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Abstract. Learning to estimate 3D geometry in a single image by
watching unlabeled videos via deep convolutional network has made sig-
nificant process recently. Current state-of-the-art (SOTA) methods, are
based on the learning framework of rigid structure-from-motion, where
only 3D camera ego motion is modeled for geometry estimation. However,
moving objects also exist in many videos, e.g. moving cars in a street
scene. In this paper, we tackle such motion by additionally incorporating
per-pixel 3D object motion into the learning framework, which provides
holistic 3D scene flow understanding and helps single image geometry
estimation. Specifically, given two consecutive frames from a video, we
adopt a motion network to predict their relative 3D camera pose and a
segmentation mask distinguishing moving objects and rigid background.
An optical flow network is used to estimate dense 2D per-pixel corre-
spondence. A single image depth network predicts depth maps for both
images. The four types of information, i.e. 2D flow, camera pose, seg-
ment mask and depth maps, are integrated into a differentiable holistic
3D motion parser (HMP), where per-pixel 3D motion for rigid back-
ground and moving objects are recovered. We design various losses w.r.t.
the two types of 3D motions for training the depth and motion net-
works, yielding further error reduction for estimated geometry. Finally,
in order to solve the 3D motion confusion from monocular videos, we
combine stereo images into joint training. Experiments on KITTI 2015
dataset show that our estimated geometry, 3D motion and moving object
masks, not only are constrained to be consistent, but also significantly
outperforms other SOTA algorithms, demonstrating the benefits of our
approach.
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1 Introduction

Humans are highly competent in recovering 3D scene geometry, i.e. per-pixel
depths, at a very detailed level. We can also understand both 3D camera
ego motion and object motion from visual perception. In practice, 3D per-
ception from images is widely applicable to many real-world platforms such as
autonomous driving, augmented reality and robotics. This paper aims at improv-
ing both 3D geometry estimation from single image and also dense object motion
understanding in videos.

Recently, impressive progress [1–4] has been made to achieve 3D reconstruc-
tion from a single image by training a deep network taking only unlabeled videos
or stereo images as input, yielding even better depth estimation results than
those of supervised methods [5] in outdoor scenarios. The core idea is to super-
vise depth estimation by view synthesis via rigid structure from motion (SfM) [6].
The frame of one view (source) is warped to another (target) based on the pre-
dicted depths of target view and relative 3D camera motions, and the photo-
metric errors between the warped frame and target frame is used to supervise
the learning. A similar idea also applies when stereo image pairs are available.
However, real world video may contain moving objects, which falls out of rigid
scene assumption commonly used in these frameworks. As illustrated in Fig. 1,
with good camera motion and depth estimation, the synthesized image can still
cause significant photometric error near the region of moving object, yielding
unnecessary losses that cause unstable learning of the networks. Zhou et al. [2]
try to avoid such errors by inducing an explanability mask, where both pixels
from moving objects and occluded regions from images are eliminated. Vijaya-
narasimhan et al. [7] separately tackle moving objects with a multi-rigid body
model by outputting k object masks and k object pivots from the motion net-
work. However, such a system has limitations of maximum object number, and
yields even worse geometry estimation results than those from Zhou et al. [2] or
other systems [4] which do not explicitly model moving objects.

This paper aims for modeling the 3D motion for unsupervised/self-supervised
geometry learning. Different from previous approaches, we model moving objects
using dense 3D point offsets, a.k.a. 3D scene flow, where the occlusion can be
explicitly modeled. Thus, with camera motion in our model, every pixel inside
the target image is explained and holistically understood in 3D. We illustrate the
whole model in Fig. 2. Specifically, given a target image and a source image, we
first introduce an unsupervised optical flow network as an auxiliary part which
produces two flow maps: from target to source and source to target images.
Then, a motion network outputs the relative camera motion and a binary mask
representing moving object regions, and a single view depth network outputs
depths for both of the images. The four types of information (2D flow, camera
pose, segment mask and depth maps) are fused with a holistic motion parser
(HMP), where per-pixel 3D motion for rigid background and moving objects are
recovered.
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Within the HMP, given depth of the target image, camera pose and moving
object mask, a 3D motion flow is computed for rigid background. And given the
optical flow, depths of the two images, an occlusion aware 3D motion flow of
the full image is computed, where the occlusion mask is computed from optical
flow following [8]. In principle, subtracting the two 3D flows within rigid regions,
i.e. without occlusion and outside moving object mask, the error should be zero.
Inside moving object mask, the residual is object 3D motion, which should be
spatially smooth. We use these two principles to guide additional losses formu-
lation in our learning system, and all the operations inside the parser are differ-
entiable. Thus, the system can be trained end-to-end, which helps the learning
of both motion and depth.

