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Abstract. Synaptic connectivity detection is a critical task for neural
reconstruction from Electron Microscopy (EM) data. Most of the existing
algorithms for synapse detection do not identify the cleft location and
direction of connectivity simultaneously. The few methods that computes
direction along with contact location have only been demonstrated to
work on either dyadic (most common in vertebrate brain) or polyadic
(found in fruit fly brain) synapses, but not on both types. In this paper,
we present an algorithm to automatically predict the location as well
as the direction of both dyadic and polyadic synapses. The proposed
algorithm first generates candidate synaptic connections from voxelwise
predictions of signed proximity generated by a 3D U-net. A second 3D
CNN then prunes the set of candidates to produce the final detection of
cleft and connectivity orientation. Experimental results demonstrate that
the proposed method outperforms the existing methods for determining
synapses in both rodent and fruit fly brain. (Code at: https://github.
com/paragt/EMSynConn).

1 Introduction

Connectomics has become a fervent field of study in neuroscience and computer
vision recently. The goal of EM connectomics is to reconstruct the neural wiring
diagram from Electron Microscopic (EM) images of animal brain. Neural recon-
struction of EM images consists of two equally important tasks: (1) trace the
anatomical structure of each neuron by labeling each voxel within a cell with a
unique id; and (2) find the location and direction of synaptic connections among
multiple cells.

The enormous amount of EM volume emerging from a tiny amount of tis-
sue constrains any subsequent analysis to be performed (semi-) automatically
to acquire a comprehensive knowledge within a practical time period [1,2]. Dis-
covering the anatomical structure entails a 3D segmentation of EM volume.
Numerous studies have addressed this task with many different approaches, we
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refer interested readers to [3–9] for further details. In order to unveil the con-
nectivity, it is necessary to identify the locations and the direction of synaptic
communications between two or more cells. Resolving the location of synaptic
contact is crucial for neurobiological reasons, and, because the strength of con-
nection between two cells is determined by the number of times they make a
synaptic contact. The direction of the synaptic contact reveals the direction of
information flow from presynaptic to postsynaptic cells. By defining the edges,
the location and connectivity orientation of synapses complete the directed net-
work of neural circuitry that a neural reconstruction seek to discover. In fact,
discovering synaptic connectivity was one of the primary reasons to employ the
immensely complex and expensive apparatus of electron microscopy for connec-
tomics in the first place. Other imaging modalities (e.g., light microscopy) are
either limited by their resolution or by a conclusive and exhaustive strategy (e.g.,
using reagents) to locate synapses [10–12].

In terms of complexity, identification of neural connectivity is as challeng-
ing as tracing the neurons [13]. With rapid and outstanding improvement in
automated EM segmentation in recent years, detection of synaptic connectivity
may soon become a bottleneck in the overall neural reconstruction process [14].
Although fewer in number when compared against those in neurite segmenta-
tion, there are past studies on synaptic connectivity detection; we mention some
notable works in the relevant literature section below. Despite many discernible
merits of previous works, very few of them aim to identify both the location
and direction of synaptic junctions. Among these few methods, namely by [13–
15], none of them have been shown to be generally applicable on different types
of synapses typically found on different species of animals, e.g., dyadic con-
nections in vertebrate (mouse, rat, zebra finch, etc.) and polyadic connections
in non-vertebrate (fruit fly) brain1. Apart from a few, the past approaches do
not benefit from the advantages deep (fully) convolutional networks offer. Use
of hand crafted features could stifle the utility of a method on widely divergent
EM volumes collected from different animals with different tissue processing and
imaging techniques.

In this paper, we propose a general method to automatically detect both the
3D location and direction of both dyadic (vertebrate) and polyadic (fruit fly)
synaptic contacts. The proposed algorithm is designed to predict the proximity
(and polarity, as we will explain later) of every 3D voxel to a synaptic cleft
using a deep fully convolutional network, namely a U-net [16]. A set of putative
locations, along with their connection direction estimates, are computed given
a segmentation of the volume and the voxelwise prediction from the U-net. A
second stage of pruning, performed by a deep convolutional network, then trims
the set of candidates to produce the final prediction of 3D synaptic cleft locations
and the corresponding directions.

