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The study of cells, notably in shoots, based on scanning electron microscopic
(SEM) images is important for understanding the plant functions [18]. This has
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Abstract. Analysis of stomata density and its configuration based on
scanning electron microscopic (SEM) image of a leaf surface, is an effec-
tive way to characterize the plant’s behaviour under various environmen-
tal stresses (drought, salinity etc.). Existing methods for phenotyping
these stomatal traits are often based on manual or semi-automatic label-
ing and segmentation of SEM images. This is a low-throughput process
when large number of SEM images is investigated for statistical analysis.
To overcome this limitation, we propose a novel automated pipeline lever-
aging deep convolutional neural networks for stomata detection and its
quantification. The proposed framework shows a superior performance in
contrast to the existing stomata detection methods in terms of precision
and recall, 0.91 and 0.89 respectively. Furthermore, the morphological
traits (i.e. length & width) obtained at stomata quantification step shows
a correlation of 0.95 and 0.91 with manually computed traits, resulting
in an efficient and high-throughput solution for stomata phenotyping.
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become a priority for the plant biology community, in order to increase the
plants’ yield and tolerance to various environmental stresses (drought, salinity
etc.). In particular, the analysis of stomatal morphology and its density (termed
as stomata phenotyping) is critical for breeding high yield cultivars [18], since it
plays a key role in regulating the temperature of the plants through gas exchange
between the atmosphere and leaf surface [30]. However, despite the advances in
microscopy, the statistical data that is required for breeding a more significantly
yielding plant cultivar is currently a bottleneck for biologists [15]. This is due
to the fact, that they mainly rely on manual or semi-automatic approaches to
compute the stomatal phenotypic traits. For example, authors in [18,30] manu-
ally counted the stomata and visually scored the degree of stomatal opening. On
the other hand, ImageJ [22], an open source software with user interactive func-
tionalities has been employed in [4,5]. However, these methods are susceptible to
intra-rater or inter-rater repeatability resulting in low accuracy and reproducibil-
ity [16]. Thus, an automated tool is required for an efficient and high-throughput
analysis of stomatal phenotypic traits.

Very few methods have been published to automate this process over the
past decades. Authors in [11] proposed a framework using template matching
to detect stomata, this is followed by binarization for extracting stomatal aper-
ture. In [21], the authors employed maximum stable external regions (MSER)
for simultaneous detection and quantification of grapevine stomata. In contrast
to these image processing methods for estimating stomatal density, [26] adopted
a machine learning approach utilizing a cascade object detector (COD) based
on haar-like features in oak species. Similarly, Jayakody et al. [9] employed his-
togram of oriented gradients (HOG) features in contrast to haar-like features,
so as to reduce the training time of the COD for detecting grapevine stom-
ata and used binarization for segmenting the stomatal aperture. However, these
approaches are proposed for detecting stomata in SEM images with homogeneous
background. Thus, they are not suitable for the investigated images with fea-
ture rich background. Also, the stomata segmentation is limited by binarization
[9,11] due to (a) low contrast between the background and stomatal aperture
and (b) varying degree of aperture’s occlusion in the presence of papillae (for
sample image, see Fig. 1).
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Wart like protuberance

