a maximum of 2 measures,
for 4 containers 5 measures, for 5 containers 9 measures. A pattern emerges, where
for n containers (n > 2) the number of measures is the sum of the integers from 2 to n
− 1. Adjusting the formula for the sum of the first n integers, to account for starting
at 2 (subtract 1) and ending at n − 1, the number of measures for n canisters would
be given by the formula:

(n − 1)n

2
(1)

https://scratch.mit.edu/
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In addition, a comparison of efficiency for different sorting algorithms provides
the opportunity for integration of algebraic inequalities.

8.2.4 Engineering Design-Based Reasoning

Engineering design-based reasoning is the ability to engage in the engineering design
process, thereby using a series of process steps to come up with a solution to a
problem (PLTW, 2017). Many times the solution involves designing a product that
meets certain criteria and, or, accomplishes a certain task. There are a variety of
engineering design process models, but most have variations of the following steps:

(1) Define the problem including determining criteria the design must meet and the
constraints on the design;

(2) Research the problem;
(3) Brainstorm solutions;
(4) Choose the best design;
(5) Build a prototype;
(6) Test the prototype; and
(7) Redesign.

As with the scientific method, it is important to stress that the design process is
not a linear process, but a circular one which often requires jumping back to previous
steps in the process. Engineering design tasks and scientific experiments were the
twomost common problem drivers in our observations of Real STEMproject classes.

Alternative energy design problems provide a good engineering context. For
example, designing an efficient wind turbine blade, provides an excellent interdisci-
plinary STEM task. A base for the wind turbine can be provided, including a stand,
motor, and wiring (Fig. 8.4). The U.S. Department of Energy has detailed plans for
a wind turbine base in Building the Basic PVC Wind Turbine (http://www1.eere.
energy.gov/education/pdfs/wind_basicpvcwindturbine.pdf).

A student is only responsible for the design of the wind turbine blade. A variety
of materials, for blade construction, can be provided for students to choose from, or
the teacher can allow the students to forage for materials. Students work in teams
to design blades from selected materials, and mount them on a hub that can be
connected to thewind turbine base. The engineering design process guides all aspects
of the blade development, including the critical component of identifying criteria,
and constraints, for blade construction. Constraints of materials used to create blades
provide an opportunity to integrate materials science into the task. Criteria can be
set by students, and include outcomes, such as continuous blade rotation for at least
a minute, blade rotation speed, or a minimum energy production requirement. A
multimeter can be used to measure volts produced. Students keep a design notebook,
where they log each step in the engineering design process.

Redesign is an essential part of engineering design. Students can consider a num-
ber of variables that may have an impact on blade performance: blade length and

http://www1.eere.energy.gov/education/pdfs/wind_basicpvcwindturbine.pdf
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Fig. 8.4 Wind turbine base and set up for testing blades

P = Power in the Wind (watts)

ρ = Density of the Air (kg/m3) 

r = Radius of your swept area (m)

V = Wind Velocity (m/s)

π = 3.14

P = ½ ρ π r2 V3

Fig. 8.5 Power in the wind formula

pitch, number of blades, material used in blades, including smoothness of surface,
and blade shape. Engineering design tasks have great potential for interdisciplinary
STEM learning, but observations of Real STEM classes indicated that the poten-
tial was often not realized. If students are not held to rigorous engineering design
standards, then the tasks may devolve into a trial and error mode, where there is no
observable science, technology, or mathematics. The wind turbine blade task can
engage students in the earth systems science topic of wind and weather, as well as
physics of power. The task supports the use of technology including circuits, motors,
and a multimeter. It also has plentiful mathematical applications. A simple equation
for power can be used to provide a quantitative reasoning aspect to the problem
(Fig. 8.5). With this equation students can determine the power generated by a typi-
cal house fan with wind velocity V � 5 m/s (metres per second), density of air ρ �
1.0 kg/m3 (kilograms per cubic metre), and radius of swept area r � 0.2 m.
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8.2.5 Quantitative Reasoning

Having discussed the integration of mathematics into the other four STEM reason-
ing modalities, now I focus on quantitative reasoning itself. The Culturally Relevant
Ecology, Learning Progressions, and Environmental Literacy project (Mayes, Peter-
son, & Bonilla, 2012, 2013) developed a definition of quantitative reasoning, as well
as a learning progression proposing a trajectory of QR development across ages
12–18.

Quantitative Reasoning (QR), in context, is mathematics and statistics, applied in
real-life, authentic, situations, that have an impact on individual’s life as a con-
structive, concerned, and reflective citizen. QR problems are context-dependent,
interdisciplinary, open-ended, tasks that require critical thinking and the capacity
to communicate a course of action (Mayes et al., 2013).

