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Abstract. This paper considers a deep Generative Adversarial Net-
works (GAN) based method referred to as the Perception-Enhanced
Super-Resolution (PESR) for Single Image Super Resolution (SISR) that
enhances the perceptual quality of the reconstructed images by consid-
ering the following three issues: (1) ease GAN training by replacing an
absolute with a relativistic discriminator, (2) include in the loss function
a mechanism to emphasize difficult training samples which are gener-
ally rich in texture and (3) provide a flexible quality control scheme at
test time to trade-off between perception and fidelity. Based on exten-
sive experiments on six benchmark datasets, PESR outperforms recent
state-of-the-art SISR methods in terms of perceptual quality. The code
is available at https://github.com/thangvubk/PESR.
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1 Introduction

In recent years, Single Image Super Resolution (SISR) has received considerable
attention for its applications that includes surveillance imaging [1,2], medical
imaging [3,4] and object recognition [5,6]. Given a low-resolution image (LR),
SISR aims to reconstruct a super-resolved image (SR) that is as similar as pos-
sible to the original high-resolution image (HR). This is an ill-posed problem
since there are many possible ways to generate SR from LR.

Recent example-based methods using deep convolutional neural networks
(CNNs) have achieved significant performance. However, most of the methods
aim to maximize peak-signal-rate-ratio (PSNR) between SR and HR, which
tends to produce blurry and overly-smoothed reconstructions. In order to obtain
non-blurry and realistic reconstruction, this paper considers the following three
issues. First, standard GAN [7] (SGAN) based SISR methods which are known
to be effective in reconstructing natural images are notoriously difficult to train
and unstable. One reason might be attributed to the fact that the generator
is generally trained without taking real high-resolution images into account.
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Fig. 1. Super-resolution result comparison on image lenna from Set14 dataset. Our
method exhibits more convincing textures and perceptual quality compared to those
of the state-of-the-art PSNR-based method.

Second, texture-rich high-resolution samples that are generally difficult to recon-
struct from low-resolution images should be emphasized during training. Third,
trading-off between PSNR and perceptual quality at test time with existing
methods is impossible without retraining. Exiting methods are commonly trained
to improve either PSNR or perceptual quality, and depending on the application,
one objective might be better than the other.

To address these issues, this paper proposes a GAN based SISR method
referred to as the Perception-Enhanced Super-Resolution (PESR) that aims to
enhance the perceptual quality of reconstruction and to allow users to flexibly
control the perceptual degree at test time. In order to improve GAN performance,
PESR is trained to minimize relativistic loss instead of an absolute loss. While
SGAN aims to generate data that looks real, the PESR attempts to generate fake
data to be more real than real data. This philosophy is extensively studied in
[9] with Relativistic GAN (RGAN). In PESR, valuable texture-rich samples are
emphasized in training. It is observed that the texture-rich patches, which play
an important role in user-perceived quality, are more difficult to reconstruct and
play an important role in user-perceived quality. In training PESR, easy exam-
ples with smooth texture are deemphasized by combining GAN loss with a focal
loss function. Furthermore, at test time, we proposed a quality-control mecha-
nism. The perceptual degree is controlled by interpolating between a perception-
optimized model and a distortion-optimized model. Experiment results show
that the proposed PESR achieves significant improvements compared to other
state-of-the-art SISR methods.

The rest of this paper is organized as follows. Section 2 reviews various SISR
methods. Section 3 presents the proposed networks and the loss functions to train
the networks. Section 4 presents extensive experiments results on six benchmark
datasets. Finally, Sect. 5 summarizes and concludes the paper.
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2 Related Work

2.1 Single Image Super-Resolution

To address the super-resolution problem, early methods are mostly based on
interpolation such as bilinear, bicubic, and Lancroz [10]. These methods are
simple and fast but usually produce overly-smoothed reconstructions. To miti-
gate this problem, some edge-directed interpolation methods have been proposed
[11,12]. More advanced methods such as dictionary learning [13–16], neighbor-
hood embedding [17–19] and regression trees [20,21] aim to learn complex map-
ping between low- and high-resolution image features. Although these methods
have shown better results compared to their predecessors, their performances
compared to that of recent deep architectures leave much to be desired.

