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Abstract. Recent advances in the design of convolutional neural net-
work (CNN) have yielded significant improvements in the performance of
image super-resolution (SR). The boost in performance can be attributed
to the presence of residual or dense connections within the intermediate
layers of these networks. The efficient combination of such connections
can reduce the number of parameters drastically while maintaining the
restoration quality. In this paper, we propose a scale recurrent SR archi-
tecture built upon units containing series of dense connections within a
residual block (Residual Dense Blocks (RDBs)) that allow extraction of
abundant local features from the image. Our scale recurrent design deliv-
ers competitive performance for higher scale factors while being paramet-
rically more efficient as compared to current state-of-the-art approaches.
To further improve the performance of our network, we employ multiple
residual connections in intermediate layers (referred to as Multi-Residual
Dense Blocks), which improves gradient propagation in existing layers.
Recent works have discovered that conventional loss functions can guide a
network to produce results which have high PSNRs but are perceptually
inferior. We mitigate this issue by utilizing a Generative Adversarial Net-
work (GAN) based framework and deep feature (VGG) losses to train our
network. We experimentally demonstrate that different weighted combi-
nations of the VGG loss and the adversarial loss enable our network
outputs to traverse along the perception-distortion curve. The proposed
networks perform favorably against existing methods, both perceptually
and objectively (PSNR-based) with fewer parameters.

Keywords: Super-resolution · Deep learning · Residual networks
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1 Introduction

Super-resolution (SR) techniques are devised to cope up with the issue of limited-
resolution while imaging by generating a high resolution (HR) image from a low
resolution (LR) image. However, the possibility of multiple HR images leading to
the same LR image makes the problem ill-posed. This can be addressed by reg-
ularized mapping of LR image patches to HR counterparts, which are generally
extracted from some example images. However, a constrained linear mapping
c© Springer Nature Switzerland AG 2019
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may not be able to represent complex textures of natural images. Deep learning
based techniques can behave better in this case by learning a non-linear mapping
function.

Convolutional neural networks (CNNs) have played an important role in deep
learning based techniques by learning efficient features of images. Deeper CNN
architectures can represent an image better than shallower frameworks. However,
deeper the better assumption does not work often due to vanishing or exploding
gradient issue. Thus, gradient flow became an important issue in deep learning
based methods. The residual connection [14,24] helps in this aspect by allowing
deeper models to learn. Deeper networks with residual mapping are generally
used for higher level vision tasks such as classification. Hence, effective employ-
ment of such framework in SR requires some modifications such as removal of
batch normalization [25]. Yet, most of these architectures are not able to learn
hierarchical features across layers from the LR image. Such features can boost
performance, as has been demonstrated by a residual dense network using a
sequence of residual dense blocks [45]. However, the number of parameters for
such deeper dense networks often becomes a bottleneck when limited computa-
tional resources are available.

SR for different scale factors requires separate training of the network. Joint
training for different scale factors can address the issue, as has been attempted
by VDSR [19], which needs a bicubic interpolated LR image as input. However,
this strategy can come in the way of exploiting hierarchical features from the
original LR image, and crucial details may be lost. Further, processing such a
high dimensional image for a large number of layers demands higher computa-
tional resources. Another way to deal with the situation is to learn the model
for lower scale factor such as 2 and use it to initialize the learning for higher
factors such as 3, 4, etc [25]. However, this strategy is parametrically inefficient
and does not work well for higher scale factors (e.g., 8).

In order to accommodate different up-sampling factors while keeping a check
on the number of parameters, we propose a scale-recurrent strategy that helps
in transferring learned filters from lower scale factors to higher ones. We use
our scale-recurrent strategy in conjunction with a smaller version of Residual
Dense Network (RDN) [45], where we use fewer Residual Dense Blocks (RDBs)
to reduce the number of parameters as compared to the original RDN. We choose
RDBs as building blocks since the combination of residual and dense connections
can help in overcoming their individual limitations. This combination allows for
efficient flow of information throughout the layers while eliminating the vanishing
gradient issue. We refer to this scale-recurrent residual dense network as SRRDN.

