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Abstract. The classification for medical diagnosis usually involves
inherently ordered labels corresponding to the level of health risk. Previ-
ous multi-task classifiers on ordinal data often use several binary classifi-
cation branches to compute a series of cumulative probabilities. However,
these cumulative probabilities are not guaranteed to be monotonically
decreasing. It also introduces a large number of hyper-parameters to be
fine-tuned manually. This paper aims to eliminate or at least largely
reduce the effects of those problems. We propose a simple yet efficient
way to rephrase the output layer of the conventional deep neural net-
work. We show that our methods lead to the state-of-the-art accuracy
on Diabetic Retinopathy dataset and Ultrasound Breast dataset with
very little additional cost.
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1 Introduction

Recent advances in deep neural networks (DNN) for natural image tasks have
prompted a surge of interest in adapting similar models to medical images [1–3].
However, some of the special characteristics of medical diagnosis have, in our
opinion, not been anfficiently explored.

The classes of a medical image usually represent the health risk levels, which
are inherently ordered. For instance, the Diabetic Retinopathy Diagnosis (DR)
involves five levels: no DR (1), mild DR (2), moderate DR (3), severe DR (4)
and proliferative DR (5) [4,5]. The Breast Imaging-Reporting and Data System
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L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11134, pp. 335–344, 2019.
https://doi.org/10.1007/978-3-030-11024-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11024-6_23&domain=pdf
http://orcid.org/0000-0002-4514-2016
http://orcid.org/0000-0003-0396-7850
http://orcid.org/0000-0003-4990-2964
http://orcid.org/0000-0002-6553-7963
http://orcid.org/0000-0002-8181-4836
http://orcid.org/0000-0001-7126-6381
https://doi.org/10.1007/978-3-030-11024-6_23


336 X. Liu et al.

(BIRADS) also includes five diagnostic labels: 1-healthy, 2-benign, 3-probably
benign, 4-may contain malignant and 5-probably contains malignant [1,6]. Simi-
lar ordinal labeling systems for liver (LIRADS), gynecology (GIRADS), colonog-
raphy (CRADS) have been established soon afterward [2].

Surely, the ordinal data is not unique to the medical image classification.
Some other examples of ordinal labels include the age of a person [7], face
expression intensity [8], aesthetic [9], star rating of a movie [10], etc., and are
traditionally referred to ordinal regression tasks [11]. Two of the most straight-
forward approaches either cast it as a multi-class classification problem [12] and
optimize the cross-entropy (CE) loss or treat it as a metric regression problem
[13] and minimize the absolute/squared error loss (i.e., MAE/MSE). The former
(Fig. 1(a)) assumes that the classes are independent of each other, which totally
fails to explore the inherent ordering between the labels. The latter (Fig. 1(c))
treats the discrete labels as continuous numerical values, in which the adjacent
classes are equally distant. This assumption violates the non-stationary property
of many image related tasks, easily resulting in over-fitting [14].

Fig. 1. The architecture of output layer used in previous ordinal regression methods:
(a) multi-class classification, (b) regression, (c) poisson, and (d) multi-task classifica-
tion. We learn a discriminative mapping from sample x to an ordinal variable y.

Recently, better results were achieved via a N − 1 binary classification sub-
tasks (Fig. 1(b)) using sigmoid output with MSE loss [11] or softmax output with
CE loss [2,6,15,16], when we have N levels as the class label. We can transform
N levels to a series of labels of length N − 1. Then the first class is [0,...,0],
followed by the second class [1, ..., 0], third class [1, 1, .., 0] and so forth. The
sub-branches in Fig. 1(b) calculate the cumulative probability p(y > i|x), where
i index the class1. With the cumulative probability, then it is trivial to define the
corresponding discrete probabilities p(y = i|x) via subtraction. These techniques
are closely related to their non-deep counterparts [17,18]. However, the cumula-
tive probabilities p(y > 1|x), ..., p(y > N−1|x) are calculated by several branches
independently, therefore, can not guarantee they are monotonically decreasing.
That leads to the p(y = i|x) are not guaranteed to be strictly positive and results

1 We will always index probabilities from zero for the remainder of this paper.
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poor learning efficiency in the early stage of training. Moreover, N − 1 weights
need to be manually fine-tuned to balance the CE loss of each branch.

Besides, under the one-hot target label encoding, the CE loss -log(p(y =
l|x))) essentially only cares about the ground truth class l. [19] argues that
misclassifying an adult as a baby is more severe than misclassifying as a teenager,
even if the probabilities of the adult class are the same. [5,20,21] propose to use
a single output neuron to calculate a parameter of a unimodal distribution, and
strictly require that the p(y = i|x) follows a Poisson or Binomial distribution,
but suffers from lacking the ability to control the variance [21]. Since the peak
(also the mean and variance) of a Poisson distribution is equal to a designated
λ, we can not assign the peak to the first or last class, and its variance is very
high when we need the peak in the very later classes.

