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Abstract. We focus on the problem of estimating human hand-tremor
frequency from input RGB video data. Estimating tremors from video
is important for non-invasive monitoring, analyzing and diagnosing
patients suffering from motor-disorders such as Parkinson’s disease. We
consider two approaches for hand-tremor frequency estimation: (a) a
Lagrangian approach where we detect the hand at every frame in the
video, and estimate the tremor frequency along the trajectory; and (b)
an Eulerian approach where we first localize the hand, we subsequently
remove the large motion along the movement trajectory of the hand,
and we use the video information over time encoded as intensity val-
ues or phase information to estimate the tremor frequency. We estimate
hand tremors on a new human tremor dataset, TIM-Tremor, contain-
ing static tasks as well as a multitude of more dynamic tasks, involving
larger motion of the hands. The dataset has 55 tremor patient recordings
together with: associated ground truth accelerometer data from the most
affected hand, RGB video data, and aligned depth data.
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1 Introduction

We focus on human hand-tremor frequency estimation from videos captured with
common consumer RGB cameras. The problem has a considerable importance
in medical applications for aiding the medical personnel in the task of motor-
disorder patient monitoring and tremor diagnosing [2,13,25,34]. Traditionally
the clinical practice uses body-worn accelerometers which offer excellent mea-
surements, yet is intrusive, slow to setup, and allows only measuring a single
location per accelerometer. Replacing accelerometers with a common RGB cam-
era brings forth a non-intrusive method of measuring full-body tremors, offering
a strong advantage in the clinical practice.
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In the context of tremor analysis, existing approaches require the use of
specialized sensors [6,8,14,15], which makes it difficult to apply these methods
in practice. Moreover, the targeted application of these approaches are the more
high-level tremor diagnosing problem [14,26] or tremor/no-tremor classification
[28]. We propose to estimate human hand-tremor frequency from RGB videos,
and compare against ground truth accelerometer data.

The main challenge, when performing human tremor frequency estimation,
is the current lack of openly available realistic datasets. Existing work on human
tremor analysis either evaluates using in-house data that is not publicly available
[6,14,37], or on simulated tremor data where no ground truth tremor statistics
are provided [28]. This limits the assessment of human tremor analysis methods
and, thus, its progress. An open evaluation dataset is needed.

In this work: (i) we evaluate the frequency of human hand-tremors from RGB
videos and we analyze two possible approaches: (i.a) a Lagrangian approach that
focuses on the motion of the hand in the image plane, and estimates tremors over
the hand positions; (i.b) an Eulerian approach that aligns the hand position over
a temporal window, by tracking it, and subsequently uses the image information
over time as extracted from intensity values and phase-images, to perform a
windowed Fourier analysis at every hand pixel; (ii) we bring forth the TIM-
Tremor dataset, containing: 55 RGB patient videos, together with associated
ground-truth accelerometer recordings on the most affected hand, as well as
aligned depth-data; (iii) we analyze two variants of the Lagrangian approach
and two variants of the Eulerian approach and evaluate them numerically on
our proposed TIM-Tremor human tremor dataset.

2 Related Work

2.1 Motion Analysis

Periodic Motion. The work in [22] performs action recognition by using
space-time repetitive motion templates. Similar to using templates, in [5] a self-
similarity relying on time-frequency analysis is used for action recognition. The
work in [12] performs a spectral decomposition of moving objects to encode peri-
odic motions for object recognition, while [30] performs eigen decomposition and
describes periodic motion by the circularity or toroidality of an associated geo-
metric space. Following a similar trend, in [19] complex motion is decomposed
into a sequence of simple linear dynamic models for motion categorization. The
work in [24] focuses on pedestrian detection through periodic movement anal-
ysis. Similar to us, the work in [28] performs tremor analysis, however in [28]
videos are classified into tremor/no-tremor using optical flow features and SVM.
In the recent work in [29] a CNN is used for discriminating between Parkinson
patients and non-Parkinson patients, using wrist-worn senors. In this work we
also focus on periodic motion analysis, however our end goal is tremor frequency
estimation rather than action recognition, object tracking or recognition.