Once QR was defined, the research team began to construct, based on the lit-
erature and professional experience, a framework for QR that would be evaluated
through development of a learning progression. The four key components of QR in
the framework and key researchers’ work upon which they were determined are:

1. QuantificationAct (QA): Themathematical process of conceptualizing an object,
and an attribute of it, so that the attribute has a unit measure (Thompson, 2011;
Dingman & Madison, 2010).

2. Quantitative Literacy (QL): The use of fundamental mathematical concepts in
sophisticated ways for the purpose of describing, comparing, manipulating, and
drawing conclusions, from variables developed in the quantification act (Steen,
2001; Madison, 2003; Briggs, 2004).

3. Quantitative Interpretation (QI): Ability to use models to discover trends, and
make predictions (Madison & Steen, 2003; Thompson & Saldanha, 2000).

4. QuantitativeModelling (QM): The ability to create representations that explain a
phenomenon, and to revise them based on fit to reality (Duschl, Schweingruber,
& Shouse, 2007; Schwarz et al., 2009; Lehrer, Schauble, Carpenter, & Penner,
2000).

A learning progression is a set of empirically grounded, and testable, hypotheses
about how, with appropriate instruction, students’ understanding of, and ability to
use, core scientific concepts, explanations, and related scientific practices, grow and
become more sophisticated over time (Corcoran, Mosher, & Rogat, 2009). Learn-
ing progressions provide levels of understanding through which students develop
mastery of a concept over an extended period of time, such as over six years from
ages 12–18. The QR learning progression is conceptualised as having four levels: the
lower anchor, upper anchor and two intermediate levels of understanding. The lower
anchor is grounded in data collected on 12 year olds understanding of QR (Mayes
et al., 2014b). The upper anchor is based on expert views of what a scientifically lit-
erate citizen, who is well versed in QR, should know, and be able to apply by age 18.
A learning progression defines progress variables, which are essential categories for
the overall concept across which the levels are established. The progress variables for
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the QR learning progression were drawn from the four components in the QR frame-
work (Mayes, Forrester, Christus, Peterson, & Walker, 2014a). The Quantification
Act, andQuantitative Literacy, components were combined under Quantification Act
(QA), with the expectation that once a variable is conceptualized, then fundamental
mathematical concepts allow one to compare, contrast, manipulate, and combine
the variables to form mathematical expressions. Quantitative literacy is essential to
moving, from quantification, to building and interpreting models. This reduction of
the framework left three progress variables in the QR learning progression: Quan-
tification Act (QA), Quantitative Interpretation (QI), and Quantitative Modelling
(QM).

Finally, each of the progress variables were elucidated by identifying a collec-
tion of elements, that indicate essential capabilities within the categories that were
determined through student interviews, and tested, throughout development of the
learning progression:

• Quantification Act Elements: Variation, Quantitative Literacy, Context, Variable
• Quantitative Interpretation Elements: Trends, Predictions, Translation, Revision
• Quantitative Modelling Elements: Create model, Refine model, Reason with
model, Statistical analysis.

For a detailed presentation of the learning progression see Mayes et al. (2014a).

8.2.5.1 Quantitative Reasoning Examples

Mathematics is not typically the driver for STEM in schools. In STEM, S, and E, are
the most common drivers, with T, and M, playing support rôles. Can mathematics
be the driver in STEM? Certainly, verification of a mathematical statement, or a
mathematical argument supporting a conjecture, can be a driver in STEM, if the
conjecture is connected to a real-world STEM application. The difficulty is engaging
a broad range of students in such mathematical discourse. Quantitative reasoning
provides the opportunity for mathematics to play a more central rôle in STEM.

For authentic real-world interdisciplinary STEM problems, the quantification act
is the ability to mathematise the problem, moving from a qualitative account to a
quantitative description, by establishing quantitative variables, connecting the vari-
ables through exploring covariation, and building algebraic expressions. Quantitative
modelling is the creation and refinement of a model, reasoning with mathematical
models, and the use of statistical inference, to test hypotheses springing from anal-
ysis of data gathered on the problem. Quantitative interpretation is using a model
to determine trends and make predictions, revision of models to fit reality, and the
translation between multiple models of the same problem. Here I use the topic of
sustainable energy, and environmental impacts, as a context for exploring the rôle of
quantitative reasoning in STEM (Mayes & Myers, 2014). The amount of data, and
variety of representations, in the area of energy challenge quantitative interpretation
abilities.
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Fig. 8.6 Energy models (Mayes & Myers, 2014). U.S. Energy History. Source U.S. Energy Infor-
mation Administration (2012)

