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Abstract. The simulations in biomedical image analysis provide a solu-
tion when the real image data are difficult to be annotated or if they are
available only in small quantities. The progress in simulations rapidly
grows in the recent years. Nevertheless, the comparative techniques for
the assessment of the plausibility of generated data are still unsatis-
factory or none. This paper aims to point out the problem of insuf-
ficient comparison of real and synthetic data, which is done in many
cases only by visual inspection or based on subjective measurements.
The selected texture features are first compared in a univariate manner
by quantile-quantile plots and Kolmogorov-Smirnov test. The evalua-
tion is then extended into multivariate assessment using the PCA for
a visualization and furthermore for a quantitative measure of similarity
by Jaccard index. Two different image datasets were used to show the
results and the importance of the validation of simulated data in many
aspects.
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1 Introduction

The research in the last decades showed the power of technical progress besides
other things in biomedical imaging, especially in the generation of artificial image
data, which should resemble the real images. From the images of spots and
particles, over nuclei and subcellular components, also the images of multiple-
target, cell populations and tissues are possible to be synthesized as summarized
in [16].

Despite the methods for simulations differ, the main objectives for generating
artificial image data are the same: (1) to use the simulated data for validating
the segmentation algorithms with unhidden ground truth; (2) to perceive the
biological processes and understand the cell behavior; and last but not least: (3)
to reduce the time and inconsistency among manual annotators, which is even
higher in three-dimensional image data and time-lapse sequences.
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Nevertheless, one can legitimately ask for a plausibility of the artificial data.
There are many characteristics that can be computed and subsequently used for
the comparison of real and synthetic data, such as shape, number of cells in the
image, number of various elements etc. The comparison made on these features
could support the expectation that the simulated data are of sufficient quality.
This paper is focused on methods for validating texture, as we found this fea-
ture to be variously interpreted and independent of the work of annotator. This
feature is also given by every single image, which makes this feature applicable
to all available images.

The first step of quality assessment is the visual inspection, which is men-
tioned almost every time. While some of the works ends with the visual eval-
uation of experts, other outspread with quantitative measurements. In [1], for
example, the quality of generated images is assessed by measuring the largest
magnification in which the image data look realistic. In [8], the authors suggested
to compute the sensitivity and specificity over 6 differently experienced human
test subjects, who had to classify, whether the image is synthetic or real. This
decision was made in limited time, which should imitate the real conditions. In
contrast to expert-based evaluation, there also exist the approaches based on
quantitative evaluation. In particular, the Q-Q plots of texture descriptors were
used in [8,12]. Furthermore, [13] showed the histograms of real and synthetic
data accompanied by means, standard deviations and p-values of Kolmogorov-
Smirnov tests. Note, that all of these validation techniques were assessed univari-
ately. This paper extends these evaluations into multiple dimensions to compare
the mutual information of the data points. The aim of this paper is also to visu-
alize the data and their mutual comparison. We suggest this by a reduction of a
multidimensional feature space using principal component analysis.

2 Datasets

For the demonstration of the proposed approach two different datasets of images
are presented. The first dataset comes from Uppsala university [8]. In this paper,
a simulation framework for generating images used for Pap smear analysis in
cervix cancer screening was developed. The total number of 25 monochromatic
2D histology images of real data and 5 batches of synthetic image data (each
consisting of 5 images, 25 images in total) were included in the reference dataset
provided by the authors.

The images in the second dataset consisted of 180 images of lung cancer
cells with filopodial protrusions from 3D time-lapse acquired by fluorescence
microscope [11]. The two subtypes of lung cancer cells were analyzed in this
paper – the cells with overexpressing phenotype (90 real images and 90 synthetic
images) and the cells with phospho-defective phenotype (also 90 real images and
90 synthetic images).

The texture of histopathology images for Pap smear analysis was evaluated
over the whole 2D image as it was described by the authors of [8]. Unlike this
dataset, in case of lung cancer cells, only the texture of the central interior
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regions (31 × 31 × 3 voxels) was compared in real and synthetic data following
the same procedure as proposed by the authors of [11].

These two image datasets have been separately used as the input samples for
testing the proposed validation method.