Motivated by the recent developments in network designs based on dense
connections, we introduce multiple residual connections within an RDB using
1×1 convolutions that results in superior performance with marginal parametric
cost. The proposed units are termed as Multi-Residual Dense Blocks (MRDB).
Our proposed scale-recurrent network with MRDBs is termed as multi-residual
dense network (MRDN).



134 K. Purohit et al.

We demonstrate that training our network with a pixel-reconstruction loss
(L1 loss) produces results with good PSNR/SSIM performance. Recent findings
suggest that although these metrics measure the objective quality of HR recon-
struction, they are not necessarily correlated with perceptual quality [3]. To
improve perceptual performance (for photo-realistic image super-resolution), we
include a GAN-based framework along with VGG loss function into our model.
Different weighting schemes for adversarial loss and VGG losses produce dif-
ferent quality of results, which allows us to traverse the perception-distortion
curve [3]. Specifically, VGG loss along with pixel-reconstruction loss is used to
train a network (MRDN), which leads to good PSNR values (albeit with lower
perceptual quality). Also, this network is further trained with only VGG loss
and adversarial loss to obtain a network (MRDN-GAN) that generates better
perceptual quality than MRDN (but with lower PSNR). During test-time, a
soft-thresholding based strategy is further utilized to reach a desirable trade-off
between PSNR and perceptual quality.

2 Related Works and Contributions

Super-resolving a single image generally requires some example HR images
to import relevant information for generating the HR image. Two streams
of approaches make use of the HR example images in their frameworks: (i)
Conventional, and (ii) deep learning based. The functioning of conventional
SR approaches depends on finding patches, similar to the target patch in
the database of patches. Since there could be many similarities, one needs
to regularize the problem. Thus, most of the conventional approaches focus
on discovering regularization techniques in SR such as Tikhinov [44], total-
variation [29], Markov random field [18], non-local-mean [11,27,28], sparsity-
based prior [10,41,42], and so on [9,28].

Although, the sparsity-based prior works quite efficiently, the linear map-
ping of information may fail to represent complex structures of an image. Here,
deep-learning based approaches have an upper hand as they can learn a non-
linear mapping between LR and corresponding HR image [6,8,16,19,22,23,25,
34,36,37,40,43]. Deep learning stepped into the field of SR via SRCNN [7] by
extending the notion of sparse representation using CNN. The non-linearity
involved in CNN is able to better represent complex structures than conven-
tional approaches to yield superior results. However, going to deeper architec-
tures increases the difficulty in training such networks. Employing a residual
network into the frame along with skip connections and recursive convolution
can mitigate this issue [19,20]. Following such an approach, VDSR [19] and
DRCN [20] methods have demonstrated performance improvement. The power of
recursive blocks involving residual units to create a deeper network was explored
in [36]. Recursive unit in conjunction with a gate unit can act as a memory unit
that adaptively combines the previous states with the current state to produce a
super-resolved image [37]. However, these approaches interpolate the LR image
to the HR grid and feed it to the network. But this increases the computational
requirement due to the higher dimension.
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To circumvent the dimension issue, networks exists that are tailored to
extract features from the LR image which are then processed in subsequent
layers. At the end layer, up-sampling is performed to match with the HR dimen-
sion [8,24]. This process can be made faster by reducing the dimension of the
features going to the layers that map from LR to HR and is known as FSR-
CNN [8]. ResNet [14] based deeper network with generative adversarial net-
work (GAN) [12] can produce photo-realistic HR results by including perceptual
loss [17] in the network, as devised in SRResNet [24]. The perceptual loss is fur-
ther used with a texture synthesis mechanism in GAN based model to improve
SR performance [34]. Though these approaches are able to add textures in the
image, sometimes the results contain artifacts. The model architecture of SRRes-
Net [24] has been simplified and optimized to achieve further improvements in
EDSR [25]. This was later modified in MDSR [25], which performs joint train-
ing for different scale factors by introducing scale-specific feature extraction and
pixel-shuffle layers.

2.1 Contributions

The contributions of the presented work are listed below:

– We present a scale recurrent SR framework, which works in conjunction with
Residual Dense Blocks. The scale recurrent design helps in producing better
results for higher scale factors while eliminating the requirement of large
number of parameters.

– The multi-Residual Dense Blocks, we propose involve a series of multiple
residual and dense connections within a block. This leads to effective gradient
propagation by mitigating feature redundancy.