The use of CNNs makes the proposed approach generally applicable to new
data without the need for feature selection. Estimation of the location and

1 Although, there are examples of polyadic connections in mouse cerebellum between
mossy fibers and granule cells.
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connectivity at both voxel and segment level improves the accuracy but do not
require any additional annotation effort (no need for labels for other classes
such as vesicles). We show that our proposed algorithm outperforms the exist-
ing approaches for synaptic connectivity detection on both vertebrate and fruit
fly datasets. Our evaluation measure (Sect. 3), which is critical to assess the
actual performance of a synapse detection method, has also been confirmed by a
prominent neurobiologist to correctly quantify actual mistakes on real dataset.

1.1 Relevant Literature

Initial studies on automatic synaptic detection focused on identifying the cleft
location by classical machine learning/vision approaches using pre-defined fea-
tures [17–22]. These algorithms assumed subsequent human intervention to
determine the synaptic partners given the cleft predictions. Roncal et al. [23]
combine the information provided by membrane and vesicle predictions with
a CNN (not fully convolutional) and apply post-processing to locate synap-
tic clefts. To establish the pre- and post-synaptic partnership, [24] augmented
the synaptic cleft detection with a multi-layer perceptron operating on hand
designed features. On the other hand, Kreshuk et al. [15] seek to predict vesi-
cles and clefts for each neuron boundary by a random forest classifier (RF) and
then aggregate these predictions with a CRF to determine the connectivity for
polyadic synapses in fruit fly. Dorkenwald et al. [13] utilize multiple CNNs, RFs
to locate synaptic junctions as well as vesicles, mitochondria, and to decide the
dyadic orientation in vertebrate EM data. SynEM [14] attempts to predict con-
nectivity by classifying each neuron boundary (interfaces) to be synaptic or not
using a RF classifier operating on a confined neighborhood and has been shown
to perform better than [13] in terms of connectivity detection.

2 Method

The proposed method is designed to first predict both the location and direction
of synaptic communication at the voxel level. Section 2.1 illustrates how this is
performed by training a deep encoder-decoder type network, namely the U-net,
to compute the proximity and direction of connection with respect to synapses at
every voxel. The voxelwise predictions are clustered together after discretization
and matched with a segmentation to establish synaptic relations between pairs
of segment ids. Afterwards, a separate CNN is trained to discard the candidates
that do not correspond to an actual synaptic contact, both in terms of location
and direction, as described in Sect. 2.2.

2.1 Voxelwise Synaptic Cleft and Partner Detection

In order to learn both the position and connection orientation of a synapse, the
training labels for voxels are modified slightly from the traditional annotation. It
is the standard practice to demarcate only the synaptic cleft with a single strip
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of id, or color, as the overlaid color shows in Fig. 1(a). In contrast, the proposed
method requires the neighborhood of the pre- and post-synaptic neurons at the
junction of synaptic expression to be marked by two ids or colors as depicted
in Fig. 1(b). To distinguish the partners unambiguously, these ids can follow a
particular pattern, e.g., pre-synaptic partners are always marked with odd id and
post-synaptic partners are annotated with even ids. Such annotations inform us
about both the location and direction of a connection with practically no increase
in annotation effort. Note that, although we explain and visualize the labels in
2D and in 1D for better understanding, our proposed method learns a function
of the 3D annotations.