Stomatal aperture
Papillae
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Fig. 1. A high resolution patch from sample SEM image.
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In the past few years, deep convolutional neural networks (CNNs) have shown
promising results on various computer vision tasks [7,10,13,19]. Thus, in order to
overcome the aforementioned challenges, we propose a novel deep learning frame-
work for automatic stomata detection and its quantification. In the first step, a
single shot multibox detector (SSD) is employed to deal with (a) different stom-
ata configurations, and (b) feature rich background with abundance of similar
non-stomata objects in the SEM image. The second step involves the extraction
of stomatal aperture (segmentation) from the detected stomata. However, this
segmentation task is eclipsed by the small size of stomata in the investigated
SEM data. Thus, super-resolution convolutional neural network (SRCNN) [3]
scheme is applied with detected stomata as an input prior to the segmentation
step. This is done to enhance the visualization of small stomatal structures.
Although authors in [11,20] proposed watershed and threshold based segmen-
tation for extracting the stomatal aperture, these algorithms are not suitable
for the investigated images due to the (a) low contrast between background and
stomatal aperture and (b) papillae occlusion. These problems are solved by uti-
lizing a deep learning framework [2] based on fully convolutional neural network
(FCNN) [14]. The authors in [2] presented a framework for high resolution SEM
images containing only a single stomata. In contrast, our automated pipeline
handles a more challenging image data-set containing multiple stomata, with no
prior information about the stomata parameters (count, shape and size) thus
facilitating high-throughput stomata analysis.

The rest of the paper is organized as follows: In Sect. 2 the experiment pro-
tocol for data acquisition is elucidated, the proposed methodology is explained
in Sect. 3, results are discussed in Sects. 4 and 5 concludes the paper.

2 Dataset

Drought experiment is conducted on different rice cultivars during the kharif
season at the phenomics facility (Indian Agricultural Research Institute). The
investigated cultivars are divided into three groups of differing irrigation intensi-
ties i.e. well-watered, reduced watered and unwatered. The leaf samples of these
cultivars are collected at different drought stages and immediately fixed by liquid
nitrogen. Images (1024 x 768) of the leaf surface are taken with a scanning elec-
tron microscope (model EVO50, Zeiss, UK) at 9.00 KX magnification (termed
as Data-1, containing single stomata) and 1.00 KX magnification (termed as
Data-2, containing multiple stomata) to develop a high-throughput phenotyp-
ing pipeline for stomata detection and quantification (for sample image from
Data-1 and Data-2, see supplementary Fig. 2).

3 Methodology

In this section, we introduce the proposed framework (workflow shown in Fig. 2).
The method consists of a detection stage for computing the stomatal density and
a segmentation stage for computing its morphological traits.
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Fig. 2. Workflow of the proposed framework.

3.1 Stomata Counting

Stomata density is estimated by counting the stomata on a SEM image of a given
leaf surface [26]. A number of methods have been proposed in literature [29] to
predict the count of objects in an image based on regressors trained with its
global features. A global regressor ignores the spatial information, thus a pixel-
level object density map regression was proposed in [12]. However, these methods
cannot easily provide locations of the objects which is essential for subsequent
stomata quantification. Thus, the task of stomata counting is implemented based
on detection and localization of individual stomata.

In recent years, counting object by detection benefits from the superior per-
formance of CNN. Region-based convolutional neural networks (R-CNN) [7] is
the first deep learning approach improving the detection accuracy based on
object proposal algorithm [7] and learning the features for these proposal region
using a CNN. Later, Spatial pyramid pooling in deep convolutional networks
(SPPnet) [8] was introduced to speed up the detection of R-CNN by introducing
a spatial pyramid pooling (SPP) layer, which shares features between propos-
als. This was further improved by Fast-RCNN [6] which proposed an end to end
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training using the SPP layer. Furthermore, Faster-RCNN [19] presented the pro-
posal generation based on CNN and its integration with Fast-RCNN by sharing
convolutional layers.

Table 1. SSD architecture. The names conv and pool represent the convolutional and
pooling layers, respectively.