3 Methods

Haralick texture features [3] belong to very popular and widespread [2,7,13,15]
image descriptors. In this paper, we evaluated 14 Haralick descriptors. In the
following text, methods of statistical comparison will be presented. Although
these methods are well known and widely used, they have not been applied
together in this context.

3.1 Univariate Comparison of Feature Distributions

After achieving 14 values for each image in both, real and synthetic data, a
comparison of distributions in these groups was performed using the quantile-
quantile plot (Q-Q plot) [17]. When comparing two samples, the empirical quan-
tiles are plotted in the x-y figure against each other for every descriptor. This
method reveals the identical distribution in both samples if the points of the
quantiles lie along the straight line with the slope of 1, while diversion of the
points from this line indicates differences in distribution. This method has no
assumptions put on the input data, and furthermore, it is not necessary to iden-
tify the distributions that are compared. In case of image descriptors, the Q-Q
plot can help to compare the distribution of both groups of data in each descrip-
tor separately, i.e. univariately.

Since the Q-Q plot is only a visual technique for data comparison, this pro-
cedure can be accompanied by the statistical test of Kolmogorov-Smirnov [9].
The tested null hypothesis is that the cumulative distribution functions is the
same for the both samples A = {ai|i = 1, . . . , nA; ai ∈ R} and B = {bi|i =
1, . . . , nB ; bi ∈ R}. The empirical cumulative distribution for sample A is defined
as FA(x) = #{a∈A|a≤x}

nA
and in the same manner for sample B. In our case, A

stands for a sample of real data and B for a sample of synthetic data. The
test statistic for the two samples is based on the largest distances between the
two empirical distribution functions, which is KS(A,B) = sup

x∈R

|FA(x) − FB(x)|.
The value of Kolmogorov-Smirnov statistic is then compared to the critical value
and the null hypothesis is then rejected if KS(A,B) >

√
1

nA
+ 1

nB
κα, where κα

is chosen according to the α level of significance. Note that the Kolmogorov-
Smirnov test is a non-parametric technique, which means it has no assumptions
put on the given data. Therefore, it is easy to apply Kolmogorov-Smirnov test
also to the Haralick descriptors with no limitation and with a clear decision if
the data reveals the similarity in a particular descriptor.
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3.2 Reduction of the Feature Space

As one could be interested in the assessment of all 14 Haralick features simulta-
neously, we suggest the multivariate assessment. This approach describes every
image by a vector in a 14-dimensional space. It is not possible to see visually
the positions of the real and synthetic data points in such a high-dimensional
vector space. Therefore the reduction with the retention of most of the total
variability in three features is convenient. Since some of the Haralick descriptors
are correlated, the reduction of the feature space is possible to perform and was
done by applying the Principal Component Analysis (PCA), originally proposed
by [10] and then extended by [4]. PCA is a reduction procedure with transfor-
mation to another uncorrelated feature space. The aim of the technique is to
preserve the most of the variability in the new first features (components) by
extracting the principal pattern of the linear system of descriptors. Afterwards,
only some of the components can be selected to represent the new reduced data
with the particular proportion of the variability. Other redundant features can
be discarded.

The original feature space given by d descriptors (d = 14) and nA real images
and nB synthetic images (nA + nB = n) can be represented as a matrix

Xn,d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xA
11 . . . xA

1d
...

. . .
...

xA
nA1 . . . xA

nAd

xB
11 . . . xB

1d
...

. . .
...

xB
nB1 . . . xB

nBd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝

x11 . . . x1d

...
. . .

...
xn1 . . . xnd

⎞
⎟⎠ (1)

where xij is value of j-th descriptor measured in i-th image. The matrix X can be
centered by subtracting the sample multivariate mean x and scaled/standardized
before further operations. In case of centered PCA, the distances among objects
are equal to the distances in the original space, but the central point of the axis
is shifted to the centroid of objects. This is used especially, when the scales of the
variables are similar. In case of standardized PCA the variables are transformed
to the variables with unit variance. It can be used if the scales of the variables
are measured in different units, such as the case of Haralick descriptors. The
transformation of PCA is then given by

Yn,d = (Xn,d − 1nxT )Γ̂ , (2)

where Γ̂ contains the eigenvectors of the sample covariance or correlation matrix
Σ̂ of the input data so that, Γ̂T Σ̂Γ̂ = Λ̂ = diag(λ̂1, λ̂2, . . . , λ̂d), where the
eigenvalues are in the order from the highest to the lowest λ̂1 ≥ λ̂2 ≥ · · · ≥
λ̂d ≥ 0. The new feature space is formed by principal components Yi (the i-th
column of the matrix Yn,d).