– To achieve perceptually attractive results, our network is also trained with
deep feature loss, and adversarial loss alongside pixel reconstruction loss.
We experimentally demonstrate that different weights on these losses pro-
duce results that traverse along the perception-distortion curve. The two
complementary outputs are effectively fused during test time using a soft-
thresholding based technique to achieve perception-distortion trade-off.

3 Architecture Design

The success of recent approaches has emphasized the importance of network
design. Specifically, most recent image and video SR approaches are built upon
two popular image classification networks: residual networks [14] and densely
connected networks [15]. These network designs have also enjoyed success and
achieved state-of-the-art performance in other image restoration tasks such as
image denoising, dehazing, and deblurring. Motivated by the generalization capa-
bility of such advances in network designs, the recent work of RDN [45] proposed
a super-resolution network which involves a mixture of both residual and dense
connections and yields state-of-the-art results. The fundamental block of this
network is RDB, which we too adopt in our work.
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While DenseNet was proposed for high-level computer vision tasks (e.g.,
object recognition), RDN adopted and improved upon this design to address
image SR. Specifically, batch-normalization (BN) layers were removed as they
hinder the performance of the network by increasing computational complexity
and memory requirements. The pooling layers are removed too since they could
discard important pixel-level information. To enable a higher growth rate, each
dense block is terminated with a 1× 1 conv layer (Local Feature Fusion) and its
output is added to the input of the block using Local Residual Learning. This
strategy has been demonstrated to be very effective for SR [45].

Our network contains a sequence of 6 RDBs which extract deep hierarchical
features from the input LR image. The outputs of each RDB are concatenated
and fed into a set of 1 × 1 and 3 × 3 layers, which results in reduced number
of feature maps. This strategy helps in the efficient propagation of hierarchical
features through the network by adaptive fusion of shallow and deep features
extracted in LR space [45]. These features are fed into a pixel-shuffle layer,
followed by a convolution layer that yields the HR image. We also add the
bilinear up-sampled image to the output layer of the network that enforces the
network to focus on learning high-frequency details.

3.1 Scale-Recurrent Design

Most of the existing SR approaches handle different scale factors independently,
hence neglecting inter-scale relationships. They need to be trained independently
for different scale factors. However, VDSR [19] can address the issue by jointly
training a network for multiple scales. This kind of training requires LR images of
different resolutions to be up-sampled by bi-cubic interpolation prior to feeding
to the network. Interpolation by a large factor causes loss of information and
requires higher computational resources as compared to scale-specific networks.

Our network’s global design is a multi-scale pyramid which recursively uses
the same convolutional filters across scales. This is motivated by the fact that
a network capable of super-resolving an image by a factor of 2 can be recur-
sively used to super-resolve the image by a factor 2s, s = 1, 2, 3 . . . . Even with
the same training data, the recurrent exploitation of shared weights works in
a way similar to using data multiple times to learn parameters, which actually
amounts to data augmentation with respect to scales. We design the network
to reconstruct HR images in intermediate steps by progressively performing a
2× upsampling of the input from the previous level. Specifically, we first train
a network to perform SR by a factor of 2 and then re-utilize the same weights
to take the output of 2× as input and result into an output at resolution 4×.
This architecture is then fine-tuned to perform 4× SR. We experimentally found
that such initialization (training for the task of 2× SR) leads to better conver-
gence for larger scale factors. Ours is one of the first approaches to re-utilize the
parameters across scales, which significantly reduces the number of trainable
parameters while yielding performance gains for higher scale factors. We term
our network SRRDN, whose 4× SR version is shown in Fig. 1.
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Fig. 1. Network architecture of the proposed Scale-Recurrent Residual Dense Network
for 4× SR

3.2 Multi-Residual Dense Blocks

We also propose improvements in the structure of RDB for efficient extraction of
high-resolution features from low-resolution images. The effectiveness of residual
and dense connections has been proved in various vision tasks; yet, they cannot
be considered as optimum topology. For example, too many additions on the
same feature space may impede information flow in ResNet [15]. The possibility
of same type of raw features from different layers can lead to redundancies in
DenseNet [4]. Some of these issues are addressed in recent image classification
networks [4,39]. However, these designs are optimized for image classification
tasks and their applicability to image restoration has not been explored yet.