Differently, in [18,27,33] deep network architectures are trained for counting
action repetitions. These actions must be clearly visible and recognizable in
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the camera view for the deep network architectures to work, while we focus on
tremors which are subtle motions.

The most similar work to our work is the work performed in [31,32] where
tremor frequency is measure from pixel intensities in the video. However these
methods assumes the location of the body part at which the tremor is measured
to be known in advance and moreover, the frequency is estimated over intensity
values rather than detected hand location over time, or image phase-information
over time, as we propose here. The authors do not publicly provide either code
or data, which makes it impossible for us to compare with their approach.

Subtle Motion. Small motion, difficult to see with the bare eyes, can be magni-
fied [17,35] through a complex steerable pyramid. In the more realistic case, when
the subtle motion is combined with a large motion, follow up work can magnify
subtle motions such as tremors in the presence of large object motion such as
walking [9,39]. Video frequency analysis has been also employed for estimating
the properties of physical materials [7]. We also employ signal analysis in the
Fourier domain, however rather than magnifying the subtle motion or estimat-
ing material properties, we estimate the frequency of the subtle tremor motion.
The works in [14,15] use specialized sensors or a digital light-processing pro-
jector, and a high frame-rate camera to detect small vibrations. Unlike [14,15],
we do not employ specific cameras or expensive sensors, we estimate the tremor
frequency from common RGB videos.

2.2 Human Body Pose Estimation

Works such as [3,21] perform body pose estimation over multiple people, in deep
networks. In [3,4,23,36] cascaded prediction or iterative optimizations are used
for body pose estimation. We use the method in [36] for estimating where to
measure the tremors. We opt for [36] due to its ease of usage and robustness. In
this work we use the MPII Human Body Pose dataset [1] for training the human
body pose estimation models.

3 Hand-Tremor Frequency Estimation

We start by localizing the affected hand. Subsequently, we consider two methods
for hand-tremor frequency estimation: (a) Lagrangian hand-tremor frequency
estimation, and (b) Eulerian hand-tremor frequency estimation.

3.1 Hand Location Estimation

A first step in estimating human hand-tremors, is localizing the affected hand.
For this, we use the robust human body pose estimation proposed in [36]. This
method provides us a hand location per frame (xi, yi). We perform the tremor
analysis on shorter temporal windows of the video, w(t).
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Fig. 1. Lagrangian hand-tremor estimation is based on frequency estimation of (x, y)
coordinates. We detect the hand position (xi, yi)i∈w(t) at every frame i over a temporal
window w(t). The hand motion is characterized by a large motion, depicted by the black
line, and a small motion, depicted by the red dotted line. We smooth this information
over time, using a Kalman tracker to obtain the smooth coordinates of the hand. (Color
figure online)

3.2 (a) Lagrangian Hand-Tremor Frequency Estimation

Figure 1 depicts the idea behind the Lagrangian hand-tremor frequency estima-
tion. We start by detecting the hand locations (xi, yi)i∈w(t) over the temporal
window w(t). The hand motion is typically characterized by a combination of
two motions: a large hand trajectory motion, depicted through the continuous
black line, and a small motion corresponding to the tremor, depicted in Fig. 1
by the dotted red line. We first apply a Kalman-filter tracker [38] to the ini-
tial hand locations, detected by the pose estimation algorithm [36]. This step is
used for smoothing the hand trajectory, to obtain the large hand motion. We
subsequently subtract this smooth trajectory from the original hand locations
to retain only the x and y locations of the small hand motion, corresponding
to the tremor. Thereafter, we apply the windowed Fourier transform over these
corrected locations. This provides us a PSD (Power Spectrum Density) function.
We use the maximum frequency as the estimated hand-tremor frequency.