Deep architectures have made great strides in SISR. Dong et al. [22,23] first
introduced SRCNN for learning the LR-HR mapping in an end-to-end manner.
Although SRCNN is only a three-convolutional-layer network, it outperformed
previous methods. As expected, SISR also benefits from very deep networks.
The 5-layer FSRCNN [24], 20-layer VDSR [25], and 52-layer DRRN [26] have
shown significant improvements in terms of accuracy. Lim et al. [8] proposed a
very deep modified ResNet [27] to achieve state-of-the-art PSNR performance.

Beside building very deep networks, utilizing advanced deep learning tech-
niques lead to more robust, stable, and compact networks. Kim et al. [25] intro-
duced residual learning for SISR showing promising results just by predicting
residual high-frequency components in SISR. Tai et al. [26] and Kim et al. [28]
investigated recursive networks in SISR, which share parameters among recur-
sive blocks and show superior performance with fewer parameters compared to
previous work. Densely connected networks [29] have also shown to be conducive
for SISR [30,31].

2.2 Loss Functions

The most common loss function to maximize PSNR is the mean-squared error
(MSE). Other losses such as L1 or Charbonnier (a differentiable variant of L1)
have also been studied to improve PSNR. It is well-known that pixel-wise loss
functions produce blurry and overly-smoothed output as a result of averaging
all possible solutions in the pixel space. As shown in Fig. 1, the natural textures
are missing even in the state-of-the-art PSNR-based method. In [32], Zhao et al.
studied Structural Similarity (SSIM) and its variants as a measure for evaluating
the quality of the reconstruction in SISR. Although SSIM takes the image struc-
ture into account, this approach exposes the limitation in recovering realistic
textures.

Instead of using pixel-wise errors, high-level feature distance has been con-
sidered for SISR [5,33–35]. The distance is measured based on the feature maps
which are extracted using a pre-trained VGG network [36]. Blau et al. [37]
demonstrated that the distance between VGG features are well correlated to
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human opinion based quality assessment. Relying on the VGG features, a num-
ber of perceptual loss functions have been proposed. Instead of measuring the
Euclidean distance between the VGG features, Sajjadi et al. [5] proposed a Gram
loss function which exploits correlations between feature activations. Meanwhile,
Mechrez et al. [35] introduced contextual loss, which aims to maintain natural
statistics of images.

To enhance training computational efficiency, images are cropped into mul-
tiple small patches. However, training samples are usually dominated by a large
number of easily reconstructable patches. When these easy samples overwhelm
the generator, reconstructed results tend to be blurry and smooth. This is anal-
ogous to an observation in dense object detection [38], where the background
samples overwhelm the detector. Focal loss which emphasizes difficult examples
should be considered for SISR.

2.3 Adversarial Learning

Ever since it was first proposed by Goodfellow et al., GANs [7] have been incor-
porated for various tasks such as image generation, style transfer, domain adap-
tation, and super-resolution. The general idea of GANs is that it allows training
a generative model G to produce real-like fake data with the goal of fooling a dis-
criminator D while D is trained to distinguish between the generated data and
real data. The generator G and the discriminator D compete in an adversarial
manner with each other to achieve their individual objectives; thus, the genera-
tor mimics the real data distribution. In SISR, adversarial loss was introduced by
Ledig et al. [34], generating images with convincing textures. Since then, GANs
have emerged as the most common architecture for generating photo-realistic
SISR [5,35,39–41]. Wang et al. [41] proposed a conditional GAN for SISR, where
the semantic segmentation probability maps are exploited as the prior. Yuan
et al. [40] investigated the use of cycle-in-cycle GANs for SISR, where HR labels
are not available and LR images further degraded by noise, showing promising
results. In a recent study, Blau et al. [37] have demonstrated that GANs provide
a principle way to enhance perceptual quality for SISR.

2.4 Contribution

The four main contributions of this paper are as follows:

1. We demonstrate that stabilizing GAN training plays a key role in enhanc-
ing perceptual quality for SISR. When GAN performance is improved, the
generated images are closer to natural manifolds.

2. We replace SGAN by RGAN loss function to fully utilize data at training
time. A focal loss is used to emphasize valuable examples. The total variance
loss is also added to mitigate high-frequency noise amplification of adversarial
training.

3. We propose a quality control scheme at test time that allows users to adap-
tively emphasize between the perception and fidelity.
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Fig. 2. Architecture of Generator and Discriminator networks.

4. We evaluate the proposed method using recently-proposed quality metric [37]
that encourages the SISR prediction to be close to natural manifold. We quan-
titatively and qualitatively show that the proposed method achieves better
perceptual quality compared to other state-of-the-art SISR algorithms.