Quantitative reasoning is recognised as an essential component for making
informed decisions (Mayes et al., 2012). Quantitative reasoning, moves past quanti-
ties and values, to conceptualise and interpret, the relationships and contexts defining
them (Thompson, 1993;Ramful&Ho, 2015).Within an interdisciplinary framework,
quantitative reasoning, is envisioned as the application of mathematical concepts
and models across domains to discover trends, and make inferences and predictions
(Mayes&Koballa, 2012;Elrod, 2014). Further, quantitative reasoningdistances itself
from traditional mathematics, through its emphasis on ill-defined, open ended, real
world problems (Mayes et al., 2012; Elrod, 2014). Unlike traditional mathematics,
which places emphasis on calculations, and manipulations of abstract representa-
tions, quantitative reasoning is distinct in its emphasis on the underlying meaning of
mathematical functions, and its application to authentic real-world problems (Elrod,
2014). Quantitative reasoning problems are context dependent, interdisciplinary, and
open-ended, tasks that require critical thinking and the capacity to communicate a
course of action. The energy exemplar, below, elucidates major rôles for quantitative
reasoning in interdisciplinary STEM. Consider the representations in Fig. 8.6. Stu-
dents need to understand the variable attributes and measures (QA) before they can
interpret a model (QI).

Modelling data, and testing statistical hypothesis (QM), are critical for many real-
world STEM problems. Given the data on U.S. Oil Consumption and Production in
Table 8.1, there are a number of quantitative analyses that can be performed in
analysing these data.
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Table 8.1 U.S. Oil Consumption and Production, 1990–2018 (Year 1 is 1990)

Year Production Consumption Year Production Consumption

1 7.36 16.99 16 5.18 20.80

2 7.42 16.71 17 5.09 20.69

3 7.17 17.03 18 5.08 20.68

4 6.85 17.24 19 5.00 19.50

5 6.66 17.72 20 5.35 18.77

6 6.56 17.72 21 5.48 19.18

7 6.46 18.31 22 5.65 18.88

8 6.45 18.62 23 6.49 18.49

9 6.25 18.92 24 7.47 18.96

10 5.88 19.52 25 8.76 19.11

11 5.82 19.70 26 9.41 19.53

12 5.80 19.65 27 8.85 19.63

13 5.74 19.76 28 9.35 19.97

14 5.65 20.03 29 9.91 20.30

15 5.44 20.73

Production and consumption unit ismillion barrels per day (×106).U.S. Energy InformationAdmin-
istration https://www.eia.gov/outlooks/steo/data/browser

8.2.5.2 Descriptive Statistics Analysis

Use Excel to find measures of centre (mean, median, mode) and spread (range,
standard deviation). What do these descriptive statistics tell you about the data sets?

Should you use the mean, median, or mode for this data set? Should you use the
range, or standard deviation? Why? Construct a histogram of the data, to explore
issues of data distribution type, related to which measure of centre and spread to use.
Statistical display:

• QM Model—Data Display: Which is the best data display to use for these data
(frequency table, bar chart, histogram, pie chart, scatter plot, dot plot, stem and
leaf plot, box and whisker plot)? Why?

• QM Trends and Predictions: Use the data display you selected to discuss trends
in the production and consumption data. Make a prediction of production and
consumption in 2020.

Modelling:

• QM Mathematical Model: Create a mathematical model for production by year,
using a line, or curve, of best fit. Use the model to extend the discussion of trend,
and verify your prediction.

• Now find the line of best fit for the consumption by year. Predict consumption in
2020. Extension: Attempt a curve of best fit, for example a parabola. Does it fit

https://www.eia.gov/outlooks/steo/data/browser
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Table 8.2 Selecting a statistical test

Test HypothesisIndep’t
Var’ble

Dep’t
Var’ble

Co-
variates

Contin.
or Cat.
Ind’p’t
Var

Contin’
or Cat.
Dep’t
Var

Dist’n

t test Grp
Comp

1 1 0 Cat. Cont. Normal

ANOVA Grp
Comp

1or
more

1 0 Cat. Cont. Normal

Chi-sq. Grp
Comp

1 1 0 Cat. Cat. Non-
normal

Pearson R Relate
Var’s

1 1 0 Cont. Cont. Normal

better than the line of best fit? Is the additional complication of a quadratic model
worth it?