Dual Path Networks (DPN) [4] bridge the densely connected network [15]
with higher order recurrent neural networks [35] to provide new interpreta-
tion of dense connections. Mixed Link Networks [39] have also shown that both
dense connections and residual connections belong to a common topology. These
methods utilize these interpretations to design hybrid networks that incorporate
the core idea of DenseNet with that of ResNet. These works demonstrate that
inclusion of addition and concatenation-based connections improves classifica-
tion accuracy, and is more effective than going deeper or wider. Essentially,
DenseNet connects each layer to every other layer in a feed-forward fashion.
Such connections alleviate the vanishing-gradient problem, strengthen feature
propagation, encourage feature reuse, and substantially reduce the number of
parameters. ResNet and its variants enable feature re-usage while DenseNet
enables new feature exploration; both being important for learning good repre-
sentations. By carefully incorporating these two network designs into dual-path
topologies, DPN shares common features while maintaining the flexibility to
explore new features through dual path architectures. Inspired by the DPN net-
work that was originally designed for the task of image classification, we propose
a design change specially tailored for super-resolution.

An RDB of SRRDN already contains multiple paths connecting the current
layer to previous network layers. One connection is present in the form of a con-
catenation of features, which is similar to the connections in DenseNet. Although
growth rates affect the performance positively, it is harder to train a large number
of dense blocks which possess a higher growth rate, as has been experimentally
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Fig. 2. Structure of our Multi-Residual Dense Block. Within each module, concatena-
tion operation is performed using the features estimated by the conv 3 × 3 layer, and
addition operation is performed on the features estimated by 1 × 1 conv layer (which
continuously increase the number of feature maps to match the size of concatenated
output). At the end of the block, a 1 × 1 conv layer performs local feature fusion to
adaptively control the output information

demonstrated in [45]. This can be addressed by Local Feature Fusion (see Fig. 2),
by including a second connection that stabilizes the training of wide network.
This brings down the number of output feature-maps to the number of input
feature-maps and enables introduction of a single residual connection between
the input and the output of the block (Local Residual Learning).

In order to further improve the gradient flow during training, we introduce a
third connection: Multi-Residual connections. Essentially, at each intermediate
layer of the block, we convolve the input features using a 1 × 1 conv layer and
add them to the output obtained after the concatenation operation. This type
of connection has two properties: Firstly, existing feature channels get modified,
which helps in deeper and hierarchical feature extraction. Secondly, it enables
learning of equally meaningful features even with a lower growth-rate during
feature concatenation. This strategy promotes new feature exploration with a
moderate growth rate and avoids learning of redundant features. These two
features enable improved error gradient propagation during training. Our scale-
recurrent framework built using MRDBs as basic blocks is termed as MRDN.

4 Perceptual and Objective Quality Trade-Off

Conventional pixel reconstruction based loss functions such as L1 loss encour-
age a network to produce results with better objective quality but it could be
perceptually inferior. In contrast, VGG/GAN-based loss functions enforce the
network to produce perceptually better results [3]. Most of the existing methods,
once trained, cannot be altered to produce results with different objective qual-
ity and/or perceptual quality, during test time. We propose to use two networks
to overcome this issue. Our first network (MRDN) is trained with a weighted
combination of L1 and VGG54 losses so that it results in outputs with better
objective quality. Our second network has the same architecture as the first but
it is trained with a combination of perceptually motivated losses such as VGG54
feature-based loss and adversarial loss. The adversarial loss pushes the network
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output to the manifold of natural high-resolution images using a discriminator
network that is trained to differentiate between the super-resolved images and
original photo-realistic images. We refer to this network as MRDN-GAN.