Layer | Channels | Kernel | Stride | Padding
convl | 32 5x5 |1 2
pooll |- 2x2 |2 0
conv2 | 48 3x3 |1 1
pool2 | - 2x2 |2 0
conv3 | 64 3x3 |1 1
pool3 |- 2x2 |2 0
conv4 | 64 Ix3 |1 1
pool4d |- 2x2 |2 0
convd | 48 Ix3 |1 1
pool5 |- 2x2 |2 0
convb6 | 48 3x3 |1 1
pool6 |- 2x2 |2 0
conv7 | 32 Ix3 |1 1

In contrast to the previously mentioned proposal based methods, single shot
multibox detector (SSD) [13] is a state-of-the-art detector which looks for objects
in a set of default boxes over different feature levels and scales. It is free from
proposal generation, subsequent feature sampling and classification. Thus, SSD is
a suitable choice for the current objective of high-throughput stomata detection.
However, unlike the complex images with multiple instances of different objects,
which were considered in the original work [13], the leaf microscopic images (in
this work) are utilized only for stomata detection. The remaining leaf region is
considered as background, thus a shallow version of SSD (architecture shown
in Table1) is employed. Each convolutional (conv) layer is followed by batch
normalization and exponential linear units. Boxes of aspect ratios 0.5, 1.0 and
2.0 are generated from the outputs of the conv4 to conv7 layers at different
scales varying from 0.08 to 0.96. The model is trained to detect stomata in these
boxes using Adam optimizer with initial learning rate of 0.0001 and a decay
factor of 107%. SSD is trained for 100 epochs with batch size of 16 and Lo
regularization of weights with 0.0005 decay factor. Bounding box annotations
of stomata corresponding to SEM images (Data-2) are manually generated with
the help of two expert biologists to obtain the ground truth labels. Since, the
investigated SEM images are high resolution (1024 x 768) comprising of small-
scale stomata, downsampling will lead to loss of discriminative details. Thus,
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to overcome the limitation of computational cost associated with the CNNs,
high resolution patches of size 256 x 256 with 75% overlap are sampled from
these images. 2000 images with the corresponding bounding box annotations are
utilized for training and 440 are used for validation. The weights corresponding
to the minimum validation loss are used for testing. Detected stomata is then
individually utilized for computation of its morphological features, explained in
the next sub-section.

3.2 Stomata Segmentation

Stomata are pores on the leaf surface that controls the transpiration of plants
through opening and closing of its aperture [18]. Thus, it is important to accu-
rately compute the stomatal opening. However, the accuracy of its quantifi-
cation depends on the aperture segmentation step. Threshold based segmen-
tation employed in [9,11,17] and watershed segmentation in [20] are proposed
for images containing stomata with contrast homogeneous background and no
papillae occlusion. Thus, these proposed algorithms are not suitable for the inves-
tigated images. Authors in [2] presented a solution to overcome these challenges
inspired from FCNN [14]. However, the direct application of this framework is
not suitable, since the investigated images comprises of small size stomata. Thus,
prior to the segmentation step, the detected stomata from the SSD model are
super-resolved.

Although, nearest neighbor, bilinear, and bicubic interpolations are conven-
tional methods to generate a high-resolution image, these methods produce over-
smoothed images with artifacts such as aliasing and blur around the edges [24].
Example-based super-resolution methods proposed in [25,28] that learn the rela-
tionship between low-resolution and high-resolution image pairs, yield higher
image quality over these linear interpolation methods. But the computation
time of the example based methods is not suitable for this high-throughput stom-
ata phenotyping task. In contrast, super-resolution convolutional neural network
(SRCNN) [3] directly learn an end-to-end mapping between the low resolution
image and the high-resolution image thus, SRCNN is utilized.

SRCNN [23] consists of three convolutional layer for patch extraction and
representation, non-linear mapping and reconstruction. The first layer uses 9 x 9
kernel size with 64 feature maps to extract compact representation of the LR
image. This is followed by a second layer consisting of 32 feature maps with 5 x 5
kernel size, that maps LR feature maps into HR feature maps. The last layer
with 5 x 5 kernel size is used for H R image reconstruction. Since, the H R images
corresponding to Data-2 are unavailable (acquired at 1.00 KX magnification),
Data-1 employed by authors [2] in the segmentation network (termed here as
H R images) is utilized for training the SRCNN. The H R images are downscaled
to 64 x 102 and then upscaled to 160 x 256 using bicubic interpolation (termed
LR) as input and the corresponding HR as output. Down-scale of 64 x 102 is
chosen, since in the investigated images (Data-2), this patch size is found to be
sufficient to contain individual stomata. A total of 90 and 39 images are used as
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training and validation dataset respectively and an Adam optimiser to minimise
the mean square error loss with 10~% learning rate.