Hypothesis testing:

• QM Hypothesis Testing: Is the difference between production and consumption
significant? We can test that question by comparing the means of the production
and consumption data sets. First, examine a visual display of the two data sets, to
see if they appear to be significantly different. Construct box and whisker plots
for both production and consumption.

An easy online boxplot tool is the Boxplot Grapher (http://www.imathas.com/stattools/
boxplot.html).

Do the plots support the hypothesis that there is a significant difference? Can we
say the difference is significant using only a visual display?

• QM Statistical Hypothesis Testing: While comparing box and whiskers plots pro-
vides some intuition about differences in data sets, determining if there is a sta-
tistically significant difference requires conducting a formal statistical analysis.
First, determine the best statistical test to use to assess the null hypothesis that the
two data sets are not statistically different. Table 8.2 identifies four basic statistical
tests, and the conditions under which they should be used. Which works best for
this problem?

• The descriptive statistics, called for above, provide some information on which to
conjecture about the type of distribution criteria. Use histograms for the two data
sets for a visual representation of distribution type (normal or nonnormal). Which
statistical test is best to use considering what you know about the production and
consumption data sets?

• Use Excel to run the best statistical test for the null hypothesis. Use theData—Data
Analysis—t-Test: Two-Sample assuming Unequal Variances (NOTE t-test has
several versions, this is the best for this data). Run with an alpha level of 0.05 (5%
risk that we accept a difference that does not exist, that is the null hypothesis true

http://www.imathas.com/stattools/boxplot.html
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Fig. 8.7 Type I and Type II
errors

but we say it is false). Interpret the resulting table. Is there a statistically significant
difference between the data sets?

8.2.5.3 Inferential Analysis—Hypothesis Testing

It is important that students understand the concept behind hypothesis testing. We
begin with a null hypothesis, that there is no difference between the data sets. We
set an alpha level, typically α � 0.05, which indicates the maximum risk we are
willing to take that any observed differences are due to chance. So for α � 0.05 we
are willing to risk 5% of the time that we say there is a significant difference when
there is not (Fig. 8.7). This is called a Type I error, where we have a false positive
which is the worst possible outcome. We can also be in error when there is an effect
but the test does not pick it up. This is called a Type 2 error, but we have a false
negative which is at least more conservative, and therefore, less of a concern.

• State the Type 1 and Type 2 errors in terms of the production-consumption com-
parison.

Unless we have a good reason to believe that prior to the experiment the rela-
tionship will occur in one direction, such as that consumption will always exceed
production, then we use a two-tailed test. If we do have a sense of direction for the
outcome we use a one-tailed test. Let’s use a two-tailed test for our comparison.
Hypothesis testing is a probability game that indicates if we should accept or reject
the null hypothesis (Fig. 8.8). If the probability value p is high then the null hypoth-
esis is likely true and we do not reject it. If the probability value is less than α �
0.05 then it is highly unlikely any difference is due only to chance (fewer than 5%
of studies would result in the difference due to random sampling error only) so we
reject the null hypothesis.
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Fig. 8.8 A two-tailed test of a null hypothesis at an alpha level of 0.05

• State the above, with reference to the production-consumption comparison.

This concludes the presentation of examples of quantitative reasoning. The Real
STEM Project classroom observations revealed that students struggled with QA and
QI, and that teachers rarely engaged them in QM. Too often, interdisciplinary STEM
tasks assigned by teachers, did not move the students beyond qualitative science
descriptions or engineering designs lacking in quantitative analysis.

8.2.6 Evaluation

Teacher (n � 39) and student responses (n � 898) to increased engagement through
interdisciplinary STEM problems was very positive. Teacher focus groups indicated
positive interest and activity in developing STEM partnerships with businesses and
research institutes. The teachers had areas of concern with implementing the STEM
reasoning modalities, and sustaining collaboration with teachers in other STEM
areas. The middle schools (ages 12–14) found it easier to have teachers collaborating
on STEM research and design courses, due to the cross disciplinary team structures
that exist in many middle schools, and the availability of flexible courses as a nat-
ural place to implement STEM courses. For example, Connections Courses, which
provide opportunities for middle grade students to explore high school career path-
ways, were the common vehicle for establishing an interdisciplinary STEM course
at the middle school level. The subject area silo structure of high schools, and the
barrier of developing and staffing new courses in STEM, made it more of a challenge
for high schools (ages 15–18) to sustain interdisciplinary STEM courses. In order
to overcome the teacher collaboration and structure issues, of implementing inter-
disciplinary STEM programmes, it is essential to have administrative support and
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participation. The most successful high school STEM courses thrived when given
administrative support.