Fig. 1. The traditional and proposed annotation of synapses and the signed proximity
function that the proposed method estimates are shown in 2D in (a), (b), (c) and in
1D in (d), (e), (f) respectively for illustration purposes. The U-net learns the signed
proximity functions in 3D. (Color figure online)

For voxelwise prediction of position and direction, ids of all pre- and post-
synaptic labels (red and blue in Fig. 1(b)) are converted to 1 and −1 respectively;
all remaining voxels are labeled with 0. However, our approach does not directly
learn from the discrete labels presented in Fig. 1(b). Instead, we attempt to learn
a smoother version of the discrete labels, where the transition from 1 and −1 to
0 occurs gradually, as shown in Fig. 1(c). The dissimilarities among these three
types of annotations can be better understood in 1D. The Figs. 1(d), (e), and (f)
plot the labels perpendicular to the black line drawn underneath the labels in
images in the top row of Fig. 1. The proposed approach attempts to learn a
3D version of the smooth function in Fig. 1(c) and (f). Effectively, this target
function computes a signed proximity from the synaptic contact, where the sign
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indicates the connectivity orientation and the absolute function value determines
the closeness or affinity of any voxel to the nearest cleft. Mathematically, this
function can be formulated as

proximitysigned(x) =
{

exp
−d(x)2

2σ2

} {
2

1 + exp(−α d(x))
− 1

}
, (1)

where d(x) is the signed distance between voxel at x and the synaptic cleft, and
α and σ are parameters that control the smoothness of transition. We solve a
regression problem using a 3D implementation of U-net with linear final layer
activation function to approximate this function. There are multiple motivations
to approximate a smooth signed proximity function. A smooth proximity func-
tion as a target also eliminates the necessity of estimating the abrupt change
near the annotation boundary and therefore assists the gradient descent to app-
roach a more meaningful local minimum. Furthermore, some recent studies have
suggested that a smooth activation function is more useful than its discrete
counterparts for learning regression [25,26].

Our 3D U-net for learning signed proximity has an architecture similar to
the original U-net model in [16]. The network has a depth of 3 where it applies
two consecutive 3 × 3 × 3 convolutions at each depth and utilizes parametric
leaky ReLU [27] activation function. The activation function in the final layer
is linear. The input and output of the 3D U-net are 316 × 316 × 32 grayscale
EM volumes and 228 × 228 × 4 proximity values, respectively. A weighted mean
squared error loss is utilized to learn the proximity values during training.

2.2 Candidate Generation and Pruning

For computing putative pairs of pre- and post-synaptic partners, we first thresh-
old the signed proximity values at an absolute value of τ and compute connected
components for pre and post-synaptic sites separately. Given a segmentation S
for the EM volume, every pre-synaptic connected component e is paired with one
or more segment sie ∈ S, ie = 1, . . . , me based on a minimum overlap size ω to
form pre-synaptic site candidates Te,ie . Similarly, post-synaptic site candidates
To,jo are generated by associating each post-synaptic connected component o is
with a set of segments sjo ∈ S, jo = 1, . . . , no. The set C of candidate pairs of
synaptic partners are computed by pairing up pre-synaptic candidate Te,ie with
post-synaptic To,jo wherever segment sjo is a neighbor of sie , i.e., sie shares a
boundary with segment sjo .

C =
{

{Te,ie , To,jo} | sjo ∈ Nbr(sio), ∀e, o, ie, jo

}
. (2)

A 3D CNN is utilized to distinguish the correct synaptic partner pairs from the
false positive candidates, i.e., to produce a binary decision for each candidate.
The groundtruth labels for training this second convolutional network were com-
puted by matching the segmentation S with the groundtruth segmentation of
the volume G. The pruning network is constructed with 5 layer convolutions
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of size 3 × 3 × 3 followed by two densely connected layers. The input to the
3D deep convolutional pruning (or trimming) network comprises 160 × 160 × 16
subvolumes of the grayscale EM image, the predicted signed proximity values
from 3D U-net and the segmentation masks of sie , sjo , extracted from a 3D win-
dow centered at the closest point between the connected components e and o,
as shown in Fig. 2.

It is worth mentioning here that we have contemplated the possibility of
combining the voxelwise network and the candidate trimming network to facili-
tate end-to-end training, but did not pursue that direction due to the difficulty
in formulating a differentiable operation to transform voxelwise signed proximi-
ties to region wise candidates. We have, however, attempted to employ a region
proposal network based method, in particular the mask R-CNN [28], to our prob-
lem. The proposal generating network of mask R-CNN method resulted in a low
recall rate for locating the synapses in our experiments (leading to low recall
in the final result after trimming). We observed Mask R-CNNs to struggle with
targets with widely varying size in our dataset. Furthermore, we had difficulty
in merging many proposals [28] produced for one connection, leading to lower
final precision rate as well.