3.3 (b) Eulerian Hand-Tremor Frequency Estimation

Figure 2 illustrates the Eulerian frequency estimation. The first step is the same
as in Fig. 1, where the hand locations are detected using the pose estimation
method in [36], and subsequently, we smooth the trajectory given by these hand
detections using a Kalman tracker. This gives us the smooth trajectory of the
hand over time, in the video. We crop image windows around the temporally
smoothed locations of the hand in the video—along the black line depicted in
Fig. 2.(1). For each such image crop, we extract local motion information encoded
as phase over different scales and orientations. Thereafter, we compute the fre-
quency of the hand-tremor by using the most informative phase-image. Figure 2
depicts these individual steps.
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Fig. 2. Eulerian hand-tremor estimation is based on frequency estimation in images. (1)
The fist step is the same as in the Lagrangian illustrated in Fig. 1: detecting a Kalman-
filtered smoothed hand position at every frame over a temporal window w(t). (2) We
crop image windows around the smoothed hand locations. Each such cropped image
is transformed into a phase-pyramid with 4 orientations and 3 scales using a steerable
filter bank. (3) For every pixel, in every phase-image over the temporal window w(t) we
estimate a PSD (Power Spectrum Density). We accumulate these over the pixels in one
phase-image, to obtain one PSD per phase-image. (4) We select the most informative
phase-image PSD and use it to estimate the tremor-frequency.
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Phase-Image Computation. Works such as [10,20,35,39] claim that the
phase responses over time contain descriptive information regarding the motion
present in the image. In [35] the use of complex steerable filters [11] is proposed
for extracting local motion information. Given an input image I(x, y) and a set
of complex steerable filters of the form: Gθ

σ + iHθ
σ, where i =

√−1, σ defines the
scale of the filter, and θ the orientation, we obtain a complex steerable pyramid
by convolving the image with this set of filters

(Gθ
σ + iHθ

σ) � I(x, y) = Aθ
σ(x, y)eiφθ

σ(x,y), (1)

where � denotes the convolution operations, and Aθ
σ(x, y) is the resulting ampli-

tude for scale σ and orientation θ, and φθ
σ(x, y) is the corresponding phase infor-

mation. To obtain a phase-image, we set the amplitude to 1 and apply the
inverse transformation [11] to reconstruct back the image. Examples of phase-
images are depicted in Fig. 1.(2). We use 4 orientations: θ ∈ {0, π

4 , π
2 , 3π

4 } and 3
scales: σ ∈ {1.0, 0.5, 0.25}, giving rise to 12 phase-images. In addition to the 12
phase-images, we add the grayscale version of the cropped hand-image. There-
fore, we have in total 13 images, which we merge into a single image with 13
channels, over which we estimate the hand-tremor frequency.

Hand-Tremor Frequency Estimation. We filter each one of the 13 input
channels over time with a 4th-order Butterworth band-pass filter. This eliminates
noisy frequencies that cannot correspond to a natural human tremor.

To reduce the effect of the considered temporal window, w(t), we use an
adjustable Tukey window with the parameter α set to fs

N−1 , where fs is the
sampling rate and N is the total number of frames in w(t). This ensures that
the video signal over time is processed in a consistent manner while allowing for
adjustable temporal window sizes, w(t).

Within each temporal window, w(t), we estimate a PSD function, over every
input channel, at every pixel location. For an input channel, c, we estimate the
final PSD, Pc

w(t)(f), by averaging spatially the PSDs over the pixels in that chan-
nel. We repeat this process for all 13 channels, giving rise to 13 PSD functions.