Furthermore, the agreement rate of the radiologists for a malignancy is usu-
ally less than 80%, which results in a noisy labeled dataset [22,23]. Despite the
distinction between adjacent labels is often unclear, it is more likely that a well-
trained annotator will mislabel a Severe DR (4) sample to Moderate DR (3)
rather than No DR (1).

In this paper, we propose to address the issues discussed above. Briefly,
we rephrase the conventional softmax-based output layer to the neuron stick-
breaking formulations to guarantee the cumulative probabilities are monotoni-
cally decreasing. We evaluated our approaches in the context of medical diag-
nosis on two datasets, and obtained promising results. We note that although
the methods shown here were originally developed for medical images, they are
essentially applicable to other ordinal regression problems (Fig. 3).

Fig. 2. The Stick-breaking process for 4 classes with 3 boundaries. In [24], η is the
linear projection in LGMs.
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Fig. 3. Our neuron Stick-breaking architecture for N classes with N−1 output neurons,
followed by sigmoid units and linear operations.

2 Neuron Stick-Breaking for Ordinal Regression

In the stick-breaking approach, we define a stick of unit length between [0, 1],
and sequentially break off parts of the stick which then become the discrete
probabilities for that class (Fig. 2(a)) [25]. The stick-breaking process is a subset
of the random allocation processes [26] and a generalization of continuation ratio
models [27]. It is closely associated with the associated Bayesian non-parametric
methods, e.g., [25] used it in constructive definitions of the Dirichlet process [28].
[24] further proposed its parameterization for Latent Gaussian Models (LGMs).

To introduce the stick-breaking processes in a way that is appropriate a
deep neural network for ordinal regression, we set N − 1 output neurons for
N levels, and suppose that f(x)i is a scalar denoting the i-th output of our
neural network to substitute linear projections ηi in LGMs. We define the stick
length of the first class, i.e., its probability, to be σ(f(x)1), where σ(·) denotes
the sigmoid nonlinearity. We can then define the second class probability as
what was left over from that stick multiplied by the output of the second class,
i.e., (1 − σ(f(x)1))σ(f(x)2). For the third class probability we compute (1 −
σ(f(x)1))(1 − σ(f(x)2))σ(f(x)3) and so forth, where the last class probability
for p(N |x) receives what is left over, i.e., (1 − σ(f(x)1))...(1 − σ(f(x)N−1)). The
conventional CE loss can be used to train our network.

It can be derived that each output f(x)i is actually the log-ratio f(x)i =
log(p(y = i|x)/p(y > i|x)) [24], so these f(x)i can be interpreted as defining
decision boundaries that try to separate the i-th class from all the classes that
come after it. By doing so, the prediction is still a discrete probability (i.e.,
∑N=1

i p(y = i) = 1), and each p(y = i) ≥ 0, then we do guarantee the relation-
ship of p(y > 1) ≥ p(y > 2) ≥ p(y > N − 1).

A nice property of our method is that unlike the approaches that only output
a single distribution parameter [5,21,29], we obtain a slightly more expressive
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model since each boundary of two adjacent classes gets its own scalar output
f(x)i. The discrete probabilities can also be calculated via our predefined linear
manipulations instead of having to estimate cumulative probabilities first [11,
17,18]. Therefore, the weights of each branch in [11] are no longer necessary.

Fig. 4. Some samples with different retinopathy level in the DR dataset.

3 Experiments

3.1 Datasets

We make use of two typical ordinal datasets in the medical area suitable for
DNN implementations. The first dataset contains images of Diabetic Retinopa-
thy (DR)2. In this dataset, a large amount of high-resolution fundus (i.e., interior
surface at the back of the eye) images data have been labeled as five levels of
DR, with levels 1 to 5 representing the No DR, Mild DR, Moderate DR, Severe
DR, and Proliferative DR, respectively. The left and right fundus image from
17563 patients are publicly available. Following the setting in [21], we adopt the
subject-independent ten-fold cross-validation, i.e., the validation set consisting
of 10% of the patients is set aside. The images belonging to a patient will only
appear in a single fold, in this way we can avoid contamination. The images are
also preprocessed as in [5,21] and subsequently resized as 256 × 256 size images.
Some examples can be found in Fig. 4.

The second dataset is the Ultrasound BIRADS (US-BIRADS) [6]. It is com-
prised of 4904 breast images which are labeled with the BIRADS system. Con-
sidering the relatively limited number of samples in level 5, we usually regard
the 4–5 as a single level [6]. That results 2700 healthy (1) images, 1113 benign
(2) images, 359 probably benign (3), and 732 may contain/contain malignant
images. We divide this dataset into 5 subsets for subject-independent five-fold
cross validation. We show some samples at different levels in Fig. 5.

