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Abstract. Multi-modal learning aims to build models that can relate
information from multiple modalities. One challenge of multi-modal
learning is the prediction of a target modality based on a set of mul-
tiple modalities. However, there are two challenges associated with the
goal: Firstly, collecting a large, complete dataset containing all required
modalities is difficult; some of the modalities can be missing. Secondly,
the features of modalities are likely to be high dimensional and noisy.
To deal with these challenges, we propose a method called Generalized
Bayesian Canonical Correlation Analysis with Missing Modalities. This
method can utilize the incomplete sets of modalities. By including them
in the likelihood function during training, it can estimate the relation-
ships among the non-missing modalities and the feature space in the
non-missing modality accurately. In addition, this method can work well
on high dimensional and noisy features of modalities. This is because, by
a probabilistic model based on the prior knowledge, it is strong against
outliers and can reduce the amount of data necessary for the model
learning even if features of modalities are high dimensional. Experiments
with artificial and real data demonstrate our method outperforms con-
ventional methods.

Keywords: Multi-modal learning · Missing modalities
Bayesian inference · Canonical Correlation Analysis

1 Introduction

In the field of machine learning, multi-modal learning, which models relation-
ships among multiple modalities, has been studied actively. One challenge of
multi-modal learning is to construct a predictive model from a set of multiple
modalities to a certain modality. We call the modality to be predicted target
modality and the modality to be used to predict a target modality source modal-
ity. As a model for estimating the relationship between different modalities,
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L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11134, pp. 641–656, 2019.
https://doi.org/10.1007/978-3-030-11024-6_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11024-6_48&domain=pdf
http://orcid.org/0000-0002-6276-2276
http://orcid.org/0000-0001-9446-5068
https://doi.org/10.1007/978-3-030-11024-6_48


642 T. Matsuura et al.

Fig. 1. An example of a real sample missing modalities. � means that the modality is
provided and × means that it is not provided. In this figure, only Element 3 provides all
modalities and the others have missing modalities in various patterns. GBCCA-M2 can
utilize all elements in learning and predict a target modality from source modalities.

canonical correlation analysis (CCA) [9] is representative, and there are prior
studies that actually use CCA for prediction [7]. Also, note that we will call
the set of modalities collected from an object an element, and we will refer to a
group of elements as a sample respectively.

There are two challenges in building such a model: some modalities are miss-
ing for any reason. For example, in purchaser behavior prediction, some people
often refuse to provide some modalities because of their privacy. As Fig. 1 shows,
there are various patterns of missing modalities, which makes the problem more
difficult. Further, the features of modalities likely to be high dimensional and
noisy. The situation occurs when we collect a large amount of information. To
deal with these challenges, we propose a method called Generalized Bayesian
Canonical Correlation Analysis with Missing Modalities (GBCCA-M2). This
method can learn relationships among different modalities utilizing the incom-
plete sets of modalities by including them in the likelihood function. This study is
motivated by the previous works [13,26] which utilized incomplete sets of modal-
ities. These previous works were proposed to learn the relationships between two
different modalities, whereas our method can deal with more than two different
modalities. In addition, this method works well on high dimensional and noisy
modalities thanks to the prior knowledge incorporated on the parameters of a
model. The prior knowledge is introduced to control the sparsity of the weight
parameters linking each latent variable to modalities, which makes the model
robust to high dimensional and noisy features of modalities. The main contribu-
tions of this paper are as follows:

– We propose Generalized Bayesian Canonical Correlation Analysis with Miss-
ing Modalities (GBCCA-M2) which is a learning model that can account for
elements with missing modalities in the likelihood function.

– Through an experiment using artificial data, we demonstrate that GBCCA-
M2 improves prediction performance when using elements with missing
modalities, and it is effective for high dimensional and noisy modalities.