3 Proposed Method

3.1 Network Architecture

The proposed PESR method utilizes the SRGAN architecture [34] with its gen-
erator replaced by the EDSR [8]. As shown in Fig. 2, a low-resolution image is
first embedded by a convolutional layer, before being fed into a series of 32 resid-
ual blocks. The spatial dimensions of the residual blocks are maintained until
the very end of the generator such that the computational cost is kept low. The
output of the 32 residual blocks is summed with the embedded input. Then it is
upsampled to the high-resolution space, after which it is reconstructed.

The discriminator is trained to discriminate between generated and real high-
resolution image. An image is fed into four basic blocks, each of which contains
two convolutional layers followed by batch normalization and leaky ReLU acti-
vations. After the four blocks, a binary classifier, which consists of two dense
layers, predicts whether the input is generated or real.

The generator and discriminator are trained by alternating gradient update
based on their individual objectives which are denoted as LG and LD respec-
tively. To enhance the stability and improve texture rendering, the generator
loss is a linear sum of three loss functions: focal RGAN loss LFRG, content loss
LC , and total variance loss LTV , shown as below:

LG = αFRGLFRG + αCLC + αTV LTV . (1)
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Here αFRG, αC , and αTV are trade-off parameters. The three loss functions are
described in more detail in the following subsections.

3.2 Loss Functions

Focal RGAN Loss. In the GAN setting, the input and output of the generator
and the real samples are respectively the low-resolution image ILR, generated
super-resolved image ISR and the original high-resolution image IHR. As in
SGAN, a generator Gθ and a discriminator Dϕ are trained to optimize a min-
max problem:

min
θ

max
ϕ

EIHR∼PHR log Dϕ(IHR) + EILR∼PLR log(1 − Dϕ(Gθ(ILR))). (2)

Here P
HR and P

LR are the distributions of real data (original high-resolution
image) and fake data (low-resolution image), respectively. This min-max problem
can be interpreted as minimizing explicit loss functions for the generator and the
discriminator LSG and LSD respectively as follows:

LSG = −EILR∼PLR log(Dϕ(Gθ(ILR))), (3)

and

LSD = −EIHR∼PHR log Dϕ(IHR) − EILR∼PLR log(1 − Dϕ(Gθ(ILR))). (4)

It is well known that SGAN is notoriously difficult and unstable to train, which
results in low reconstruction performance. Furthermore, Eq. 3 shows that the
generator loss function does not explicitly depend on IHR. In other words,
the SGAN generator completely ignores high-resolution image in its updates.
Instead, the loss functions of both generator and discriminator should exploit
the information provided by both the high-resolution and fidelity of the syn-
thesized image. The proposed method considers relative discriminative score
between the IHR and ISR such that training is easier. This can be achieved by
increasing the probability of classifying the generated high-resolution image as
being real and simultaneously decreasing the probability of classifying the origi-
nal high-resolution image as being real. Inspired by RGAN [9], the following loss
functions for the generator and discriminator can be considered,

LRG = −E(ILR,IHR)∼(PLR,PHR) log
[
σ(Cϕ(Gθ(ILR)) − Cϕ(IHR))

]
, (5)

and

LRD = −E(ILR,IHR)∼(PLR,PHR) log
[
σ(Cϕ(IHR) − Cϕ(Gθ(ILR)))

]
. (6)

Here Cϕ which is referred to as the critic function [42] is taken before the last
sigmoid function σ of the discriminator.

The generator loss can be further enhanced to emphasize texture-rich patches
which tend to be difficult samples to reconstruct with high loss LRG. Emphasiz-
ing difficult samples and down-weighting easy samples will lead to better texture
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reconstruction. This can be achieved by minimizing the focal function with a
focusing parameter of γ:

LFRG = −
∑

i

(1 − pi)γ log(pi), (7)

where pi = σ(Cϕ(Gθ(ILR
i )) − Cϕ(IHR

i )).