Let θ represent the weights and biases in the network i.e., θ = {W,B}. Given
a set of training image pairs Ik

L, Ik
H , we minimize the following Mean Absolute

Error (MAE) to obtain results with better objective quality.

lMAE(θ) = ||F (Ik
L, θ) − Ik

H ||1 (1)

To obtain perceptually superior results (photo-realistic appearance), the follow-
ing loss function is used:

lV GG/i.j =
1

Wi,jHi,j

Wi,j∑

x=1

Hi,j∑

y=1

(φi,j(Ik
H)x,y − φi,j(F (Ik

L, θ))x,y)2. (2)

Here Wi,j and Hi,j describe the dimensions of the respective feature maps within
the VGG network. Additionally, a conditional adversarial loss is also adopted
that encourages sharper texture in the images generated by the network. The
objective function for minimization becomes:

lCGAN (F,D) = E[log D(U(Ik
L), Ik

H)]+E[log(1 − D(U(Ik
L), F (Ik

L, θ)))], (3)

where E represents the expectation operation, and U(·) bi-linearly up-samples
Ik

L to match the resolution of Ik
H . Here, D represent discriminator network,

whose architecture is similar to [24], except that we feed two images to the
network by concatenating them along channel dimension.

Once the two networks are trained, we pass each test image through them,
separately. The outputs are expected to have complementary properties. MRDN
returns an HR image (IHR1) which is as close as possible to the ground-truth
(in terms of mean-squared error (MSE)). However, as explained in [3], such
objectively superior output would be perceptually inferior. On the other hand,
MRDN-GAN leads to a perceptually superior image (IHR2), while compromising
on objective quality (in terms of PSNR). To obtain results which lie in between
these two images on the plane, we need to preserve the sharpness features from
IHR2, while bringing the intensities closer to IHR1. To enable this flexibility, we
adopt a soft-thresholding based approach as described in [5]. The adjusted image
I can be obtained through the following formulation:

I = IHR2 + Sλ(IHR1 − IHR2). (4)

where Sλ(·) is a pixel-wise soft-thresholding operation that depends on λ which
controls the amount of information to be combined from the two images. λ is
calculated as λ = Sv(R(K ∗ γ)), where Sv is a vector that contains sorted non-
zero entries of the matrix (IHR1 − IHR2), R is the rounding-off operation and K
is the number of elements of Sv. The parameter γ ∈ (0, 1] needs to be controlled
in our approach.
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Generally, when increasing the value of threshold γ, the resultant image tends
to have higher objective quality and lower perceptual quality. This is because a
larger γ can remove more high-frequency details and, thus, decrease the percep-
tual quality. Since some of these high-frequency details can negatively affect the
objective quality, removing them leads to better PSNR. Different values for the
threshold γ leads to different trade-offs between IHR1 and IHR2.

5 Experimental Results

5.1 Experimental Setup

Here, we specify the details of training setup, test data and evaluation metrics.

Datasets and Degradation Models. Following [25,38,43,45], we use 800
training images from DIV2K dataset [38] as training set. For testing, we use
five standard benchmark datasets: Set5 [1], Set14 [42], B100 [30], Urban100 [16],
Manga109 [31], and PIRM-self [2]. We consider bicubic(BI) down-sampling to
generate the LR images.

Evaluation Metrics. The SR results are evaluated with two metrics: PSNR
and perceptual score. For a given image I, the perceptual metric is defined as

P (I) =
1
2
((10 − M(I) + N(I)) (5)

where M(I) and N(I) are estimated using [26,32], respectively. These metrics
have been used to evaluate different approaches in the PIRM SR Challenge.

Training Settings. Data augmentation is performed on the 800 training
images, which are randomly rotated by 90◦, 180◦, 270◦ and flipped horizon-
tally. Our model is trained by ADAM optimizer [21] with β1 = 0.9, β2 = 0.999,
and ε = 10−8. The initial leaning rate is set to 10−4 and is then decreased by
half every 2 × 105 iterations of back-propagation.

Implementation Details. The network is implemented using Pytorch library.
For training the first network, we used a weighted sum of VGG54 loss and
L1 Loss. For the second network, we used a weighted sum of VGG54 loss and
conditional-GAN loss. The experiments have been conducted on a machine with
i7-4790K CPU, 64GB RAM and 1 NVIDIA Titan X GPU using PyTorch [33].
During training, we considered a batch of randomly extracted 16 LR RGB
patches of size 32 × 32 pixels. Training the first network (MRDN) took approx-
imately 40 h. The second network (MRDN-GAN) was then trained for 26 h.