– Through an experiment using real data, we demonstrate that GBCCA-M2 is
more effective for predicting purchaser behavior and retrieving images from
English and Japanese sentences than existing methods.
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2 Related Work

Through much research on multi-modal learning, it has been determined in vari-
ous tasks that performance can be improved by using multiple source modalities
rather than using only one [10,25]. CCA [9] is a method that learns relationships
between two modalities. Given pairs of modalities, the model learns to project
them into the latent space where they are maximally correlated. CCA has many
variants, such as Generalized CCA [5], kernel extensions [1,15], probabilistic
CCA (PCCA) [3] and Bayesian CCA (BCCA) [14,23]. Generalized CCA extends
to CCA in order to capture relationships among more than two modalities. The
probabilistic models such as PCCA or BCCA incorporate prior knowledge into
their parameters and can learn relationships between high dimensional and noisy
features of modalities. We explain the details of BCCA in Sect. 3. The difficulty
in learning relationships between paired modalities is that it is often expensive
to collect a large number of paired modalities. In reality, there are a limited
number of paired modalities; however, unpaired modalities may be accessible.
To overcome this problem, extensions of CCA for semi-supervised learning have
been proposed (e.g., Semi CCA [13], Semi PCCA [11,26]). Semi PCCA can deal
with elements that are missing modalities by describing likelihood for use with
them. However, this method can only deal with the case where only one of the
two modalities is missing. Therefore, we will introduce the methods that are
used for general missing data analysis below.

Statistical analysis of missing data is roughly classified as one of the following
three types [17]: (1) complete case analysis (CC) [12,20], (2) imputation of miss-
ing values, and (3) describing likelihood for use with missing data. CC is simple,
but elements with missing values are not utilized. As for imputation of missing
values, this includes mean imputation, regression imputation, or multiple impu-
tation. Methods for complementing missing values by autoencoder [8] have also
been developed, and the extensions, such as Cascaded Residual Autoencoder [22]
attacks the cases where the modalities are missing. Since imputations of missing
values mainly assume that the missing values occur randomly, they are not suit-
able for the case of missing modalities. As for the studies on describing likelihood
for use with missing data [6,18,26], it is known that these methods hold looser
assumptions than CC and imputation of missing values. However, these methods
merely estimate the distribution of data or regress missing values. Although a
regression can be performed using parameters learned by Semi PCCA, this is
not suitable for the case of multi-modal learning with missing modalities. In our
experiments, we use CC and mean imputation to make spuriously complete data
for comparison of methods.

3 Generalized Bayesian Canonical Correlation Analysis
with Missing Modalities

Since our proposed method is motivated by Bayesian CCA (BCCA) [14,23] and
Semi CCA [13], we will first review these two methods separately.
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Fig. 2. Graphical illustration of the BCCA model as a plate diagram. The shaded nodes
indicate the two observed variables, and the other nodes indicate the model parameters
to be estimated. The latent variable z captures the correlation between x1 and x2.

3.1 Bayesian Canonical Correlation Analysis

BCCA [14,23] is a method that adapts the hierarchical Bayesian model to
CCA [9]. Fujiwara et al. [7] proposed a new BCCA model to reconstruct images
from human brain information. As shown in Fig. 2, the new model captures the
relationships between the two modalities. In the model, modalities xi ∈ R

di (i =
1, 2) are generated by common latent variables z ∈ R

dz , dz ≤ min(di) and weight
matrices Wi ∈ R

di×dz , where di and dz represent the dimension of modalities
and latent variables, respectively. In addition, weight matrices are controlled by
parameters αi ∈ R

di×dz . The likelihood of the modalities is

P (xi|Wi,z) ∝ exp

(
−1

2

N∑
n=1

(xi(n) − Wiz(n))T βi (xi(n) − Wiz(n))

)
, (1)

where βiIdz
(βi ∈ R

1) represents covariance of the Gaussian distribution, Id rep-
resents a d × d identity matrix, and, N represents the sample size. The prior
distribution of latent variables is