In [5] the power spectrum is considered to be periodic at a certain frequency,
f , if the PSD response at that frequency is at least a few standard deviations
away from the mean PSD response. This is indicative of how noisy is the PSD
function. We use this same criterion to pick the most informative image channel;
this is the channel over which we estimate the final hand-tremor frequency. We
define for each channel a score, Sc(f):

Sc(f) =
1

| w(t) |
∑

w(t)

(
Pc

w(t)(f) − μPc
w(t)

− kσPc
w(t)

)
, (2)

where | w(t) | is the number of temporal windows per video, μPc
w(t)

represents
the mean of the PSD response, and σPw(t) denotes the standard deviation, while
k is an adjustable parameter. We set k = 3 in our experiments.
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Fig. 3. (a) We record motor-disorder patients in 21 tasks. Each task may elicit a tremor.
(b) Short explanation of what each task involves.
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Fig. 4. Examples from the recording setup together with the predicted body joint
locations using [36]. We use this to obtain the location of the hand where we estimate
the tremor frequency.

The final predicted frequency over the 13 channels becomes:

f∗ = arg max
f

(max
c

Sc(f)). (3)

4 Experiments

We test the considered frequency estimation approaches on our tremor patient
dataset, TIM-Tremor, containing a multitude of tasks. The anonymized TIM-
Tremor patient data can be found at https://doi.org/10.4121/uuid:522d14ed-
3019-4206-b49e-a4e674b6440a.

4.1 Patient Data Evaluation

Data Description. We recorded the TIM-Tremor dataset, in which 55 patients
are videotaped sitting in a chair and performing a multitude of tasks. The data
is recorded with a KinectTM v2 device, and it consists of short RGB videos of
resolution 1920 × 1080 px, and associated depth video recordings of 512 × 424
px using a 16-bit encoding, as well as depth videos aligned with the RGB videos
following the method in [16]. To reduce the storage requirements, we rescale
the video resolution to 960 × 540 px. The ground truth tremor frequency is
measured on the wrist of the most affected hand: left/right. On this hand, during
the recording, we position an accelerometer. The accelerometer recordings are
included in the dataset. The hand on which the accelerometer is positioned,
is annotated in the dataset for each patient. Thus, for each patient and each
performed task, we provide a set of recorded videos of approximately 1 min
each, together with a corresponding aligned depth map video, and the ground
truth accelerometer recording from the most affected hand.

https://doi.org/10.4121/uuid:522d14ed-3019-4206-b49e-a4e674b6440a
https://doi.org/10.4121/uuid:522d14ed-3019-4206-b49e-a4e674b6440a
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Fig. 5. (a) Total number of videos recorded per task. (b) Average frequency and stan-
dard deviation for all tasks across all 55 patient recordings.

Data collection occurred in parallel to the standard tremor clinical evalua-
tion. The standard tremor evaluation consists of a set of 21 tasks, which are
illustrated in Fig. 3.(a) and described in Fig. 3.(b). The tasks vary with respect
to the adopted posture: e.g. arm supported by the arm rest, or held outstretched
in front of the patient, the amount of motion involved: e.g. rest – no motion, or
touching the top of the nose – intention-oriented motion, as well as the focus of
attention: e.g. distraction by mental task. Changes in tremor frequency between
these tasks are analyzed by the medical expert to classify the tremor. For exam-
ple, certain types of tremor are present across most or all tasks (e.g. “Parkin-
sonian tremor”), while other types of tremor may only occur when performing
a specific task (e.g. “postural tremor” occurs only when a patient maintains a
specific posture such as Thumbs up), while other tremors may show considerable
variation in tremor frequency between tasks (e.g. “functional tremor”).

Figure 4 displays a few examples of the recording setup together with the
estimated joint locations using [36]. In Fig. 5 we show the total number of videos
recorded for each task, and the average hand tremor frequency, as estimated by
the accelerometer, together with the standard deviation, computed across all 55
patients. The average tremor frequency is around 5 Hz, which is a common in
tremor affections such as Parkinson and Dystonia.
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Experimental Evaluation. We estimate the body pose in the videos using
the method in [36], pretrained on the MPII dataset [1]. We apply the method
a every frame. We use a temporal window, w(t), of 60 frames for frequency
estimation. Unless stated otherwise, we evaluate our method in terms of MAE
(Mean Absolute Error) with respect to the ground truth frequency detected
by the accelerometer. We only evaluate on video segments in which a periodic
tremor has been detected, using the accelerometer data.