The next step is the extraction of stomatal aperture using the framework
presented in [2]. The authors trained the network on Data-1 (H R images), thus
for its application on the investigated images, it is fine-tuned using the SRCNN
output. In total, 117 HR images and the corresponding masks (available from
[2]) are used for this purpose. Images are first down-sampled (64 x 102) and then
super-resolved to 160 x 256 (using the trained SRCNN) to obtain the desired
data. This dataset is divided into training and validation sets containing 78
and 39 images, respectively. Training set images are augmented using random
translation, rotation, flipping and zooming which results in 960 samples. Network
is initialized with the weights used in [2] which are fine tuned using an Adam
optimizer. An initial learning rate of 10~° with decay factor of 1078 and weighted
binary cross-entropy loss is used during training. The network is trained for 500
epochs with a batch-size of 20.

At the test time, the patches of size 64 x 102 extracted at each detected
stomata location (Data-2) obtained from the SSD network is super-resolved using
the aforementioned trained SRCNN model. The binary mask corresponding to
the stomatal aperture using this resolved image is extracted by utilizing the fine-
tuned segmentation network. Since stomata exhibit an approximate elliptical
shape [20], ellipse fitting [27] is then used on this segmented mask to compute
its primary morphological features: (1) major-axis (1), (2) minor-axis (w), (3)
area and (4) the ratio of width and length (w/1).

4 Results

In this section, we evaluate the performance of the proposed framework in terms
of stomata density and its quantification (Table2).

Table 2. Stomata detection results.

Method Precision | Recall
Interactive spatial density detection | 0.70 0.85
MSER 0.18 0.10
Template Matching 0.19 0.15
HOG based COD 0.35 0.30
SSD model with NMS 0.91 0.89

The detection step of the proposed framework is compared with Liu’s MSER,
Laga’s template matching approach and Jayakody’s HOG based COD (shown in
Table 1) in terms of precision (P) and recall (R) given by: P = TP/(TP+FP) &
R=TP/(TP+FN) (where, TP is true positive, F'P is false positive and F'N is
false negative, calculated using 0.80 Intersection over Union (IoU) between the
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predicted and ground truth bounding boxes) on 93 stomata test data. Figure 3
shows the results from the existing stomata detection approaches on a cropped
section of the investigated image (due to limited space, the results on the origi-
nal image is shown in supplementary Fig.4). MSER algorithm assumes that the
object of interest are brighter than their boundaries and there exists some opti-
mal threshold at which individual object can be segmented. However, due to the
presence of wart like protuberance and papillae with higher grayscale intensity
than the stomatal aperture, this results in the detection of background objects
(high FP and FN, shown in Fig.3(a)). For the extraction of stomatal aper-
ture, the detected regions obtained from MSER algorithm are further filtered
based on eccentricity, since they exhibit elliptical shape (shown in supplemen-
tary Fig.5(b)). The template matching approach requires manual selection of
both the threshold and templates. We utilized 50 stomata templates, but due
to the feature rich background, large number of false positives are generated
(Fig. 3(b)). Recent work that utilizes HOG based COD [9], performs better than
the previously mentioned image based algorithms. Although, HOG works well
in representing the shape of an object, it is also limited by the occlusion of
the stomata due to the presence of papillae and the varying level of deforma-
tion (closing) of stomata under the drought experiment (Fig.3(c)). Figure 3(d)
shows the stomata detection based on SSD model. Since, overlapping patch
based detection approach is employed, multiple bounding boxes for each detected
stomata is obtained. To eliminate this redundant counting, non-maximum sup-
pression (NMS) is then utilised for an accurate computation of stomatal density
(Fig. 3(e)).