PCA has an assumption of quantitative variables (but there exist some mod-
ifications), independence of objects and multivariate normality, which is some-
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times difficult to achieve. However, some works [6] state that PCA is sufficiently
robust to overcome this.

Showing only the first two or three principal components in an x-y plot or
x-y-z plot, respectively, one can have an idea about mutual position and clusters
of the real and synthetic data in the uncorrelated reduced feature space. Note
that the PCA is independent of the group assignment in this case and it is used
only for visualization.

3.3 Overlap of Samples

Now we have an analogue situation as we had in a univariate approach. The
visual inspection gives us a subjective information about the similarity of the
groups, but the objective assessment is missing. Let us compare the overlap of
the data points of each sample in the reduced feature space. We will do that
by comparing the ellipsoids that envelope these data points (see Fig. 2). The
construction of ellipsoids is based on the sample covariance matrices and sample
means to fit the data points on a level of 95% joint confidence interval. This
enables to omit 5% of potential multidimensional outliers. Finally, the intersec-
tion volume and the volume of union are compared by the Jaccard similarity
index [5]:

J(A,B) =
VA ∩ VB

VA ∪ VB
, (3)

where the VA and VB stand for the volume of the ellipsoid constructed in reduced
feature space over sample A or B, respectively. The index ranges values between
0 ≤ J(A,B) ≤ 1, in case of total similarity it yields 1, in case of no intersection
the index is equal to 0.

4 Results

First, the datasets were assessed univariately using the Q-Q plots for all of the
14 descriptors. To see the differences and similarities, the datasets were also
compared in real image data only, divided randomly into two groups with an
expectation of good results of homogeneous groups. The randomization into two
groups was performed three times with similar results. In case of reference Pap
smear real data divided into two groups (see Fig. 1), one can see the high level of
similarity. Even if the points diverse from the straight line in some of the cases,
the p-values of Kolmogorov-Smirnov test retain the null hypothesis stating to
have the same distribution in both groups of real data.

To assess the mutual relationships in a multidimensional feature space, PCA
was applied to all 14 Haralick features. The data were pre-processed by Tukey’s
ladder of powers in case of a violation of normality, centred and normalized,
because the individual descriptors are measured in different scales. The three
principal components with the largest contribution on the explained variability
were used for a visualization. Analyzing the results of PCA, many input variables
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Fig. 1. Q-Q plots showing the similarity in distributions of 14 Haralick descriptors
in comparison of two random samples of real image data from Pap smear test. The
each plot is enriched by p-values of Kolmogorov-Smirnov test (K-S) supporting the
difference between sample distributions when the value is ≤0.05 (in case of level of
significance α = 0.05).

(descriptors) entering the transform were found to be highly correlated. This
supports the idea that reduced space for visualization is needed.

To see as much as possible of the variability and the mutual positions of the
samples, the points were depicted in the transformed 3D feature space given by
principal components as axes. Inspecting the reference phospho-defective lung
cancer cells dataset (see Fig. 2), one can see only a partial overlap of the ellipsoids
enveloping the synthetic data (blue) with those for real image data (yellow) (a–
c). On the contrary, the visualisation of the two subsets of real data reveals a high
overlap of the ellipsoids in all views (d–f). For a detailed description of all results,
see the Table 1. The values of Jaccard similarity indices computed over volumes of
ellipsoids correspond to the visualization done by PCA. When comparing the real
and synthetic data of Pap smear images, the intersection volume covered only
16.1% of the volume of union of the two ellipsoids (J = 0.161). The best results
were observed when comparing real vs. real image datasets (J ≥ 0.652). The
visual comparison of real overexpressing lung cancer cells with synthetic revealed
visually a good overlap, however the Jaccard index was smaller according to
the fact, that ellipsoid enveloping synthetic data was smaller than the ellipsoid
enveloping real data.
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Fig. 2. Visual comparison of data in 3D feature space reduced by PCA into the three
main components (axes PC1, PC2, PC3). Frontal (a, d), horizontal (b, e) and vertical
(c, f) view on real (yellow) and synthetic (blue) data (a–c) and two groups of real
data of lung cancer cells (d–f). The interactive tool of pca3d library in R software [14]
enabled to rotate the set of points in all directions with the possibility of showing id
of images, distances to the centroids and ellipsoids around each subset. The greater
the intersection of each pair of ellipsoids, the higher the similarity of the corresponding
evaluated samples can be expected. (Color figure online)