P0(z) ∝ exp

(
−1

2

N∑
n=1

‖z(n)‖2
)

. (2)

Latent variables are generated from the Gaussian distribution whose mean is 0
and whose covariance is I. The prior distribution of weight matrices is

P0(Wi|αi) ∝ exp

(
−1

2

di∑
s=1

dz∑
t=1

αi(s,t)W
2
i(s,t)

)
. (3)

The (s, t) element of weight matrices is generated from the Gaussian distribu-
tion whose mean is Wi(s,t) and whose covariance is αi(s,t). Weight matrices are
controlled by hyper-parameters αi, whose hyper-prior distribution is

P0(αi) =
di∏

s=1

dz∏
t=1

G(αi(s,t) |αi(s,t) , γi(s,t)), (4)

where G(α|α, γ) is the Gamma distribution whose mean is α and whose con-
fidence parameter is γ. This probability model (Eqs. (1) and (4)) is known as
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Fig. 3. An example of spatial estimation by Semi CCA. By using unpaired elements,
we can estimate a direction closer to that estimated in the case that all the unpaired
elements would have been paired, than by using only paired elements.

automatic relevance determination (ARD) [19], which drives unnecessary com-
ponents to zero. The prior distribution of observation noise βi is

P0(βi) =
1
βi

, (5)

which is called non-informative priors. Parameters are estimated by variational
Bayesian inference [2], and the predictive distribution of the target modality is
driven using these estimated parameters (Fig. 3).

3.2 Semi Canonical Correlation Analysis

Semi CCA [13] is a method that extends CCA to a semi-supervised one by
combining CCA and principal component analysis (PCA). We denote the group
of elements whose modalities are paired as P , the ones whose are not paired as
U , and the sample covariance matrices as Σs. The solution of Semi CCA can be
obtained by solving the following general eigenvalue problem.

B

(
w1

w2

)
= λC

(
w1

w2

)
, (6)

B = β

(
0 Σ

(P )
12

Σ
(P )
21 0

)
+ (1 − β)

(
Σ

(P+U)
11 0
0 Σ

(P+U)
22

)
, (7)

C = β

(
Σ

(P )
12 0
0 Σ

(P )
21

)
+ (1 − β)

(
ID1 0
0 ID2

)
. (8)

β represents the contribution ratio of CCA to PCA. Similar to this, we introduce
contribution rates of elements missing modalities to GBCCA-M2. Semi CCA
has an application in probabilistic models, such as Probabilistic Semi CCA [11,
26]. However, they are not suitable for high dimensional and noisy features of
modalities because the premise that weight matrices become sparse in learning
is not assumed, which causes overfitting.
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Fig. 4. Graphical illustration of the GBCCA-M2 model as a plate diagram. Each ele-
ment used in learning has two or more modalities and various missing patterns. The
shaded nodes xi indicate the observed variables. The latent variable z captures the
correlations among the xis.

3.3 Generalized Bayesian Canonical Correlation Analysis
with Missing Modalities

As mentioned in Sect. 1, some of the modalities are missing and the features of
them are high dimensional and noisy. Considering these characteristics, the fol-
lowing functions are necessary for our method: (F1) dealing with various patterns
of missing modalities, (F2) dealing with more than two different modalities, (F3)
highly accurate prediction for high dimensional and noisy features of modalities.
BCCA meets F3, so we extend it so as to meet F1 and F2 through the proposed
GBCCA-M2. We construct the model of GBCCA-M2 while considering the fol-
lowing: (1) the number of modalities should be increased more than two, and
all modalities are generated from common latent variables and (2) the contribu-
tion rates to the likelihood are changed according to how many modalities are
missing. The graphical model of GBCCA-M2 is shown in Fig. 4. Now, we intro-
duce the likelihood and prior distribution of GBCCA-M2, parameter estimation
by a variational Bayesian inference, and the prediction of target modality using
source modalities and estimated parameters.