Content Loss. Beside enhancing realistic textures, the reconstructed image
should be similar to the original high-resolution image which is ground truth.
Instead of considering pixel-wise accuracy, perceptual loss that measures distance
in a high-level feature space [33] is considered. The feature map, denoted as φ,
is obtained by using a pre-trained 19-layer VGG network. Following [34], the
feature map is extracted right before the fifth max-pooling layer. The content
loss function is defined as,

LC =
∑

i

‖φ(IHR
i ) − φ(ISR

i )‖22. (8)

Total Variance Loss. High-frequency noise amplification is inevitable with
GAN based synthesis, and in order to mitigate this problem, the total variance
loss function [43] is considered. It is defined as

LTV =
∑

i,j,k

(∣∣ISR
i,j+1,k − ISR

i,j,k

∣
∣ +

∣
∣ISR

i,j,k+1 − ISR
i,j,k

∣
∣) . (9)

4 Experiments

4.1 Dataset

The proposed networks are trained on DIV2K dataset [44], which consists of 800
high-quality (2K resolution) images. For testing, 6 standard benchmark datasets
are used, including Set5 [17], Set14 [16], B100 [45], Urban100 [46], DIV2K vali-
dation set [44], and PIRM self-validation set [47].

4.2 Evaluation Metrics

To demonstrate the effectiveness of PESR, we measure GAN training perfor-
mance and SISR image quality. The Fréchet Inception Distance (FID) [48] is
used to measure GAN performance, where lower FID values indicate better image
quality. In FID, feature maps ψ(I) are obtained by extracting the pool 3 layer
of a pre-trained Inception V3 model [49]. Then, the extracted features are mod-
eled under a multivariate Gaussian distribution with mean μ and covariance Σ.
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The FID d(ψ(ISR),ψ(IHR)) between generated features ψ(ISR) and real fea-
tures ψ(IHR) is given by [50]:

d2(ψ(ISR), ψ(IHR)) =
∥
∥
∥μSR − μHR

∥
∥
∥

2

2
+ Tr

(

ΣSR + ΣHR − 2
(

ΣSRΣHR
)1/2

)

.

(10)

To evaluate SISR performance, we use a recently-proposed perceptual metric
in [37]:

Perceptual index =
(10 − NRQM) + NIQE

2
, (11)

where NRQM and NIQE are the quality metrics proposed by Ma et al. [51]
and Mittal et al. [52], respectively. The lower perceptual indexes indicate better
perceptual quality. It is noted that the perceptual index in Eq. 11 is a non-
reference metric, which does not reflect the distortion of SISR results. Therefore,
the conventional PSNR metric is also used as a distortion reference.

4.3 Experiment Settings

Throughout the experiments, LR images are obtained by bicubically down-
sampling HR images with a scaling factor of ×4 using MATLAB imresize func-
tion. We pre-process all the images by subtracting the mean RGB value of the
DIV2K dataset. At training time, to enhance computational efficiency, the LR
and HR images are cropped into patches of size 48 × 48 and 196 × 194, respec-
tively. It is noted that our generator network is fully convolutional; thus, it can
take arbitrary size input at test time.

We train our networks with Adam optimizer [53] with setting β1 = 0.9,
β2 = 0.999, and ε = 10−8. Batchsize is set to 16. We initialize the generator
using L1 loss for 2 × 105 iterations, then alternately optimize the generator
and discriminator with our full loss for other 2 × 105 iterations. The trade-off
parameter for the loss function is set to αFRG = 1, αC = 50 and αTV = 10−6.
We use a focusing parameter of 1 for the focal loss. The learning rate is initialized
to 10−4 for pretraining and 5 × 10−5 for GAN training, which is halved after
1.2 × 105 batch updates.

Our model is implemented using Pytorch [54] deep learning framework, which
is run on Titan Xp GPUs and it takes 20 h for the networks to converge.

4.4 GAN Performance Measurement

To avoid underestimated FID values of the generator, the number of samples
should be at least 104 [48], hence the images are cropped into patches of 32×32.
The proposed method is compared with standard GAN (SGAN) [7], least-squares
GAN (LSGAN) [55], Hinge-loss GAN (HingeGAN) [56], and Wassertein GAN
improved (WGAN-GP) [57]. All the considered GANs are combined with the
content and total variance losses. Table 1 shows that LSGAN performs the worst
at FID of 18.5. HingeGAN, WGAN-GP, and SGAN show better results compared
to LSGAN. Our method relied on RGAN shows the best performance.
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Table 1. FID comparison of RGAN with other GANs on DIV2K validation set.