4.2 Exp. 1: Design Choices

In this experiment we test individual choices in the considered Lagrangian and
Eulerian approaches. For the Lagrangian approach we test in Exp 1.1 if remov-
ing the smooth trajectory, corresponding to the large motion of the hand, helps
the frequency estimation. For the Eulerian approach, in Exp 1.2 we test the
added value of computing hand-tremor frequency over the phase information,
rather than using only the intensity values of the image.

Exp 1.1: The Need of Trajectory Smoothing. We experimentally compare
two variants of the Lagrangian frequency estimation. The Lag no smooth variant
uses raw hand trajectory points as computed by the pose estimation algorithm.
The Lag with smooth variant removes the large motion of the hand obtained
by subtracting the output of a Kalman tracker, which in effect retains only
the small motions. The MAE numbers in Table 1 show that removing the large
motion by using the Kalman tracker is beneficial to the overall performance.
This is explained by the fact that subtracting the trajectory returned by the
Kalman tracker from the original hand trajectory works as a data detrending
step. This allows for the frequency to be estimated only over the small tremor
motion.

Exp 1.2: The Added Value of Using Phase-Images. For both considered
Eulerian approaches we stabilize the trajectory along which we measure the
tremor by using the Kalman tracker, and subsequently perform the frequency
estimation over the complete hand window. In Table 2 we test the added value
of using phase information for frequency estimation. We compare two variants.
The Euler gray variant estimates the frequency over gray-scale pixels over gray-
scale hand-images, obtained by cropping the hand location along the smoothed
trajectory of the hand. The Euler phase variant adds the 12 phase channels as
detailed in Sect. 3.3. The phase channels allow the Euler phase to more precisely
capture the small motion corresponding to the tremor, because the phase is effec-
tive for describing motion. The MAE numbers in Table 2 validate that adding
the phase information is beneficial for the hand-tremor frequency estimation.
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Table 1. Exp 1.1: MAE when comparing the Lagrangian method with trajectory
smoothing by using the Kalman tracker—Lag with smooth, versus not using trajectory
smoothing, Lag no smooth. Lag with smooth performs slightly better than the default
Lagrangian method, Lag no smooth. We highlight in bold the better performing method
(lower is better).

Task Lag no smooth (Hz) Lag with smooth (Hz)

2 Hz higher 1.917 (± 2.395) 1.879 (± 2.127)

2 Hz lower 2.248 (± 2.770) 1.721 (± 2.266)

Counting 1.731 (± 2.336) 1.377 (± 2.246)

Extra pose 3.590 (± 2.369) 1.918 (± 1.328)

Extra writing 1.968 (± 0.000) 1.968 (± 0.000)

Finger tapping 1.989 (± 2.783) 1.326 (± 1.974)

Following 1.607 (± 1.745) 1.312 (± 1.728)

Hands in pronation 2.582 (± 2.154) 2.398 (± 2.024)

Months backward 2.544 (± 2.703) 2.031 (± 2.500)

Playing piano 2.443 (± 2.826) 2.033 (± 2.516)

Rest 3.300 (± 3.271) 3.395 (± 3.226)

Rest in supination 2.889 (± 3.228) 2.059 (± 2.248)

Spiral left 6.721 (± 1.896) 6.721 (± 1.896)

Spiral right 3.246 (± 1.762) 3.148 (± 1.803)

Top nose left 3.743 (± 3.262) 3.688 (± 3.242)

Top nose right 1.928 (± 2.323) 1.771 (± 2.204)

Top top 1.388 (± 1.797) 1.669 (± 1.888)

Thumbs up 1.694 (± 1.807) 1.694 (± 1.836)

Weight 2.660 (± 2.667) 2.795 (± 2.569)

Writing left 2.557 (± 1.139) 2.557 (± 1.139)

Writing right 2.557 (± 1.139) 2.557 (± 1.139)

Average MAE 2.633 (± 2.208) 2.382 (± 1.995)