For a monocular video, 3D depth and motion are entangled information, and
could be confused with a projective camera model [9]. For example, in the pro-
jective model, a very far object moving w.r.t. camera is equivalent to a close
object keeping relatively still w.r.t. camera. The depth estimation confusion can
be caused at regions of moving object. We tackle this by also embedding the
stereo image pair into the monocular learning framework when it is available.
In our case, through holistic 3D understanding, we find the joint training yields
much better results than solely training on stereo pairs or monocular videos indi-
vidually. Finally, as shown in Fig. 1, our model successfully explains the optical
flow to 3D motion by jointly estimating depths, understanding camera pose and
separating moving objects within an unsupervised manner, where nearly all the
photometric error is handled through the training process. Our learned geometry
is more accurate and the learning process is more stable.

We conduct extensive experiments over the public KITTI 2015 [10] dataset,
and evaluate our results in multiple aspects including depth estimation, 3D scene
flow estimation and moving object segmentation. As elaborated in Sect. 4, our
approach significantly outperforms other SOTA methods on all tasks.

Fig. 1. With good depth estimation (b), there is still obvious reconstruction error
around moving object (c). With joint training of 3D flow and depth, our framework
generates depth result (d) and camera motion that causes less reconstruction error (e),
and also consistent 3D scene flow (f) and moving object segmentation (g) results.
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2 Related Work

Estimating single view depth and predicting 3D motion from images have long
been center problems for computer vision. Here we summarize the most related
works in several aspects without enumerating them all due to space limitation.

Structure from Motion and Single View Geometry. Geometric based
methods estimate 3D from a given video with feature matching or patch match-
ing, such as PatchMatch Stereo [11], SfM [6], SLAM [12,13] and DTAM [14],
which could be effective and efficient in many cases. When there are dynamic
motions inside a monocular video, usually there is scale-confusion for each non-
rigid movement, thus regularization through low-rank [15], orthographic cam-
era [16], rigidity [17] or fixed number of moving objects [18] are necessary in
order to obtain an unique solution. However, those methods assume 2D match-
ing are reliable, which can fail at where there is low texture, or drastic change
of visual perspective etc.. More importantly, those methods can not extend to
single view reconstruction.

Traditionally, specific rules are necessary for single view geometry, such as
computing vanishing point [19], following rules of BRDF [20,21], or extract the
scene layout with major plane and box representations [22,23] etc.. These meth-
ods can only obtain sparse geometry representations, and some of them require
certain assumptions (e.g. Lambertian, Manhattan world).

Supervised Depth Estimation with CNN. Deep neural networks (DCN)
developed in recent years provide stronger feature representation. Dense geom-
etry, i.e., pixel-wise depth and normal maps, can be readily estimated from a
single image [24–27] and trained in an end-to-end manner. The learned CNN
model shows significant improvement compared to other methods based on
hand-crafted features [28–30]. Others tried to improve the estimation further by
appending a conditional random field (CRF) [31–34]. However, all these methods
require densely labeled ground truths, which are expensive to obtain in natural
environments.