SGAN LSGAN HingeGAN WGAN-GP RGAN

6.83 18.5 6.97 7.02 6.63

4.5 Ablation Study

The effectiveness of the proposed method is demonstrated using an ablation
analysis. As reported in Table 2, the perceptual index of L1 loss training is lim-
ited to 5.41, and after training with the VGG content loss, the performance
is improved dramatically to 3.32. When adversarial training (RGAN) is added,
the performance is further improved to 2.28. The total variance loss and focal
loss show slightly perceptual index improvement. The proposed method with the
default setting (e) obtains the best performance of 2.25.

The effect of each component in the proposed loss function is also visually
compared in Fig. 3. As expected, L1 loss shows blurry and overly-smooth images.
Although VGG loss improves perceptual quality, the reconstruction results are
still unnatural since they expose square patterns. When RGAN is added, the
reconstruction results are more visually pleasing with more natural texture and
edges, and no square patterns are observed.

HR (a) (b) (c) (d) (e)

Fig. 3. Effect of each component in our loss function on B100 dataset (images 163085,
38082, 19021, 351093 from top to bottom rows). Each column from (a) to (e) represents
the setting described in Table 2.
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Table 2. Ablation analysis in terms of perceptual index on B100 dataset.

Setting L1 VGG TV RGAN Focal PI

(a) � 5.41

(b) � 3.32

(c) � � 3.31

(d) � � � 2.28

(e) default � � � � 2.25

4.6 Comparison with State-of-the-Art SISR Methods

In this subsection, we quantitatively and qualitatively compare our PESR with
other state-of-the-art SISR algorithms. Here, PESR is benchmarked against
SRCNN [23], VDSR [25], DRCN [28], EDSR [8], SRGAN [34], ENET [5], and CX
[35]. The performance of bicubic interpolation is also reported as the baseline.
The results of SRGAN is obtained from a Tensorflow implementation1. For CX,
the source codes for super-resolution task was unavailable; however, the authors
of CX provided the generated images at our request. For the others methods,
the results were obtained using publicly available source codes.

Table 3. Perceptual index comparison of the proposed PESR with recent state-of-the-
art SISR methods. Bold and italic indicate best and second best results, respectively.

Dataset Set5 Set14 B100 Urban100 PIRM2018 DIV2K

Bicubic 7.32 6.97 6.94 6.88 6.80 6.94

SRCNN [23] 6.79 6.03 6.04 5.94 5.94 5.92

VDSR [25] 6.45 5.77 5.70 5.54 5.65 5.62

DRCN [28] 6.45 5.94 5.89 5.79 5.77 5.71

EDSR [8] 6.00 5.52 5.40 5.14 5.08 5.37

SRGAN [34] 3.18 2.80 2.59 3.30 2.30 3.30

ENET [5] 2.93 3.02 2.91 3.47 2.69 3.50

CX [35] 3.29 2.76 2.25 3.39 2.13 3.16

PESR (ours) 3.42 2.66 2.25 3.41 2.13 3.13

Quantitative Results. Table 3 illustrates the perceptual indexes of PESR and
the other seven state-of-the-art SISR methods. As expected, GAN-based meth-
ods, including SRGAN [34], ENET [5], CX [35], and the proposed PESR, outper-
form the PSNR-based methods in term of perceptual index with a large margin.
Here, SRGAN and ENET methods have the best results in Set5 and Urban100
dataset, respectively; however, their performances are relatively limited in the
1 https://github.com/tensorlayer/srgan.

https://github.com/tensorlayer/srgan
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Image 28 from PIRM
self-validation

Ground truth
PI/PSNR
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6.55/24.41