We also compare the detection results with pixel level object density regres-
sion method, presented in [1]. Arteta et al. [1] proposed an interactive count-
ing algorithm that predicts the spatial density map based on pixel level ridge-
regression with dot annotation as user input and also provide candidate regions
containing the objects of interest for iterative user annotation. Figure 4(a) shows
the predicted density map and Fig. 4(b) shows the candidate regions containing
stomata after the third iteration (the numbers mentioned along these detected
regions denotes the total stomata count). Due to the presence of wart like pro-
tuberances in the SEM images that look similar to the papillae arrangement
around the stomatal aperture, the total stomata count is overestimated in few
detected regions. In contrast, to the existing methods, the proposed framework
performs considerably better and achieves high recall and precision without any
manual intervention (supplementary Fig. 4(d—e)).

The windows detected as stomata from the SSD model after NMS, is seg-
mented to extract the stomata aperture for computing its morphological traits.
Threshold based segmentation proposed by [9,11,17] for this purpose leads to
the segmentation of papillae and wart like protuberance as they exhibit higher
grayscale intensity w.r.t. background than stomata. In addition to this low con-
trast, the accuracy of the watershed segmentation is also limited by the aperture
occlusion (results shown in supplementary Fig. 6). Thus, the deep learning frame-
work presented by authors in [2] is employed. Since, the framework was trained
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Fig. 3. Stomata detection based on (a) MSER (b) Template Matching (¢) HOG based
COD (d) SSD model and (e) SSD model with NMS.
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Fig. 4. Interactive stomata counting.

on HR dataset collected at 9.00 KX magnification, the detected stomata are
super-resolved using SRCNN model (details mentioned in Sect. 3.2). The model

is trained using Data-1 and MSE of .0072 is obtained after 2000 epochs (sample
output shown in Fig.5).

(a) Input LR HR

Fig. 5. An example of the reconstructed high-resolution image (magnification of x2.5):

(a) Low-resolution image, (b) reconstructed output based on SRCNN scheme and (c)
original test image.

We hypothesize that this model is qualitatively sufficient as a pre-processing
step for subsequent stomatal aperture segmentation and quantitatively evaluate
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the accuracy of the segmented mask (results shown in supplementary Figs. 7
and 8) in terms of IoU. The mean IoU with the ground truth is computed to
be 0.8602 on 50 test images. The primary morphological features (length and
width) is computed by ellipse fitting on the generated segmented mask (sup-
plementary Figs.7(d) and 8(d)). These computed features are compared with
the corresponding ground truth features, collected by an expert biologist using
ImageJ. The major-axis (corresponding to the length of stomata) and minor-axis
(corresponding to the width of stomata) of the ellipse shows a correlation of 0.95
(result shown in supplementary Fig. 9) and 0.91 respectively using 50 detected
stomata.

The proposed approach is fully automatic and computationally efficient, that
enabled high-throughput phenotyping (Fig.6) in drought stress environment.
This shows the potential of our framework to be employed in other biotic and
abiotic stress experiments (salt, SOz etc.) based on stomatal responses.

Ground Truth
D Detected output

Fig. 6. High throughput stomata phenotyping (a) SSD with NMS (b) LR stomata
(input to SRCNN) (c) HR stomata (SRCNN output) and (d) Ellipse fitting on seg-
mented output.

5 Conclusion

In this paper, we presented a novel deep learning framework for automated stom-
ata phenotyping. The framework comprises of SSD based detection, SRCNN for
super-resolving small detected stomata followed by its segmentation, based on
Fully Convolutional Neural Network. We have shown that our method performs
better on a challenging data-set, that includes varying degrees of stomatal occlu-
sion, dynamic feature rich background and small size of stomata, compared with
existing approaches. This shows its potential application in various biotic and
abiotic stress studies. We plan to apply this framework on SEM images from
other cultivars.
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