The Likelihood and Prior Distribution: The likelihood of modalities is

P (xi|Wi, z) =
M∏

m=1

P
(
x

(m)
i |Wi, z

(m)
)ηm

(9)

P
(
x

(m)
i |Wi, z

(m)
)

∝exp

(
−1

2

N
(m)
i∑

n=1

(
x

(m)
i (n) − Wiz

(m)(n)
)T

βi

(
x

(m)
i (n) − Wiz

(m)(n)
))

,

(10)

where x
(m)
i represents the i-th modality of an element that has m sets of modal-

ities, M represents the number of modalities, and N
(m)
i represents the number

of elements which have m sets of modalities and the i-th modality of them is
not missing. Moreover, we introduce contribution rates ηm of elements missing
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modalities to the likelihood function and change them according to the degree of
missing modalities. Especially, the more modalities are missing, the smaller the
contribution rates should be (η1 < η2 < η3 < · · · ), and the more elements miss-
ing modalities are, the smaller contribution rates should be, which is reflected in
Fig. 5. Owing to them, we can properly utilize elements missing modalities. As
with BCCA, prior distributions and the hyper-prior distribution of each param-
eter are as follows:

P0

(
z(m)

)
∝ exp

⎛
⎝−1

2

N(m)∑
n=1

‖z(m)(n)‖2
⎞
⎠ , (11)

P0 (Wi|αi) ∝ exp

(
−1

2

di∑
s=1

dz∑
t=1

αi(s,t)W
2
i(s,t)

)
, (12)

P0(αi) =
di∏

s=1

dz∏
t=1

G (
αi(s,t) |αi(s,t) , γi(s,t)

)
, (13)

P0 (βi) =
1
βi

. (14)

Parameter Estimation by Variational Bayesian Inference: Given the like-
lihood (Eqs. (9) and (10)); the prior distribution (Eqs. (11), (12) and (14)); and
the hyper-prior distribution (Eq. (13)), weight matrices are estimated as the
posterior distribution P (W1, · · · ,WM |x1, · · · ,xM ). This posterior distribution
is obtained by marginalizing the joint posterior distributions with respect to
latent variables and variance parameters αi, βi as follows:

P (W1, · · · ,WM |x1, · · · ,xM ) =
∫

dzdα1 · · · dαMdβ1 · · · dβM

P (W1, · · · ,WM ,z,α1, · · · ,αM , β1, · · · , βM |x1, · · · ,xM ).
(15)

This joint posterior distribution cannot be calculated analytically, so it is approx-
imated by using a trial distribution with the following factorization based on
variational Bayes inference.

Q (W1, · · · ,WM ,z,α1, · · · ,αM , β1, · · · , βM )
= QW (W1) · · · QW (WM )Qz(z)Qα(α1, · · · ,αM , β1, · · · , βM ).

(16)

The trial distribution of weight matrices QW (Wi) is

QW (Wi) =
di∏

s=1

dz∏
t=1

N
(
Wi(s,t) |W i(s,t) , σ

−1
i(s,t)

)
, (17)

W i(s,t) = βiσ
−1
i(s,t)

M∑
m=1

⎛
⎝ηm ·

N
(m)
i∑

n=1

x
(m)
is

(n)z(m)
t (n)

⎞
⎠ , (18)

σ−1
i(s,t)

= βi

M∑
m=1

⎛
⎝ηm ·

N
(m)
i∑

n=1

z
(m)
t

2
(n) + N

(m)
i Σ−1

z(m)(t,t)

⎞
⎠ + αi(s,t) . (19)
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The trial distribution of latent variable Qz

(
z(m)

)
is

Qz

(
z(m)

)
=

N(m)∏
n=1

N
(
z(m)(n)|z(m)(n),Σ−1

z(m)

)
, (20)

z(m)(n) = Σ−1
z(m)