Student surveys were conducted to determine student reaction to the STEM
courses. Overall, the results indicated that students expressed statistically signifi-
cant increases in Intrinsic Motivation, Self-Management and Self-Regulation, and
Intent to Persist in STEM. The largest student gains observed were in the Intrinsic
Motivation construct. For example, before taking the STEM courses 54% of students
said that they enjoyed challenging classwork; after completing the courses 75% of
students agreed that they preferred classwork that was challenging. Likewise, before
taking the courses 62% of students agreed that the content they were learning could
be used in other classes. After the courses, 81% of the students felt that they would
be able to use what they learned in their other classes. A second survey examined
student (1) interest in STEMfields, (2) confidence in their ability to perform academ-
ically in STEM fields, (3) feelings about the importance of understanding STEM,
(4) interest in taking classes and pursuing post-secondary education in STEM fields,
and (5) interest in STEM careers. There were significant differences in all five cat-
egories, supporting improved student attitudes and beliefs, upon completion of a
STEM course.

8.3 Conclusion

The push to incorporate interdisciplinary STEM into existing science and math-
ematics classes, as well as for development of new STEM research and design
courses, provides an excellent opportunity for interdisciplinarity for mathematics.
STEM problems are real-world, complex, and require cross-disciplinary applica-
tions. Quantitative reasoning is a natural fit for such problems, consisting of the
tools and concepts supporting quantification, interpretation, and modelling of STEM
problems. The challenge for STEM in general, and mathematics specifically, is that
quantitative reasoning abilities are not well developed in most students. We need to
develop mathematical reasoning across STEM in an interdisciplinary manner.

The Real STEM project provides a model for developing and integrating inter-
disciplinary STEM courses into traditional middle schools and high schools. In the
USA, intensive interdisciplinary STEM programmes are often the province of spe-
cialized STEMmagnet schools or academies. The demand for STEM understanding
far exceeds these specialized schools, both for workforce needs, and for STEM
literate citizens. But, there are extensive barriers to integrating STEM into tradi-
tional middle schools and high schools, including curricula guided by excessive high
stakes testing, extensive curriculum implementation guidelines, that limit flexibility
in both topics taught and order in which they are presented, teachers’ fear of going
beyond their disciplinary boundaries, inflexible school schedules, that inhibit cross-
disciplinary planning time, and lack of administrative support for interdisciplinary
STEM and authentic teaching. So what can stakeholders take from the Real STEM
project?
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Practitioner stakeholders can use theReal STEM tenets as a guide to implementing
interdisciplinary STEM in their classrooms. ICARE is an acronym for the key tenets:

• Interdisciplinary STEM that integrates the four STEM subjects across mathemat-
ics, science, engineering, and technology courses.

• Collaboration both within schools, through interdisciplinary STEM Professional
Learning Communities (PLC), and external to the school, though partnerships that
bring STEM experts into the classroom from the community, business, and indus-
try, and research institutes such as universities and government research entities.

• Authentic teaching strategies, that engage students in real-world problems, and
provide opportunities for student-centred research and design performance tasks.

• Reasoning in STEM that moves beyond entertaining activities, to performance
tasks that reflect understanding and reasoning.

• Education for Understanding, that identifies enduring understandings, and essen-
tial questions, that motivate students to engage in developing and demonstrating
deeper conceptual understanding.

Practitioners should focus on providing opportunities for model-based reason-
ing, design-based reasoning, and quantitative reasoning. All of these permeate the
four subject areas of STEM, and when applied in real-world contexts, provides the
opportunity to incorporate social sciences. Implementing the ICARE tenets requires
teachers and administrators to work together to overcome barriers, such as, com-
mon PLC planning time, development of community partnerships, and flexibility in
shuffling curriculum to allow for collaborative lessons across subject areas.

Policy-maker stakeholders should take notice of our research, that indicated the
Real STEM project’s impact on improving positive student engagement and the
students’ struggle with interdisciplinary STEM reasoning. Reduce excessive testing
and curricular control, allowing teachers the flexibility to use authentic teaching
strategies to improve student understanding of STEM.

For researchers, the project outcomes include a Quantitative Reasoning Learning
Progression, a diagnostic assessment of interdisciplinary STEM for middle and high
school grades (ages 12–18), student and teacher attitude surveys, a classroom obser-
vation protocol, and an exemplar for using Rasch Analysis to analyze these tools.
Quantitative reasoning does not have a home within any of the STEM subject areas,
not even mathematics. There is a need for research on the teaching and learning
of quantitative reasoning in STEM. How do we meet the challenge of sustaining
interdisciplinary quantitative reasoning across subject matter silos which constitute
today’s schools?
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