Unsupervised Single Image Depth Estimation. Most recently, lots of CNN
based methods are proposed to do single view geometry estimation with supervi-
sion from stereo images or videos, yielding impressive results. Some of them are
relying on stereo image pairs [1,35,36], by warping one image to another given
known stereo baseline. Some others are relying on monocular videos [2–4,37–40]
by incorporating 3D camera pose estimation from a motion network. However,
as discussed in Sect. 1, most of these models only consider a rigid scene, where
moving objects are omitted. Vijayanarasimhan et al. [7] model rigid moving
objects with k motion masks, while the estimated depths are negatively effected
comparing to the one without object modeling [2]. Yin et al. [40] model the
non-rigid motion by introducing a 2D flow net, which helps the depth estima-
tion. Different from those approaches, we propose to recover a dense 3D motion
into the joint training of depth and motion networks, in which the two informa-
tion are mutually beneficial, yielding better results for both depth and motion
estimation.
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3D Scene Flow Estimation. Estimating 3D scene flow [41] is a task of find-
ing per-pixel dense flow in 3D given a pair of images, which evaluates both the
depth and optical flow quality. Existing algorithms estimate depth from stereo
images [42,43], or the given image pairs [17] with rigid constraint. And for esti-
mation optical flow, they are trying to decompose the scene to piece-wise mov-
ing planes in order to finding correspondence with large displacement [44,45].
Most recently, Behl et al. [43] adopt semantic object instance segmentation and
supervised optical flow from DispNet [46] to solve large displacement of objects,
yielding the best results on KITTI dataset. Impressively, in our case, based on
single image depth estimation and unsupervised learning pipeline for optical
flow, we are able to achieve comparable results with the SOTA algorithms. This
demonstrates the effectiveness of our approach.

Segment Moving Objects. Finally, since our algorithm decomposes static
background and moving objects, we are also related to segmentation of moving
object from a given video. Current contemporary SOTA methods are depen-
dent on supervision from human labels by adopting CNN image features [47,48]
or RNN temporal modeling [49]. For video segmentation without supervision,
saliency estimation based on 2D optical flow is often used to discover and track
the objects [50–52], and a long trajectory [53,54] of the moving objects needs
to be considered. However, salient object is not necessary to be the moving
object in our case. Moreover, we perform segmentation using only two consec-
utive images with awareness of 3D motion, which has not been considered in
previous approaches.

3 Geometry Learning via Holistic 3D Motion
Understanding

As discussed in Sect. 1, a major drawback of previous approach [2,4] is ignorance
of moving object. In the following, we will discuss the holistic understanding
following the rule of geometry (Sect. 3.1). Then, we elaborate how we combine
stereo and monocular images with aware of 3D motion, and the losses used to
train our depth networks.

3.1 Scene Geometry with 3D Motion Understanding

Given a target view image It and a source view image Is, suppose their cor-
responding depth maps are Dt,Ds, their relative camera transformation is
Tt→s = [R|t] ∈ SE(3) from It to Is, and a per-pixel 3D motion map of dynamic
moving objects Md relative to the world. For a pixel pt in It, the corresponding
pixel ps in Is can be found through perspective projection, i.e. ps ∼ π(pt),

h(ps) = V(pt)
K

D(ps)
[Tt→sD(pt)K−1h(pt) + Md(pt)], (1)

where D(pt) is the depth value of the target view at image coordinate pt, and K
is the intrinsic parameters of the camera, h(pt) is the homogeneous coordinate
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Fig. 2. Pipeline of our framework. Given a pair of consecutive frames, i.e. target image
It and source image Is, a FlowNet is used to predict optical flow F from It to Is. Notice
here FlowNet is not the one in [55]. A MotionNet predicts their relative camera pose
Tt→s and a mask for moving objects S. A single view DepthNet estimates their depths
Dt and Ds independently. All the informations are put into our Holistic 3D Motion
Parser (HMP), which produce an occlusion mask, 3D motion maps for rigid background
Ms and dynamic objects Md. Finally, we apply corresponding loss over each of them.

of pt. V(pt) is a visibility mask which is 1 when pt is also visible in Is, and 0
if pt is occluded or flies out of image. In this way, every pixel in It is explained
geometrically in our model, yielding a holistic 3D understanding. Then given
the corresponding pt and ps, commonly, one may synthesize a target image Ît
and compute the photometric loss ‖It(pt) − Ît(pt)‖ and use spatial transformer
network [56] for supervising the training of the networks [2].