M∑
i=1

ηmβiW
T

i x
(m)
i (n), (21)

Σz(m) =
M∑
i=1

[
ηmβi

(
W

T

i W i + Σ−1
Wi

)]
+ I, (22)

ΣWi
= diag

([
di∑

s=1

σi(s,1) , · · · ,

di∑
s=1

σi(s,dz)

])
. (23)

Finally, the trial distribution of the inverse variances Qα(α1, · · · ,αM , β1,
· · · , βM ) is further factorized to Qα(α1) · · · Qα(αM )Qα(β1) · · · Qα(βM ). The
expected values of αi and βi are

αi(s,t) =
(

1
2

+ γi0(s,t)

) (
1
2
W

2

i(s,t)
+

1
2
σ−1

i(s,t)
+ γi0(s,t)α

−1
i0(s,t)

)−1

, (24)

βi = diN
(M)
i

{N
(M)
i∑

n=1

‖xi(n) − W iz(n)‖2 (25)

+ Tr

[
Σ−1

Wi

(N
(M)
i∑

n=1

z(n)zT(n) + N
(M)
i Σ−1

z

)
+ N

(M)
i Σ−1

z W
T

i W i

]}−1

,

where γi0(s,t) , αi0(s,t) are constant values (zero in our study). For estimating βi,
only elements having all modalities are used. By calculating QW (Wi), Qz(z),
and Qα(α1, · · · ,αM , β1, · · · , βM ) successively, the parameter are estimated.

Predictive Distribution: When the new set of source modalities Xnew ∈
P({x1, · · · ,xM−1}), where P represents a power set (a set of all subsets), is
obtained, the predictive distribution of the target modality xMnew is

P (xMnew|Xnew) =
∫

dWMdznewP (xMnew|WM ,znew)Q(WM )P (znew|Xnew).

(26)
When the random variable WM is replaced with the estimated W M , the pre-
dictive distribution is

P (xMnew|Xnew) �
∫

dznewP (xMnew|znew)P (znew|Xnew), (27)

P (xMnew|znew) ∝ exp
[
−1

2
βM‖xMnew − W Mznew‖2

]
. (28)

Since the distribution P (znew|Xnew) is an unknown distribution, it is approx-
imated based on the test distribution Qz(z) (Eq. (20)). The approximate
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distribution is obtained by using only the term related to xinew included
in Xnew.

Q̃z(znew) = N (
z|znew,Σ−1

znew

)
, (29)

znew =
M−1∑
i=1

βiΣ
−1
znewW

T

i xinew, (30)

Σznew =
M−1∑
i=1

(
βi

(
W

T

i W i + Σ−1
Wi

))
+ I. (31)

Finally, the prediction distribution P (xMnew|Xnew) is

P (xMnew|Xnew) �
∫

dznewP (xMnew|znew) Q̃z (znew)

= N (
xMnew|xMnew,Σ−1

Mnew

)
, (32)

xMnew = W MΣ−1
znew

M−1∑
i=1

βiW
T

i xinew, (33)

ΣMnew = W MΣ−1
znewW

T

M + β
−1

M I. (34)

4 Preliminary Investigation

We conducted three experiments to investigate the basic characteristics of
GBCCA-M2 using artificially generated data. In this section, we firstly describe
the common experimental setup and then explain each experiment.

4.1 Common Experimental Setup

As a method for generating artificial data, we used a simple Gaussian latent
model. The latent variables are denoted by Zgen =

{
zgen(n)

}N

n=1
∈ R

dzgen and

observed modalities are denoted by Xi =
{
xi(n)

}N

n=1
∈ R

di . In this section,
we considered the case of three observed modalities. dzgen and di represent the
dimension of the latent variables and modalities respectively, and N represents
the sample size. Latent variables were extracted independently from N (0, Idz

).
xi(n) were generated as follows: xi(n) = Wizgen(n)+μi +δi(n), where each row
of Wi was extracted from N (0, Idzgen