5 Discussion

The real and synthetic data were compared to each other, at first univariately
in Q-Q plots, which gave us some information about distributions. However, it
was not possible to conclude from Fig. 1 that the synthetic images covered only
a limited part of the variability as it is shown in Fig. 2(a). The PCA helped to
reduce the high-dimensional feature space and therefore to visualize the impor-
tant part of the variability and the position of the groups of images in a feature
space. It was possible to visually assess the overlap of the ellipsoids constructed
over 95% joint confidence interval representing a given group. To express this
overlap numerically, the Jaccard index was suggested.

Exploring the subset of real images, the Jaccard values was never higher than
0.8. This is according to the variability given by each subset of real data and it
should be kept in mind also when comparing real and synthetic data. The value
of Jaccard J = 1 is impossible to achieve and if so, this result would refer to the
overfitted simulator to the particular real dataset.

The low performance of the comparison of cervix data could result from
evaluation of the Haralick features over the whole image consisting of many cells,



392 T. Nečasová and D. Svoboda

Table 1. Results of methods for comparison on datasets (R × S – real vs. synthetic;
R×R – real vs. real). The performance of the methods is described in a sentence (+++
suggest no difference in the samples, + stands for a low similarity).

Dataset Q-Q plots K-S p-value Visualization by PCA Jaccard

Pap smear R×S Diverging a lot from
the straight line in
4 descriptors (++)

Significant
difference in
6 cases (+)

Synthetic data lie in
the plane crossing the
ellipsoid of real data
(+)

0.161

R×R Good (++) All right, no
rejection
(+++)

Ellipsoids have large
overlap (+++)

0.652

Lung cells

Over-
expressing

R×S Diverging a lot from
the straight line in
1 descriptor (++)

Significant
difference in
4 cases (++)

The ellipsoid of the
synthetic data is
smaller, but fitting a
majority (++)

0.583

R×R Perfect (+++) All right, no
rejection
(+++)

Ellipsoids have large
overlap (+++)

0.796

Phospho-
defective

R×S Diverging a lot from
the straight line in
5 descriptors (++)

Significant
difference in
6 cases (+)

Ellipsoids overlap only
in part of the data
(++)

0.284

R×R Perfect (+++) All right, no
rejection
(+++)

Ellipsoids have large
overlap (+++)

0.659

in contrast to the lung cancer cells. The inner regions of single cells provide more
homogeneous part of the image suitable for the evaluation.

Note that the similarity evaluation of cervix data was done only on 25+25
images. Despite the small sample size, the limitations of the synthesized vari-
ability were conspicuous.

In this paper, only the texture feature was assessed, however the PCA could
be applied also to other characteristics of an image, such as shape. The descrip-
tors are nevertheless based on some pre-processing and could be affected by the
chosen method.

6 Conclusion

In the last years, the methods of cell image synthesis have been rapidly improv-
ing. However, the evaluation of the similarity of such generated data compared
to real data, is still not sufficient.

This paper aimed to show new possibilities for texture comparison in (1)
viewing data in context of multiple dimensions given by texture descriptors,
(2) observe the mutual position of real and synthetic image data points in fea-
ture space reduced by PCA, and (3) quantitative measurement of similarity by
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comparing the volumes of ellipsoids enveloping given group of data in a feature
space.

The described methods were applied to two datasets showing differ-
ences between groups of images. In two randomly chosen subsets of real
images there was observed only a small difference between the groups with
Jaccard index ≥0.652. The experiments comparing real and synthetic data
showed different levels of similarity. The Jaccard indices revealed corresponding
results to the visual inspection in reduced feature space and univariate statistical
comparisons.

In the future work we plan to extend our method for time-lapse image data,
where the texture is time varying. The vision is also to give a constructive
feedback to the designer of the synthesizing algorithm in identifying, why the
images differ in a chosen descriptor.
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