5.2 Perceptually Motivated Results

This work has been used for the purpose of participating in the PIRM 2018
SR Challenge, which focuses on photo-realistic results (measured using percep-
tually motivated metric) while maintaining certain levels of tolerance in terms
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of root mean squared error (RMSE). In this challenge, there exist three tracks
corresponding to different ranges of RMSE for scale factor of ×4. Track 1 corre-
sponds to RMSE ≤ 11.5. Track 2: 11.5 ≤ RMSE < 12.5, while Track 3 included
results with RMSE ≥ 12.5. Perceptually attractive images are generally rich in
various high-frequency (HF) image details. Thus, the objective is to bring out
HF details while super-resolving the given LR images such that the resultant
images yield better perceptual score. We employed our networks to generate
results with scores suitable for each track and proved that our technique can
elegantly facilitate quality control during test time. Our team REC-SR secured
the 7th, 7th and 10th ranks in Tracks 1, 2 and 3, respectively.

Quantitative Results: Meeting the Perception-Distortion Curve. As
explained in Sect. 4, we analyze the effect of different loss configurations on
the performance of the network for single image super-resolution. Our networks
are trained for ×4 SR and tested on 100 images from the PIRM-self set. We
have plotted the trade-off between the mean-perceptual score and mean square
error in Fig. 3(a). The points labeled in blue represent loss configurations which
contained higher weights for pixel-reconstruction loss, thus leading to superior
objective quality. Specifically, we trained our network with different weighted
combinations of L1 loss and VGG loss. The slight variation in the performance
is due to small differences in the duration of training as well as the relative
coefficient of the L1 loss. This relative coefficient was varied in the range (0.05, 1)
to obtain various models.

The points labeled in red represent loss configurations which contained higher
weight to adversarial loss, leading to better perceptual quality. Specifically, we
trained our network using various weighted combinations of VGG loss and con-
ditional GAN loss. The variation in the performance is due to differences in the
duration of training as well as the relative coefficient of the adversarial loss. This
relative coefficient was varied between (0.02, 0.005). Results of our two networks
are combined using a soft-thresholding strategy and plotted in Fig. 3(b).
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Fig. 3. (a) Perceptual and RMSE scores of various trained instances of our network.
The blue points correspond to our network trained with VGG+L1 loss while the red
points correspond to training with VGG loss+adversarial loss. Results are evaluated for
4× SR on PIRM-self validation dataset; (b) Results for Track 2 using soft-thresholding
on the output of our two networks for various thresholds; (c) The expected behavior
of an SR algorithm in perception-distortion plane
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Table 1. Quantitative results (PSNR & P-Score) for factor 4 (for region 3 of PIRM
challenge). Bold indicates best performance

Method Set5 Set14 B100 Urban100 PIRM-self

PSNR P-Score PSNR P-Score PSNR P-Score PSNR P-Score PSNR P-Score

SRGAN [24] 29.40 3.61 26.02 2.91 25.16 2.59 22.79 3.45 26.23 2.35

ENET-PAT [34] 28.56 2.93 25.75 3.01 25.38 2.93 23.68 3.47 25.06 2.69

MRDN-GAN 30.08 3.43 26.67 2.82 25.74 2.37 24.54 3.55 25.79 2.19

Note that the distribution of these evaluations follows the curve (shown in
Fig. 3(c)) as explained in [3]. Specifically, the point at the left extreme corre-
sponds to the network purely trained using L1 loss from scratch. Consistent
with the findings of [3], it leads to the lowest MSE but a very poor perceptual
score. On the other hand, the right-most point corresponds to a network fine-
tuned purely using the adversarial loss (no VGG or L1 loss). This yields one of
the best perceptual performance but fares poorly in terms of MSE. Our results
show strong agreement with the argument that an algorithm can be potentially
improved only in terms of its distortion or in terms of its perceptual quality, one
at the expense of the other. We observed that a balanced combination of these
loss functions is more appropriate in practice.

The results are further quantitatively compared with the perceptual SR
benchmarks in terms of PSNR and perceptual score (P-Score) in Table 1. One
can note that our network produces results with better PSNR values and
P-scores than existing approaches on almost all the datasets.