), mean μi was extracted from N (0, Idi
),

and covariance of noise δi(n) was determined as follows:

δi(n) = α

⎛
⎜⎝Idi

+

dzgen
2∑

j=1

uj(n)uj(n)T

⎞
⎟⎠ . (35)

uj(n) were extracted independently from N (0, Idi
). The magnitude of the noise

is controlled by α, which was changed in the experiment evaluating robustness
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Fig. 5. Prediction performance when the contribution rates were changed.

against noise, and fixed in the other experiments. The number of elements in
the test data was set to 500. X1 and X2 were set to the source modalities, and
X3 the target modality. The evaluation was performed by calculating the cosine
similarities between the predicted modality and that of the test data.

4.2 Contribution Rates of Elements Missing Modalities

In GBCCA-M2, in order to utilize elements with various missing patterns effi-
ciently, we introduced the contribution rates of elements missing modalities to
the likelihood as shown in Eq. (9). In this experiment, we investigated the change
in prediction performance when contribution rates were changed.

The dimension of each modality was set as [d1, d2, d3, dzgen ] =
[250, 250, 250, 50]. When the number of modalities was three, the patterns of
missing modalities were divided into three categories of elements with one, two,
and three modalities, respectively. We defined the number of elements with m
sets of modalities N (j) and set them as [N (1), N (2), N (3)] = [120, 120, 120] and
[N (1), N (2), N (3)] = [1440, 720, 120] (refer to Fig. 5). Moreover, the modality an
element was missing was made uniform in each pattern. This was the same in all
experiments. In Eq. (9), we fixed η3 at 1.0 and varied η1 and η2 by increments
of 0.1 in the range 0 to 1.0. Also, the dimension of latent variable z used in the
proposed method was set to 150. Experiments were repeated ten times for each
set of (η1, η2), and the average of cosine similarity was calculated.

The experimental results are shown in Fig. 5. Since the cosine similarity
became maximal when η2 was in the range 0.9 to 1.0, η2 should be set to a
value close to 1.0. This is because even if one modality is missing, it is pos-
sible to estimate parameters with the remaining two modalities. On the other
hand, since the cosine similarity became maximal when η1 was in the range
0.4 to 0.6, η1 should be set to be smaller than η2. This is because the element
with one modality seems to be useful for estimating the distribution in the fea-
ture space of each modality, but it seems to deteriorate the estimation of the
relationships between modalities. Moreover, since η1 and η2, which maximized
cosine similarity when [N (1), N (2), N (3)] = [1440, 720, 120], were lower than when
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Fig. 6. Predict performance when the number of elements was changed.

[N (1), N (2), N (3)] = [120, 120, 120], the contribution rates should be decreased as
the number of elements missing modalities increases.

4.3 The Number of Elements in Training

GBCCA-M2 utilizes elements missing modalities by including them in the likeli-
hood function. In this experiment, we changed the number of elements in training
according to the degree of missing modalities and investigated whether GBCCA-
M2 can utilize elements missing modalities effectively.

Among the three kinds of missing patterns, the number of elements of
any two patterns was fixed, and the number of elements of the remaining
one pattern was changed. The number of elements to be fixed was set to
60 and the number of elements to be changed was set to 60, 120, · · · , 1200.
The dimension of each modality and the contribution rates were set as fol-
lows: [d1, d2, d3, dzgen ] = [250, 250, 250, 50], [η1, η2, η3] = [0.4, 0.9, 1.0]. Also,
the dimension of latent variable z used in the GBCCA-M2 was set to 150. We
used the following two methods for comparison: (1) CC and ridge regression
(CC-Ridge) and (2) mean imputation and ridge regression (Mean-Ridge). CC-
Ridge removes elements with missing modalities and performs ridge regression
using the remaining elements. Ridge regression is a learning method that adds a
square of the weight to the loss function in the linear least squares method and
obtains a weight that minimizes it. Mean-Ridge substitutes the mean value of
elements in the missing modalities and performs ridge regression.