Theoretically, given a dense matched optical flow from all available pt to ps,
when there is no non-rigid motion M, Eq. (1) is convex with respect to T and
D, and could be solved through SVD [57] as commonly used in SfM methods [6].
This supports effective training of networks in previous works without motion
modeling. In our case, M and D are two conjugate pieces of information, where
there always exists a motion that can exactly compensate the error caused by
depth. Considering matching pt and ps based on RGB could also be very noisy,
this yields an ill-posed problem with trivial solutions. Therefore, designing an
effective matching strategies, and adopting strong regularizations are necessary
to provide effective supervision for the networks, which we will elaborate later.

Unsupervised Learning of Robust Matching Network. As discussed in
Sect. 2, current unsupervised depth estimation methods [2,4,37–39] are mostly
based solely on photometric error, i.e. ‖It(pt) − Ît(pt)‖, under Lambertian
reflectance assumption and are not robust in natural scenes with lighting varia-
tions. More recently, supervision based on local structural errors, such as local
image gradient [3], and structural similarity (SSIM) [1,40,58] yields more robust
matching and shows additional improvement on depth estimation.
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Structural matching has long been a center area for computer vision or optical
flow based on SIFT [59] or HOG [60] descriptors. Most recently, unsupervised
learning of dense matching [8] using deep CNN which integrates local and global
context achieves impressive results according to the KITTI benchmark1. In our
work, we adopt the unsupervised learning pipeline of occlusion-aware optical
flow [8] and a light-weighted network architecture, i.e. PWC-Net [61], to learn a
robust matching using our training dataset. We found that although PWC-Net is
almost 10× smaller than the network of FlowNet [55] which was adopted by [8],
it produce higher matching accuracy in our unsupervised setting.

Holistic 3D Motion Parser (HMP). As described in Sect. 1, in order to
apply the supervision, we need to distinguish between the motion from rigid
background and dynamic moving objects. As illustrated in Fig. 2, we handle this
through a HMP that takes multiple informations from the networks, and outputs
the desired two motions.

Formally, four information are input to HMP: depth of both images Ds and
Dt, the learned optical flow Ft→s, the relative camera pose Tt→s and a moving
object segment mask St inside It, where the motion of rigid background Mb and
dynamic moving objects Md are computed as,

Mb(pt) = V(pt)(1 − St(pt))[Tt→sφ(pt|Dt) − φ(pt|Dt)]
Md(pt) = V(pt)St(pt)[φ(pt + Ft→s(pt)|Ds) − φ(pt|Dt)] (2)

where φ(pt|Dt) = Dt(pt)K−1h(pt) is a back projection function from 2D to 3D
space. V is the visibility mask as mentioned in Eq. (1), which could be computed
by estimating an optical flow Fs→t as presented in [8]. We refer the reader to
their original paper for further details due to the space limitation.

After HMP, the rigid and dynamic 3D motions are disentangled from the
whole 3D motion, where we could apply various supervision accordingly based
on our structural error and regularizations, which drives the learning of depth
and motion networks.

3.2 Training the Networks

In this section, we describe our loss design based on computed rigid and dynamic
3D motion from HMP. Specifically, as illustrated in Fig. 2, we adopt the network
architecture from Yang et al. [4], which includes a shared encoder and two sib-
ling decoders, estimating depth D and geometrical edge map E respectively,
and a MotionNet estimating the relative camera poses. In this work, we also
append a decoder with mirror connections in the same way with DepthNet to
the MotionNet to output a binary segment mask S of the moving objects.

Training Losses. Given background motion Mb(pt) in Eq. (2), we can directly
apply the structural matching loss by comparing it with our trained optical flow
Ft→s and the two estimated depth maps Dt,Ds (Lst in Eq. (3)). For moving

1 http://www.cvlibs.net/datasets/kitti/eval scene flow.php?benchmark=flow.

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
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objects Md(pt), we apply an edge-aware spatial smoothness loss for the motion
map similar to that in [4]. This is based on the intuition that motions belong to a
single object should be smooth in real world (Lms in Eq. (3)). Last, for St which
segments the moving object, similar to the explainability mask in [2], we avoid
trivial solutions of treating every pixel as part of moving objects by encouraging
zeros predictions inside the mask (Lvis in Eq. (3)).