Fig. 2. Candidate pruning by 3D CNN. The EM image, proximity prediction and
segmentation mask on one section of input subvolume are shown in (a), (b), (c) respec-
tively. The cyan and yellow segmentation masks are provided as separate binary masks,
shown here in one image (c) to save space. (Color figure online)

3 Experiments and Results

The deep nets for this work were implemented in Theano with Keras interface2.
For both the network training, we used rotation and flip in all dimensions for data
augmentation. For the candidate trimming network, we also displaced the center
of the window by a small amount to augment the training set. The parameters
for the target signed proximity and the candidate overlap calculation remained
the same as α = 5, τ = 0.3 (absolute value), ω = 100. The parameter σ was set

2 Code at: https://github.com/paragt/EMSynConn.

https://github.com/paragt/EMSynConn
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to 10 for the mouse and rat dataset but 14 for the TEM fly data to account for
the difference in z-resolution.

Evaluation: It is critical to apply the most biologically meaningful evaluation
formula in order to correctly assess the performance of any given method. Dis-
tance based methods [14,18], for example, are unrealistically tolerant to false
positive detections nearby. On the other hand, pixelwise error computation [29]
is more stringent than necessary for extracting the wiring diagram – two detec-
tions with 50% and 60% pixelwise overlap need not be penalized differently
for connectomics purposes. Measures computed solely on overlap [23] becomes
ambiguous when one prediction overlaps two junctions. We resolve this ambi-
guity by considering a detection be correct only if it overlaps with the span of
synaptic expression (as delineated by an expert) and connects two cells with
correct synaptic orientation, i.e., pre and post-synaptic partners. All the preci-
sion and recall values reported in the experiments on rat (Sect. 3.1) and mouse
(Sect. 3.2) data are computed with this measure.

3.1 Rat Cortex

Our first experiment was designed to determine the utility of the two stages,
i.e., voxelwise prediction and candidate set pruning, of the proposed algorithm.
The EM images we used in this experiment were collected from rat cortex using
SEM imaging at resolution of 4 × 4 × 30 nm. We used a volume of 97 images to
train the 3D U-net and validated on a different set of 120 images. The candidate
pruning CNN was trained on 97 images and then fine tuned on the 120 image
dataset. For testing we used a third volume of 145 sections. The segmentation
used to compute the synaptic direction was generated either by the method
of [30].

Figure 3(a) compares the precision recall curves for detecting both location
and connectivity with two variants. (1) 3 Label + pruning - where the proximity
approximation is replaced by 3-class classification among pre-, post-synaptic,
and rest of the voxels (Fig. 1(b)). (2) Proximity + [Roncal, arXiv14] - where the
proposed pruning network is replaced by VESICLE [23] style post-processing.
For the proposed (blue o) and 3 Label + pruning (red x) technique, each point on
the plot correspond to a threshold on the prediction of the 3D trimming CNN.
For the Proximity + [Roncal, arXiv14] technique (black o), we varied several
parameters of the VESICLE post-processing.

This experiment suggests that the pruning network is substantially more
effective than morphological post-processing [23]. The proposed signed proxim-
ity approximation yields 3% more true positives in the initial candidate set than
those generated by the multiclass prediction. As discussed earlier in Sect. 2.1, a
smooth target function places the focus on learning difficult examples by remov-
ing the necessity to learn the sharp boundaries. Empirically, we have noticed the
training procedure to spend a significant number of iterations to infer the sharp
boundary of a discrete label like Figure 1(b) and (c). Furthermore, we observed
that the wider basin of prediction can identify more true positives and offers
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Fig. 3. Precision recall curves for synapse location and connectivity for rat cortex (a)
and mouse cortex (SNEMI) (b) experiments. Plot (a) suggests combining voxelwise
signed proximity prediction with pruning performs significantly better than the versions
that replaces one of these components with alternative strategies. Plot (b) indicates
significant improvement achieved over performance of [14] on the same dataset. (Color
figure online)

more information for the following pruning stage to improve the F-score of our
method to 91.03% as opposed 87.5% of the 3 Label + pruning method.