Figure 6 shows the experimental results. When the number of elements with
two modalities was increased in GBCCA-M2, the prediction performance approx-
imately monotonically increased. This may be because elements with two modal-
ities have a positive effect on the relationship estimation between the non-missing
modalities and the estimation of the feature amount space in the non-missing
modality. On the other hand, when the number of elements with one modality
was increased, the prediction performance improved only in the range where the
number of elements was small. This may be because when contribution rates
are fixed, as the number of elements with one modality is increased, the neg-
ative effect on relationship estimation between the non-missing modality and
the missing modality increases. Therefore, if η1 is set appropriately, it should be
possible to use elements with one modality effectively for learning.
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Fig. 7. Prediction performances when the dimension of modalities was changed (left)
and when the noise of modalities was changed (right).

4.4 Evaluating Robustness Against Dimension and Noise

We described that the features of modalities are likely to be high dimensional
and noisy. In order to show the effectiveness of GBCCA-M2 for such modalities,
we conducted experiments to evaluate robustness against dimension and noise.

In the experiments evaluating robustness against dimension, we changed the
parameter β, which represents the size of the dimension. The dimension of each
modality was set to [d1, d2, d3, dzgen ] = [50β, 50β, 50β, 10β], and the dimension of
the latent variable z used in GBCCA-M2 was set to 30 β. We set β to 1, 2, 4, 8,
16, or 32. In the experiment evaluating robustness against noise, we changed α,
which controlled the magnitude of the noise (Eq. (35)), by increments of 0.1 in the
range 0.1 to 3.0. The dimension of each modality was set to [d1, d2, d3, dzgen ] =
[250, 250, 250, 50] and the dimension of latent variable z used in GBCCA-M2 was
set to 150. In both experiments, the numbers of elements in training were set
to 120 for all missing patterns. Also, the contribution rates were set as follows:
[η1, η2, η3] = [0.4, 0.9, 1.0]. As the comparison method, we used the same two
methods as in the Experiment in Sect. 4.3.

Figure 7 shows the experimental results. When the dimension or noise of
modality increased, GBCCA-M2 achieved higher prediction performance than
the comparison methods. This may be because GBCCA-M2 is based on BCCA,
which is effective for high dimensional and noisy features of modalities. Experi-
mental results show that GBCCA-M2 is also effective for such cases.

5 Experiment with Real Data

5.1 Purchaser Behavior Prediction

We conducted an experiment to show the effectiveness of GBCCA-M2 using real
purchaser dataset, in which modalities are actually missing. For the purchaser
dataset, we used the INTAGE Single Source Panel (i-SSP) dataset from INTAGE
Inc. This dataset includes attributes, purchase histories, and television program
viewing information for the half year from January 1st, 2016 to June 30th, 2016.



GBCCA-M2 653

Table 1. The number of elements by
missing patterns in purchaser’s data.

Attribute Purchase TV The number
of elements

� × × 2683

� � × 893

� × � 2297

� � � 809

Table 2. Comparison of each method in the
actual purchaser’s data.