In summary, the loss functions proposed in our work include,

Lst =
∑

pt

|Mb(pt) − M̂b(pt)|,
where, M̂b(pt) = V(pt)(1 − St(pt))(φ(pt + Ft→s(pt)|Ds) − φ(pt|Dt)),

Lms =
∑

pt

(||Md(pt)||2 +
∑

pn∈Npt

|M(pt) − M(pn)|κ(pt, pn|Et),

Lvis = −
∑

pt

log(1 − St(pt)) (3)

where κ(pt, pn|Et) = exp{−α maxp∈{pt,pn}(Et(p))} is the affinity between
two neighboring pixels, and Npt

is a four neighbor set of pixel pt, as defined
in [4], which also helps to learn the EdgeNet.

In addition, in order to better regularize the predicted depths, we also add
the depth normal consistency proposed in [3] for better regularization of depth
prediction with normal information, and the losses corresponding to edge-aware
depth and normal smoothness in the same way as [4], i.e. LD,LN and Le respec-
tively. We use Ldne to sum them up, and please refer to the original papers for
further details. Here, different from [4], we apply such losses for both Ds and Dt.

Strong Supervisions with Bi-directional Consistency. Although we are
able to supervise all the networks through the proposed losses in Eq. (3), we find
that the training converges slower and harder when train from scratch compared
to the original algorithm [4]. The common solution to solve this is adding a strong
supervision at the intermediate stages [62,63]. Therefore, we add a photometric
loss without motion modeling for depth and camera motion prediction, and we
apply the loss bi-directionally for both target image It and source image Is.
Formally, our bi-directional view synthesis cost is written as,

Lbi−vs=
∑

pt

s(It(pt), Ît(pt)|Dt,Tt→s, Is) +
∑

ps

s(Is(ps), Ît(ps)|Ds,Ts→t, It),

where, s(I(p), Î(p)|D,T, Is) = |I(p) − Î(p)| + β ∗ SSIM(I(p), Î(p)) (4)

where the Ît(p) is the synthesized target image given D,T, Is in the same way
with [2]. s(∗, ∗) is a similarity function which includes photometric distance and
SSIM [58], and β is a balancing parameter.

Finally, our loss functional for depth and motion supervision from a monoc-
ular video can be summarized as,

Lmono=λstLst + λmsLms + λvisLvis +
∑

l
{λdneLl

dne + λvsLl
bi−vs} (5)

where l indicates the level of image resolution, and four scales are used in the
same way with [2].
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Stereo to Solve Motion Confusion. As discussed in our introduction
(Sect. 1), reconstruction of moving objects in monocular video has projective
confusion, which is illustrated in Fig. 3. The depth map (b) is predicted with
Yang et al. [4], where the car in the front is running at the same speed and the
region is estimated to be very far. This is because when the depth is estimated
large, the car will stay at the same place in the warped image, yielding small
photometric error during training in the model. Obviously, adding motion or
smoothness as before does not solve this issue. Therefore, we have added stereo
images (which are captured at the same time) into learning the depth network to
avoid such confusion. As shown in Fig. 3 (c), the framework trained with stereo
pairs correctly figures out the depth of the moving object regions.

Fig. 3. Moving object in the scene (a) causes large depth value confusion for frame-
work trained with monocular videos, as shown in (b). This issue can be resolved by
incorporating stereo training samples into the framework (c).

Formally, when corresponding stereo image Ic is additionally available for
the target image It, we treat Ic as another source image, similar to Is, but
with known camera pose Tt→c. In this case, since there is no motion factor, we
adopt the same loss of Ldne and Lbi−vs taken Ic, It as inputs for supervising the
DepthNet. Formally, the total loss when having stereo images is,

Lmono−stereo=Lmono +
∑

l
{λdneLl

dne(Ic) + λvsLl
bi−vs(Ic)}. (6)

where Ldne(Ic) and Lbi−vs(Ic) indicate the corresponding losses which are com-
puted using stereo image Ic.