4.3 Exp 2: Eulerian Versus Lagrangian Tremor Frequency
Estimation

In Fig. 6 we display the accuracy of our proposed frequency estimation methods
over the complete set of 55 patient recordings, for all tasks. We show in dotted
green line the number of videos per task where a periodic tremor was detected,
according to the accelerometer data. In corresponding color, we show the number
of videos in which we have correctly estimated the hand-tremor frequency, for
each frequency estimation method: Euler phase is the Eulerian method using 12
phase-channels and 1 grayscale channel; Euler gray is the Eulerian method on
image intensity information only; Lag no smooth is the Lagrangian method with-
out Kalman trajectory smoothing; Lag with smooth is the Lagrangian method
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Table 2. Exp 1.2: MAE showing the added value of the phase information. We
compare the Euler gray—Eulerian frequency estimation over grayscale hand-images,
with Euler phase – Eulerian frequency estimation over 12 phase-images and 1 grayscale
image. Adding the 12 extra phase-images is beneficial for the frequency estimation. We
highlight in bold the better performing method (lower is better).

Task Euler gray (Hz) Euler phase (Hz)

2 Hz higher 0.882 (± 1.142) 0.857 (± 1.533)

2 Hz lower 1.335 (± 2.022) 0.984 (± 1.333)

Counting 0.767 (± 1.252) 0.472 (± 0.780)

Extra pose 1.180 (± 2.006) 1.623 (± 1.185)

Extra writing 0.984 (± 0.000) 0.984 (± 0.000)

Finger tapping 0.492 (± 0.893) 0.385 (± 0.647)

Following 0.820 (± 1.327) 0.557 (± 0.503)

Hands in pronation 1.271 (± 1.755) 1.066 (± 1.506)

Months backward 1.133 (± 1.848) 1.219 (± 1.933)

Playing piano 1.148 (± 1.832) 1.148 (± 1.714)

Rest 1.459 (± 1.759) 1.253 (± 1.770)

Rest in supination 1.475 (± 1.919) 1.537 (± 1.728)

Spiral left 3.278 (± 1.671) 2.951 (± 1.391)

Spiral right 3.246 (± 2.936) 2.509 (± 2.021)

Top nose left 2.595 (± 2.216) 1.776 (± 2.008)

Top nose right 3.108 (± 2.739) 2.164 (± 2.015)

Top top 0.860 (± 1.311) 0.720 (± 1.200)

Thumbs up 1.002 (± 1.419) 1.002 (± 1.273)

Weight 1.207 (± 1.695) 0.961 (± 1.226)

Writing left 0.394 (± 0.573) 0.492 (± 0.538)

Writing right 0.394 (± 0.573) 0.492 (± 0.538)

Average MAE 1.382 (± 1.566) 1.198 (± 1.278)

with Kalman trajectory smoothing. We consider an estimated tremor frequency
to be correct if the MAE between the accelerometer frequency and the one esti-
mated by the method is lower than 1 Hz.

Figure 6 shows that on average the Eulerian frequency estimation methods
are more precise than the Lagrangian methods. The gain of using the Eulerian
approaches is especially clear for the Weight task and the Hands in pronation
task. Figure 7 displays the MAE scores per patient for these two tasks. To
avoid over-cluttering the image, we only show the best Lagrangian method:
Lag with smooth, Lagrangian with Kalman trajectory smoothing, and the best
Eulerian method: Euler phase, Eulerian over 12 phase channels and 1 grayscale
channel. The Eulerian method gives more precise frequency estimates for some
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Fig. 6. Exp 2: We report accuracy on all recorded tasks, over the 55 patient recordings
(higher is better). We consider the hand-tremor frequency to be correctly estimated for
a task if the MAE (Mean Absolute Error) for that task is lower than 1 Hz. We plot in
dotted green line the total number of videos recorded for each task, on which we have
detected a periodic tremor. For each of our considered methods we show the number
of videos for which the frequency was correctly estimated. On average the Eulerian
methods perform better than the Lagrangian methods. (Color figure online)