SRCNN [23]
5.76/25.32

VDSR [25]
5.58/25.48

DRCN [28]
5.79/25.51

EDSR [8]
4.00/26.16

SRGAN [34]
1.86/23.18

ENET [5]
2.48/22.65

CX [35]
1.66/23.35

PESR (ours)
1.52/23.23

Image 0804
from DIV2K validation

Ground truth
PI/PSNR

Bicubic
6.61/26.89

SRCNN [23]
5.68/28.07

VDSR [25]
5.36/28.49

DRCN [28]
5.41/28.45

EDSR [8]
5.16/29.42

SRGAN [34]
2.52/26.66

ENET [5]
2.90/25.61

CX [35]
2.69/26.68

PESR (ours)
2.53/26.57

Image img 018
from Urban100

Ground truth
PI/PSNR

Bicubic
7.13/24.85

SRCNN [23]
5.94/25.74

VDSR [25]
5.77/25.93

DRCN [28]
6.03/25.94

EDSR [8]
4.99/26.57

SRGAN [34]
2.43/24.13

ENET [5]
2.89/23.80

CX [35]
2.55/24.15

PESR (ours)
2.34/23.60

Image 0887
from DIV2K validation

Ground truth
PI/PSNR

Bicubic
6.48/24.81

SRCNN [23]
5.52/25.60

VDSR [25]
5.34/25.84

DRCN [28]
5.30/25.80

EDSR [8]
5.15/26.39

SRGAN [34]
2.61/23.88

ENET [5]
3.05/23.68

CX [35]
2.52/23.94

PESR (ours)
2.50/23.78

Fig. 4. Qualitative comparison between our PESR and the others. RED and BLUE
indicate best and second best perceptual index. (Color figure online)
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other datasets. It is noted that ENET are trained on 200k images, which is much
more than those of other methods (at most 800 images). Our PESR achieves the
best performance in 4 out of 6 benchmark datasets.

Qualitative Results. The visual comparison of our PESR with other state-
of-the-art SISR methods are illustrated in Fig. 4. Overall, PSNR-based methods
produce blurry and smooth images while GAN-based methods synthesize a more
realistic texture. However, SGRAN, ENET, and CX exhibit limitation when the
textures are densely and structurally repeated as in image 0804 from DIV2K
dataset. Meanwhile, our PESR provides sharper and more natural textures com-
pared to the others.

4.7 Perception-Distortion Control at Test Time

In a number of applications such as medical imaging, synthesized textures are
not desirable. To make our model robust and flexible, we proposed a quality
control scheme that interpolates between a perception-optimized model GθP

and
a distortion-optimized model GθD

. The GθP
and GθD

models are obtained by
training our network with the full loss function and L1 loss function, respectively.
The perceptual quality degree is controlled by adjusting the parameter λ in the
following equation:

ISR = λGθP
(ILR) + (1 − λ)GθD

(ILR). (12)

Here, the networks attempt to predict the most accurate results when λ = 0 and
synthesize the most perceptually-plausible textures when λ = 1.

We demonstrate that flexible SISR method is effective in a number of cases.
In Fig. 5, two types of textures are presented: a wire entanglement with sparse
textures, and shutter with dense textures. The results show that high perceptual
quality weights provide more plausible visualization for the dense textures while
reducing the weight seems to be pleasing for the easy ones. We also compare our
interpolated results and the others, as shown in Fig. 6. It is clear that we can
obtain better perceptual quality with the same PSNR, and vice versa, compared
to the other methods.

4.8 PIRM 2018 Challenge

The Perceptual Image Restoration and Manipulation (PIRM) 2018 challenge
aims to produce images that are visually appealing to human observers. The
authors participated in the Super-resolution challenge to improve perceptual
quality while constraining the root-mean-squared error (RMSE) to be less
than 11.5 (region 1), between 11.5 to 12.5 (region 2) and between 12.5 and
16 (region 3).
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28 from PIRM
PI/PSNR

λ = 0
5.88/30.40

λ = 0.4
4.45/29.74

λ = 0.6
3.81/29.04

λ = 0.8
3.21/28.23

λ = 1
2.92/27.38

Fig. 5. Perception-distortion trade-off with different perceptual quality weights.

Fig. 6. Our interpolated results in comparison with the others on Set14 dataset. Left-
and right-most triangle markers indicate λ being 1 and 0, respectively.

Our main target is region 3, which aims to maximize the perceptual quality.
We ranked 4th with perceptual index 0.04 lower than the top-ranking teams. For
region 1 and 2, we use interpolated results without any fine-tuning and ranked
5th and 6th, respectively. We believe further improvements can be achieved with
fine-tuning and more training data.

5 Conclusion

We have presented a deep Generative Adversarial Network (GAN) based method
referred to as the Perception-Enhanced Super-Resolution (PESR) for Single
Image Super Resolution (SISR) that enhances the perceptual quality of the
reconstructed images by considering the following three issues: (1) ease GAN
training by replacing an absolute by relativistic discriminator (2) include in a
loss function a mechanism to emphasize difficult training samples which are gen-
erally rich in texture, and (3) provide a flexible quality control scheme at test
time to trade-off between perception and fidelity. Each component of proposed
method is demonstrated to be effective through the ablation analysis. Based
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on extensive experiments on six benchmark datasets, PESR outperforms recent
state-of-the-art SISR methods in terms of perceptual quality.
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