4 Experiments

In this section, we describe the datasets and evaluation metrics used in our
experiments. And then present comprehensive evaluation of our framework on
different tasks.

4.1 Implementation Details

Our framework consists of three networks: DepthNet, FlowNet and Motion-
Net. The DepthNet + MotionNet and FlowNet are first trained on KITTI 2015
dataset separately. Then DepthNet and MotionNet are further finetuned with
additional losses from HMP as in Sect. 3.
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DepthNet Architecture. A DispNet [46] like achitecture is adopted for Depth-
Net. Regular DispNet is based on an encoder-decoder design with skip connec-
tions and multi-scale side outputs. To train with stereo images, the output’s
channel for each scale is changed to 2, as in [1]. As in [4], the DepthNet has
two sibling decoders which separately output depths and object edges. To avoid
artifact grid output from decoder, the kernel size of decoder layers is set to be
4 and the input image is resized to be non-integer times of 64. All conv layers
are followed by ReLU activation except for the top output layer, where we apply
a sigmoid function to constrain the depth prediction within a reasonable range.
Batch normalization [64] is performed on all conv layers. To increase the recep-
tive field size while maintaining the number of parameters, dilated convolution
with a dilation of 2 is implemented. During training, Adam optimizer [65] is
applied with β1 = 0.9, β2 = 0.999, learning rate of 2 × 10−3 and batch size of 4.
Other hyperparameters are set as in [4].

FlowNet Architecture. A PWC-Net [61] is adopted as FlowNet. PWC-Net
is based on an encoder-decoder design with intermediate layers warping CNN
features for reconstruction. The network is optimized with Adam optimizer [65]
with β1 = 0.9, β2 = 0.999, learning rate of 1 × 10−4 for 100,000 iterations
and then 1 × 10−4 for 100,000 iterations. The batch size is set as 8 and other
hyperparameters are set as in [8].

MotionNet Architecture. The MotionNet implements the same U-net [66]
architecture as the Pose CNN in [2]. The 6-dimensional camera motion is gen-
erated after 7 conv layers and the motion mask is generated after symmetrical
deconv layers.

For end-to-end finetuning of DepthNet and MotionNet with HMP, the hyper-
parameters are set as: λst = 0.5, λms = 0.25, λvis = 0.8, λdne = 0.2, λvs = 1.0.
The trade-off weight between photometric loss and SSIM loss is set as β = 0.5.
All parameters are tuned on the validation set.

4.2 Datasets and Metrics

Extensive experiments have been conducted on three different tasks: depth esti-
mation, scene flow estimation and moving object segmentation. The results are
evaluated on the KITTI 2015 dataset, using corresponding metrics.

KITTI 2015. KITTI 2015 dataset provides videos in 200 street scenes captured
by stereo RGB cameras, with sparse depth ground truths captured by Velodyne
laser scanner. 2D flow and 3D scene flow ground truth is generated from the
ICP registration of point cloud projection. The moving object mask is provided
as a binary map to distinguish background and foreground in flow evaluation.
During training, 156 stereo videos excluding test and validation scenes are used.
The monocular training sequences are constructed with three consecutive frames
in the left view, while stereo training pairs are constructed with left and right
frame pairs, resulting in a total of 22,000 training samples.

For depth evaluation, two test splits of KITTI 2015 are proposed: the official
test set consisting of 200 images (KITTI split) and the test split proposed in
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[5] consisting of 697 images (Eigen split). The official KITTI test split provides
ground truth of better quality compared to Eigen split, where less than 5%
pixels in the input image has ground truth depth values. For better comparison
with other methods, the depth evaluation is conducted on both splits. For scene
flow and segmentation evaluation, as the flow ground truth is only provided for
KITTI split, our evaluation is conducted on the 200 images in KITTI test split.

Cityscapes. Cityscapes is a city-scene dataset captured by stereo cameras in 27
different cities. As depth ground truth is not available, Cityscapes is only used
for training and the training samples are generated from 18 stereo videos in the
training set, resulting in 34,652 samples.