Qualitative Results. With the help of adversarial training, image SR methods
such as SRGAN [24] and ENet [24] propose networks that can produce percep-
tually superior (photo-realistic) results (while being objectively inferior). They
also present their objectively superior counterparts: SResNet and ENetE, which
are not trained using adversarial loss. We visually compare the results of these
approaches with our networks: MRDN and MRDN-GAN for the task of 4× SR.

Visual comparisons of the results of our networks MRDN and MRDN-GAN
with these techniques on images from standard SR benchmarks are given in
Fig. 4. In all the images, it can be seen that the results of SRResNet and
ENetE suffer from blurring artifacts. This demonstrates the insufficiency of only
pixel-reconstruction losses. However, the efficient design of our MRDN leads to
improved recovery of scene texture in challenging regions. For example, in image
“ppt3”, all the compared methods fail to recover the letters‘i’ and ‘t’. However,
our proposed MRDN recovers them. On the other hand, GAN-based methods of
SRGAN, and ENetPAT produce distorted scene textures. The results of ENet-
PAT are sharper than SRGAN but it generates unwanted artifacts and arbitrary
edges (e.g., the result for the image“78004”). In contrast, our proposed MRDN-
GAN leads to textures which are closer to that of the ground-truth HR image
too. Similar observations can be found in other images. These comparisons show
that the design of SR network plays an important role in both objective and
perceptual quality of SR.
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Set14 (4× 3(001DSB:) × 4(41teS:) ×):
arabraB400873tpp

HR Bicubic HR Bicubic HR Bicubic

SRResNet [24] SRGAN [24] SRResNet [24] SRGAN [24] SRResNet [24] SRGAN [24]

ENet-E [34] ENet-PAT [34] ENet-E [34] ENet-PAT [34] ENet-E [34] ENet-PAT [34]

MRDN (Ours) MRDN-GAN (Ours) MRDN (Ours) MRDN-GAN (Ours) MRDN (Ours) MRDN-GAN (Ours)

Fig. 4. Visual comparison for 4× SR on images from Set14 and BSD100 datasets

Urban100 (4×):
img 092

HR Bicubic SRCNN [6] FSRCNN [8] VDSR [19]

LapSRN [22] MemNet [37] SRMDNF [43] EDSR [25] MRDN-GAN (Ours)

Urban100 (4×):
img 093

HR Bicubic SRCNN [6] FSRCNN [8] VDSR [19]

LapSRN [22] MemNet [37] SRMDNF [43] EDSR [25] MRDN-GAN (Ours)

Fig. 5. Visual comparisons for 4× SR on Urban100 dataset

In Fig. 5, we compare the results of our model on Urban100 dataset with
state-of-the-art SR approaches which are not perceptually motivated for a scale
factor of 4. For such texture-rich scenes, a major challenge is to bring out high
frequency image details. One can observe that most of the existing approaches
fail in this aspect and their results are blurred (see Fig. 5). However, our MRDN-
GAN is capable of generating sufficiently detailed textures.
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Table 2. Ablation studies (PSNR & SSIM) for factor 4

Method Set5 Set14 B100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MRDN† 32.27 0.8961 28.64 0.7833 27.62 0.7378 26.14 0.7883

SRRDN 32.34 0.8968 28.68 0.7839 27.65 0.7381 26.27 0.7920

MRDN 32.48 0.8983 28.77 0.7855 27.71 0.7396 26.45 0.7956

5.3 Ablation Study

In Table 2, we evaluate the role of different components of our network. We have
compared the performance of MRDN with its counterpart that does not share
the weights across scales (MRDN†) and matches the number of parameters in
MRDN (by reducing the number of blocks). Further, in Table 2, we compare the
performance of MRDN with SRRDN to demonstrate the effectiveness of multi-
residual dense connections. One can observe that MRDN† performs inferior to
its scale-recurrent version (i.e., MRDN). This clearly explains the advantages of
scale-recurrent strategy. The performance improvement of MRDN over SRRDN
underlines the efficiency of multi-residual dense connection.