Method Cosine
similarity

MAE RMSE

GBCCA-M2 0.408 104.8 383.2

CC-Ridge 0.278 153.6 564.4

Mean-Ridge 0.397 109.3 397.7

CC-BCCA 0.404 113.5 390.2

Mean-BCCA 0.407 105.6 390.9

Semi CCA 0.402 105.6 389.4

In the attribute data, we converted the nominal scales such as occupation and
residence to one-hot expression and used the proportional scales as they were.
Purchasing information includes purchase data of beer, chocolate, and shampoo.
We used the total number of purchases for each manufacturer as one modality.
For the television program viewing information, we used the average television
viewing time for each television program only if it was 20 hours or more. As a
result of the above operation, the dimension of attribute information was 89,
that of purchase situation was 67, and that of TV program viewing information
was 226. Table 1 indicates the number of elements for each missing pattern.
We extracted 100 elements with three modalities randomly as test data and
used the remaining elements as learning data. We set the contribution rates and
the dimension of the latent variable in GBCCA-M2 as follows: [η1, η2, η3, dz] =
[0.3, 0.8, 1.0, 30]. In addition to CC-Ridge and Mean-Ridge, we used CC and
BCCA (CC-BCCA), mean imputation and BCCA (Mean-BCCA), and Semi
CCA for comparison. Television program viewing information was predicted from
source modalities (i.e., attribute and purchase history). As the evaluation index,
we calculated the following indexes using the predicted vector and the actual
vector: (1) cosine similarity, (2) mean absolute error (MAE), and (3) root mean
square error (RMSE). We did this 30 times and calculated the average.

Table 2 shows the experimental results. As for all evaluation index, GBCCA-
M2 achieved best. This may be because GBCCA-M2 is effective for purchaser
data in which features of modalities are high dimensional and noisy and there
are many elements missing modalities. From the above findings, the effectiveness
of GBCCA-M2 for a real purchaser dataset can be seen clearly.

5.2 Image Retrieval from English and Japanese Sentences

In this section, we report results on image retrieval from English and Japanese
sentences learned with the dataset in which we made some modalities miss-
ing intentionally. In addition to MSCOCO [16] dataset, we used STAIR Cap-
tions [24], which is a Japanese image caption dataset based on images from
MSCOCO. As the feature of images, we extracted the 4096-dimensional activa-
tions from 19-layer VGG model [21], and as the feature of sentences, we used
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Table 3. Comparison of each method in the sentence-to-image retrieval.

Method R@1 R@5 R@10

GBCCA-M2 0.092 0.292 0.439

CC-Ridge 0.074 0.263 0.411

Mean-Ridge 0.080 0.265 0.412

CC-BCCA 0.084 0.268 0.409

Mean-BCCA 0.082 0.262 0.382

Semi CCA 0.071 0.244 0.371

tf-idf-weighted bag-of-words vectors. For English, we pre-processed all the sen-
tences with WordNet’s lemmatizer [4] and removed stop words. For Japanese,
we removed stop words and all parts of speech other than nouns, verbs, adjec-
tives, and adjectival verbs. The final dimensions of English and Japanese sen-
tences were 6245 and 7278, respectively. In training, we used 9000 elements (i.e,
images and their corresponding English and Japanese sentences), made 50 %
modalities missing randomly, and reduced the dimension of each modality to
1000 by PCA. For the evaluation, we used 1000 elements. We retrieved images
form English and Japanese sentences and calculated Recall@K (K = 1, 5, 10).
We set the contribution rates and the dimension of the latent variable as fol-
lows: [η1, η2, η3, dz] = [0.3, 0.8, 1.0, 750] and used same methods in Sect. 5.1 as
comparison methods. Table 3 shows the experimental results. We can see that
GBCCA-M2 gives best results in all methods. By using GBCCA-M2, we can
retrieve images more accurately by utilizing elements missing modalities.

6 Conclusion

In this study, we considered the two challenges associated with multi-modal
learning and proposed GBCCA-M2, which utilizes elements missing modalities
and can work well on high dimensional and noisy features of modalities. More-
over, we conducted experiments using artificially generated data as well as real
data. The findings obtained in this study are as follows: (1) in order to utilize
the elements missing modalities, it is effective to change the contribution rates
to likelihood according to the degree of missing modalities, (2) GBCCA-M2,
which uses a hierarchical Bayesian model, is effective for high dimensional and
noisy features of modalities, and (3) because GBCCA-M2 is suited to the case
that there are many elements missing modalities, and the features of modali-
ties are high dimensional and noisy, it is effectively used for such multi-modal
applications.
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