of the patient recordings, while for others it performs similar to the Lagrangian
method. The tasks are not characterized by large hand motion. The gain of the
Eulerian method over the Lagrangian is explained by the Eulerian method bet-
ter describing the subtle changes in image information over time at the hand
location. Therefore, the Eulerian method more accurately captures the tremor
in tasks that do not involve large hand motion, but exhibit small motion.
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Fig. 7. Exp 2: The MAE per patient, for the two tasks where the Eulerian meth-
ods performed better than the Lagrangian methods (lower is better). To avoid
over-cluttering the image, we plot only the best performing Lagrangian method:
Lag with smooth—Lagrangian method with Kalman trajectory smoothing, and the
best performing Eulerian method: Euler phase—Eulerian method using 12 phase chan-
nels and 1 grayscale channel. The Lagrangian method makes large frequency estimation
mistakes on a few patient videos, while the Eulerian method is more precise on some
of the patient videos. (Note: for certain patients the task has not been recorded or no
stable frequency, according to the accelerometer, has been found.)

5 Conclusions

We consider the task of hand-tremor frequency estimation from RGB videos. We
propose two different approaches for measuring human hand-tremor frequencies:
(a) Lagrangian hand-tremor frequency estimation, using the trajectory of the
hand motion in the image plane throughout the video, to assess the hand-tremor
frequency; and (b) Eulerian hand-tremor frequency estimation, which measures
the change in the image information over time, at the location of hand in the
image plane. We experimentally evaluate two variants of each approach on our
proposed TIM-Tremor dataset containing 55 patient recordings performing a
multitude of tasks. From our experimental analysis we learned that the Eulerian
approaches are more accurate on average than the Lagrangian methods, with
the difference being substantial on tasks on which there is a limited amount of
large hand motion, but where there is a small hand-tremor motion present.
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32. Uhŕıková, Z., et al.: Validation of a new tool for automatic assessment of tremor
frequency from video recordings. J. Neurosci. Methods 198(1), 110–113 (2011)

33. Victor, B., He, Z., Morgan, S., Miniutti, D.: Continuous video to simple signals for
swimming stroke detection with convolutional neural networks. In: CVPR (2017)

34. Vidailhet, M., Roze, E., Jinnah, H.A.: A simple way to distinguish essential tremor
from tremulous Parkinson’s disease. Brain 140(7), 1820–1822 (2017)

35. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video
motion processing. SIGRAPH 32(4), 80 (2013)

36. Wei, S., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines.
In: CVPR, pp. 4724–4732 (2016)

37. Xia, L., Zou, B., Liu, H., Su, H., Qianghui, H.: A new method for evaluating
postural hand tremor based on cmos camera. Optik-Int. J. Light Electron Optics
126(5), 507–512 (2015)

38. Zarchan, P., Musoff, H.: Fundamentals of Kalman Filtering: A Practical Approach
(2013)

39. Zhang, Y., Pintea, S.L., van Gemert, J.C.: Video acceleration magnification. In:
CVPR (2017)

https://doi.org/10.1007/978-3-319-49409-8_8
https://doi.org/10.1007/978-3-319-10605-2_3
https://doi.org/10.1007/978-981-10-7554-4_1
https://doi.org/10.1007/978-981-10-7554-4_1

	Hand-Tremor Frequency Estimation in Videos
	1 Introduction
	2 Related Work
	2.1 Motion Analysis
	2.2 Human Body Pose Estimation

	3 Hand-Tremor Frequency Estimation
	3.1 Hand Location Estimation
	3.2 (a) Lagrangian Hand-Tremor Frequency Estimation
	3.3 (b) Eulerian Hand-Tremor Frequency Estimation

	4 Experiments
	4.1 Patient Data Evaluation
	4.2 Exp. 1: Design Choices
	4.3 Exp 2: Eulerian Versus Lagrangian Tremor Frequency Estimation

	5 Conclusions
	References