Metrics. The existing metrics of depth, scene flow and segmentation have been
used for evaluation, as in [5,42] and [67]. For depth and scene flow evaluation,
we have used the code by [1] and [42] respectively. For foreground segmentation
evaluation, we implemented the evaluation metrics in [67]. The definition of
each metric used in our evaluation is specified in Table 1. In which, x∗ and x′

are ground truth and estimated results (x ∈ {d, sf}). nij is the number of pixels
of class i segmented into class j. ti is the total number of pixels in class i. ncl is
the total number of classes, which is equal to 2 in our case.

Table 1. From top row to bottom row: depth, scene flow and segmentation evaluation
metrics.

Abs Rel: 1
|D|

∑
d′∈D|d∗−d′|/d∗ Sq Rel: 1

|D|
∑

d′∈D||d∗−d′||2/d∗

RMSE:
√

1
|D|

∑
d′∈D ||d∗−d′||2 RMSE log:

√
1

|D|
∑

d′∈D||logd∗−logd′||2
D1, D2: 1

|D|
∑

d′∈D|d∗−d′| SF: 1
|SF |

∑
sf ′∈SF |sf∗−sf ′|

pixel acc.
∑

i nii∑
i ti

mean acc. 1
ncl

∑
i

nii
ti

mean IoU 1
ncl

∑
i

nii
ti+

∑
j nji+nii

f.w. IoU: 1∑
i ti

∑
i

nii
ti+

∑
j nji+nii

4.3 Depth Evaluation

Experiment Setup. The depth experiments are conducted on KITTI 2015
and Cityscapes. For KITTI test split, the given depth ground truth is used for
evaluation. For Eigen test split, synchronized Velodyne points are provided and
these sparse points are projected and serve as depth ground truth. Only pixels
with ground truth depth values are evaluated. The following evaluations are
performed to present the depth results: (1) ablation study of our approach; (2)
depth estimation performance comparison with SOTA methods.

Ablation Study. We explore the effectivness of each component in our
framework. Several variant results are generated for evaluation, which include:
(1) DepthNet trained with only monocular training sequences (Ours (mono));
(2) DepthNet trained with monocular samples and then finetuned with HMP
(Ours (mono+HMP)); (3) DepthNet without finetuning from 3D solver loss
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(Ours w/o HMP). For traning with only monocular sequences, the left and
right sequences are considered independently, thus resulting in 44,000 training
samples. The quantitative results of different variants are presented in Table 2.
Although these three variants use the same amount of data, our approach trained
with both stereo and sequential samples shows large performance boost over
using only one type of training samples, proving the effectiveness of incorpo-
rating stereo into training. With the finetuning from HMP, the performance is
further improved.

Comparison with State-of-the-Art. Following the tradition of other methods
[1,2,5], our framework is trained with two strategies: (1) trained with KITTI
data only; (2) trained with Cityscapes data and then finetuned with KITTI
data (CS+K). The maximum of depth estimation on KITTI split is capped at
80 m and the same crop as in [5] is applied during evaluation on Eigen split
(Fig. 4).

Fig. 4. Visual comparison between Godard et al. [1] and our results on KITTI test
split. The depth ground truths are interpolated and all images are reshaped for better
visualization. For depths, our results have preserved the details of objects noticeably
better (as in white circles).

Table 2 shows the comparison of ours performance and recent SOTA meth-
ods. Our approach outperforms current SOTA unsupervised methods [1,2,4,68]
on almost all metrics by a large margin when trained with KITTI data. When
trained with more data (CS+K), our method still shows the SOTA performance
on the “Abs Rel” metric. Some depth estimation visualization results are pre-
sented in Fig. 1, comparing with results from [1]. Our depth results have pre-
served the details of the scene noticeably better.

4.4 Scene Flow Evaluation

Experiment Setup. The scene flow evaluation is performed on KITTI 2015
dataset. For 200 frames pairs in KITTI test split, the depth ground truth of the
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Table 2. Monocular depth evaluation results on KITTI split (upper part) and Eigen
split (lower part). Results of [2] on KITTI test split are generated by training their
released model on KITTI dataset. All results are generated by model trained on KITTI
data only unless specially noted. “pp” denotes post processing implemented in [1].