Table 3. Quantitative results with bicubic degradation model. Bold indicates best
performance, bold italic second best, and italic the third best performance

Method Scale Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866

SRCNN [6] ×4 30.48 0.8628 27.50 0.7513 6.90 0.7101 24.52 0.7221 27.58 0.8555

FSRCNN [8] ×4 30.72 0.8660 27.61 0.7550 26.98 0.7150 24.62 0.7280 27.90 0.8610

VDSR [19] ×4 31.35 0.8830 28.02 0.7680 27.29 0.0726 25.18 0.7540 28.83 0.8870

LapSRN [22] ×4 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900

MemNet [37] ×4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942

EDSR [25] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

SRMDNF [43] ×4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024

D-DBPN [13] ×4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

RDN [45] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151

MRDN (ours) ×4 32.48 0.8983 28.77 0.7855 27.71 0.7396 26.45 0.7956 30.92 0.9137

Bicubic ×8 24.40 0.6580 23.10 0.5660 23.67 0.5480 20.74 0.5160 21.47 0.6500

SRCNN [6] ×8 25.33 0.6900 23.76 0.5910 24.13 0.5660 21.29 0.5440 22.46 0.6950

FSRCNN [8] ×8 20.13 0.5520 19.75 0.4820 24.21 0.5680 21.32 0.5380 22.39 0.6730

SCN [40] ×8 25.59 0.7071 24.02 0.6028 24.30 0.5698 21.52 0.5571 22.68 0.6963

VDSR [19] ×8 25.93 0.7240 24.26 0.6140 24.49 0.5830 21.70 0.5710 23.16 0.7250

LapSRN [22] ×8 26.15 0.7380 24.35 0.6200 24.54 0.5860 21.81 0.5810 23.39 0.7350

MemNet [37] ×8 26.16 0.7414 24.38 0.6199 24.58 0.5842 21.89 0.5825 23.56 0.7387

MSLapSRN [23] ×8 26.34 0.7558 24.57 0.6273 24.65 0.5895 22.06 0.5963 23.90 0.7564

EDSR [25] ×8 26.96 0.7762 24.91 0.6420 24.81 0.5985 22.51 0.6221 24.69 0.7841

D-DBPN [13] ×8 27.21 0.7840 25.13 0.6480 24.88 0.6010 22.73 0.6312 25.14 0.7987

MRDN (ours) ×8 27.27 0.7860 25.15 0.6511 24.95 0.6020 22.82 0.6340 24.99 0.7950
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We further evaluate the performance of our network with state-of-the-art SR
approaches on standard SR benchmarks in terms of PSNR and SSIM in Table 3.
One can observe that our network MRDN performs comparably to the best
performing approaches such as RDN, DBPN, EDSR etc., although our network
has significantly fewer parameters. Moreover, we are able to produce best results
using Set5 dataset for factor 4. Our scale recurrent strategy reveals its benefits
for scale factor 8 leading to state-of-the-art results for most of the datasets.
The quantitative improvements can be further verified through the qualitative
results given in Fig. 6. This demonstrates that our network with appropriate loss
functions can not only produce perceptually better results but also it has the
ability to generate HR results that are objectively superior.

HR SRCNN [6] VDSR [19] MSLapSRN[22] D-DBPN [13] Ours

Fig. 6. Visual comparisons with existing approaches for super-resolution by a factor of
8 on 302008.png from BSD100, and img 087.png from Urban100
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eters required for scaling factors 4 and 8. Results are evaluated on Set5
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5.4 Parametric Analysis

We analyze performance with respect to size of models for different approaches in
Fig. 7. Our MRDN has fewer parameters than that of state-of-the-art approaches
EDSR, MDSR, DDBPN and RDN, leading to a better trade-off between model
size and performance.

6 Conclusions

We proposed a scale-recurrent deep architecture, which enables transfer of
weights from lower scale factors to the higher ones, in order to reduce the
number of parameters as compared to state-of-the-art approaches. We exper-
imentally demonstrated that our scale-recurrent design is well-suited for higher
up-sampling factors. The error gradient flow was improved by elegantly including
multiple residual units (MRDN) within the Residual Dense Blocks. To produce
perceptually better results, VGG-based loss functions were utilized along with a
GAN framework. Different weights were assigned to the loss functions to obtain
networks focused on improving either perceptual quality or objective quality
during super-resolution. The perception-distortion trade-off was addressed by a
soft-thresholding technique during test time. We demonstrated the effectiveness
of our parametrically efficient model on various datasets.
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