3.2 Mouse Cortex Data (SNEMI)

We experimented next on the SEM dataset from Kasthuri et al. [31] that was
used for the SNEMI challenge [32] to compare our performance with that of
SynEM [14] (which was shown to outperform [13]). The synaptic partnership
information was collected from the authors of [31] to compute the signed proxim-
ities for training the 3D U-net. Similar to the rat cortex experiment, we used 100
sections for training the voxelwise U-net and candidate pruning CNN and used
150 sections for validation of the voxelwise proximity U-net. The test dataset
consists of 150 sections of size 1024 × 1024 that is referred to as AC3 in [14].
The segmentation used to compute the synaptic direction was generated either
by the method of [30].

The authors of [14] have kindly provided us with their results on this dataset.
We read off the cleft detection and the connectivity estimation from their result
and computed the error measures as explained in Sect. 3. The precision recall
curve for detecting both cleft and connectivity is plotted in Fig. 3(b). In general,
the SynEM method performs well overall, but produces significantly higher false
negative rates than the proposed method. Among the synapses it detects, SynEM
assigns the pre and post-synaptic partnership very accurately, although it used
the actual segmentation groundtruth for such assignment whereas we used a
segmentation output. Visual inspection of the detection performances also ver-
ifies the lower recall rate of [14] than ours. In Fig. 4 we show the groundtruth,
the cleft estimation of SynEM (missed connection marked with red x) and the
connected components corresponding to the predictions of the proposed method,
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both computed at the largest F-score. The direction of synaptic connection in
image of Fig. 4(c) is color coded – purple and green indicates pre and post-
synaptic partners respectively.

Fig. 4. Qualitative results on mouse cortex data [31]. Left to right, groundtruth anno-
tation, output of SynEM [14] (red x marks missed location), and that of the proposed
method. In (c), purple and green indicates pre and post-synaptic partner respectively.
(Color figure online)

3.3 Fruit Fly Data (CREMI)

Our method was applied on the 3 TEM volumes (resolution 4×4×40 nm) of the
CREMI challenge [29]. We annotated the training labels for synaptic partners
for all 3 volumes given the synaptic partner list provided on the website. All
the experimental settings for this experiment remain the same as other except
those mentioned in Sect. 3. Out of the 125 training images, we used the first 80
for training and the remaining images for validation. The segmentation used to
compute the synaptic direction was generated either by the method of [3].

The performance is only measured in terms of synaptic partner identification
task, as the pixelwise cleft error measure is not appropriate for our result (refer to
the output provided in Fig. 4(c)). At the time of this submission the our method,
which is identified as HCBS on CREMI leaderboard, holds the 2nd place overall
(error difference with the first is 0.002) and performed better than both variants
of [15] (Table 1).

Table 1. Result on CREMI data, lower is better

Method Submission CREMI score FP FN

HCBS (proposed) Tr66 80K 0.449 223.000 286.667

IAL [15] PSP unar 0.461 266.667 281.000

IAL [15] PSP full 0.464 187.333 310.000
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4 Conclusion

We propose a general purpose synaptic connectivity detector that locates the
location and direction of a synapse at the same time. Our method was designed
to work on both dyadic and polyadic synapses without any modification to its
component techniques. The utilization of deep CNNs for learning location and
direction of synaptic communication enables it to be directly applicable to any
new dataset without the need for manual selection of features. Experiments on
multiple datasets suggests the superiority of our method on existing algorithms
for synaptic connectivity detection. One straightforward extension of the pro-
posed two stage method is to enhance the candidate pruning CNN to distinguish
between excitatory and inhibitory synaptic connections by adopting a 3-class
classification scheme.
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