3.2 Evaluations

There are several possible evaluation metrics for ordinal data. As a classification
problem, the performance of a system can be simply measured by the average

2 https://www.kaggle.com/c/diabetic-retinopathy-detection.

https://www.kaggle.com/c/diabetic-retinopathy-detection
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Fig. 5. Some samples with different malignant risk in the US-BIRADS.

classification accuracy. [6] further utilized the Mean True Negative Rate (TNR)
at True Positive Rate (TPR) of 0.95. The relatively high TPR used in here is
fitted for strict TPR requirement of medical applications to avoid misdiagnosing
diseased case as healthy. However, they do not consider the severity of different
misclassification. Following the previous metrics in the Kaggle competition of DR
dataset, we choose the quadratic weighted kappa (QWK)3 to implicitly punish
the misclassification proportional to the distance between the ground-of-truth
label and predicted label of the network [30]. The QWK is formulated as:

k = 1 −
∑

i,j Wi,jOi,j
∑

i,j Wi,jEi,j
(1)

to measures the level of disagreement between two raters (A and B). In here, the
A is the argmax prediction of our classifier and B is the ground truth. The W
is a N × N matrix where Wi,j denotes the cost associated with misclassifying
label i as label j. In QWK, Wi,j = (i − j)2. Oi,j counts the number of images
that received a rating i by A and a rating j by B. The quadratic calculation
is one possible choice and one can plug in other distance metrics into kappa
calculation. The matrix of expected ratings E, is calculated, assuming that there
is no correlation between rating scores. As a result, k is a scalar in [−1, 1], and
k = 1 indicates the two raters are total agreement, whereas k < 0 means the
classifier performs worse than random choice.

The Mean Absolute Error (MAE) metric is also popular in related ordinal
datasets [11], which is computed using the average of the absolute errors between
the ground truth and the estimated result. Here, we also propose its use in
evaluating the proposed method on two medical ordinal benchmarks.

3.3 Networks and Training Details

For fair comparison, we choose similar backbones neural networks as in previous
works on DP and US-BIRADS datasets. We adjust the last layer and softmax
normalization to our neuron stick-breaking formulation. The ResNet [31] style
model with 11 ResBlocks as in [21] has been adopted for DR dataset. We use
four stick-breaking neurons as our output structure and calculate the p(y = i|x)
3 https://www.kaggle.com/c/diabetic-retinopathy-detection#evaluation.

https://www.kaggle.com/c/diabetic-retinopathy-detection#evaluation
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via the predefined linear operations. AlexNet style architecture [32] with six
convolution layers and following two dense layers is used for US-BIRADS image
dataset as in [6]. 3 stick-breaking neurons are employed as the last layer. All of
networks in our training use the L2 norm of 10−4, ADAM optimizer [33] with
128 training batch-size and initial learning rate of 10−3. The learning rate will
be divided by ten when either the validation loss or the valid set QWK plateaus.
We set our hyper-parameters η = 0.15, τ = 1.

Table 1. Performance on the DR dataset.

Evaluations Mean TNR@TPR= 0.95 Valid Acc Valid QWK MAE

1 vs 2–4 1–2 vs 3–4 1–3 vs 4

MC 41.5% 30.9% 31.1% 82.4% 0.724 0.37

RG 40.3% 30.6% 30.8 % 76.2% 0.705 0.38

Poisson [21] 38.8% 30.0% 29.6 % 77.1% 0.713 0.38

MT [6] 42.7% 31.7% 31.3% 82.8% 0.726 0.36

NSB 44.0% 33.1% 32.6% 84.2% 0.743 0.32

Table 2. Performance on the US-BIRADS dataset. *Our implementations have slightly
higher TNR using MC baseline than the results reported in [6]

Evaluations Mean TNR@TPR= 0.95 Valid Acc Valid QWK MAE

1 vs 2–5 1–2 vs 3–5 1–3 vs 4–5

MC 33.2%* 28.7%* 29.8%* 73.3% 0.678 0.42

RG 31.6% 28.5% 29.5% 73.0% 0.677 0.44

Poisson [21] 29.6% 27.2% 29.5% 72.2% 0.665 0.45

MT [6] 38.5% 29.2% 31.3% 76.5% 0.685 0.41

NSB 39.1% 30.2% 32.0% 78.3% 0.694 0.39

3.4 Numerical Experiments

We conduct our experiments on both datasets with the evaluation metrics dis-
cussed earlier. The results in DR dataset are shown in Table 1. Several baseline
methods are chosen for comparison, e.g., multi-class classification with CE loss
(MC), regression with MSE loss (RG), Poisson distribution output with CE loss
(Poisson), and multi-task network with a series of CE loss (MT). The RG is
usually worse than MC, but appear to be competitive w.r.t. MAE, since RG
optimizes similar metric MSE in its training stage. The Poisson gets the lowest
results in the most of evaluations due to its uncontrollable variance. The and MT
are more promising than MC as they consider ordinal information. By addressing
their limitations, we achieve the state-of-the-art performance in all of the evalu-
ation tasks using the neuron stick-breaking (NSB). The leading performance of
our method is also observed on the US-BIRADS dataset (Table 2).
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4 Conclusions

We have introduced the stick-breaking presses for DNN-based ordinal regression
problem. By reformulating the neurons of the last layer and softmax function,
we not only fully consider the ordinal property of the class labels, but also
guarantee the cumulative probabilities are monotonically decreasing. We also
show how these approaches offer improved performance in DR and US BIRADS
datasets. In future work, we intend to leverage our methods for more general
ordinal regression tasks.
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