Method Split Stereo Lower the better Higher the better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Train mean KITTI 0.398 5.519 8.632 0.405 0.587 0.764 0.880

Zhou et al. [2] 0.216 2.255 7.422 0.299 0.686 0.873 0.951

LEGO [4] 0.154 1.272 6.012 0.230 0.795 0.932 0.975

Wang et al. [37] 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Godard et al. [1] � 0.124 1.388 6.125 0.217 0.841 0.936 0.975

Ours (mono) 0.137 1.326 6.232 0.224 0.806 0.927 0.973

Ours (mono+HMP) 0.131 1.254 6.117 0.220 0.826 0.931 0.973

Ours (w/o HMP) � 0.117 1.163 6.254 0.212 0.849 0.932 0.975

Ours � 0.109 1.004 6.232 0.203 0.853 0.937 0.975

Godard et al. [1] (CS+K+pp) � 0.100 0.934 5.141 0.178 0.878 0.961 0.986

Ours (CS+K) � 0.099 0.986 6.122 0.194 0.860 0.957 0.986

Train mean Eigen 0.403 5.530 8.709 0.403 0.593 0.776 0.878

Zhou et al. [2] 0.208 1.768 6.856 0.283 0.678 0.885 0.957

UnDeepVO [38] � 0.183 1.730 6.570 0.268 - - -

LEGO [4] 0.162 1.352 6.276 0.252 0.783 0.921 0.969

Mahjourian et al. [39] 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Godard et al. [1] � 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Ours � 0.127 1.239 6.247 0.214 0.847 0.926 0.969

Godard et al. [1] (CS+K+pp) � 0.118 0.923 5.015 0.210 0.854 0.947 0.976

Ours (CS+K) � 0.114 1.074 5.836 0.208 0.856 0.939 0.976

two consecutive frames (t and t + 1) and the 2D optical flow ground truth from
frame t to frame t + 1 are provided. Following the KITTI benchmark evaluation
toolkit, the scene flow evaluation is conducted on the two depth results and
optical flow results. As the unsupervised method generates depth/disparity up to
a scale, we rescale the depth estimation by a factor to make the estimated depth
median equal to ground truth depth median.

Ablation Study. We explore the effectiveness of HMP and other loss terms by
several ablation experiments: (1)excluding the HMP module from our framework
(Ours w/o HMP); (2) DepthNet trained with monocular samples (Ours (mono)).
The scene flow evaluation results of different variants are presented in Table 3.
As the same trend in depth evaluation, both incorporating stereo examples into
training and finetuning with HMP help improve the scene flow performance.

Comparison with Other Methods. The comparison with current SOTA
scene flow methods are presented in Table 3. Note that all supervised methods
use the stereo image pairs to generate the disparity estimation during testing.
The performance of “Ours w/o HMP” is further improved with scene flow solver,
proving the capability of facilitating depth learning through optical flow in the
proposed HMP. The depth, flow and scene flow errors are visualized in Fig. 5.
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Table 3. Scene flow performances of different methods on KITTI 2015 dataset. Upper
part includes results of supervised methods and the bottom part includes unsupervised
methods

Supervision D1 D2 FL

bg fg bg+fg bg fg bg+fg bg fg bg+fg

OSF [42] Yes 4.00 8.86 4.74 5.16 17.11 6.99 6.38 20.56 8.55

ISF [43] Yes 3.55 3.94 3.61 4.86 4.72 4.84 6.36 7.31 6.50

Ours w/o HMP No 24.22 27.74 26.38 68.84 71.36 69.68 25.34 28.00 25.74

Ours(mono) No 26.12 30.27 30.54 23.94 73.85 68.47 25.34 28.00 25.74

Ours No 23.62 27.38 26.81 18.75 70.89 60.97 25.34 28.00 25.74

Fig. 5. Errors in scene flow evaluation. The left two columns show the two consecutive
frames as input. The other three columns show the error in depth, flow and scene flow
evaluation. The color code of error is following the tradition of [42].

4.5 Moving Object Segmentation

We evaluate the moving object segmentation performance to test the capability
of capturing foreground motion in our framework.

Experiment Setup. The moving object segmentation is evaluated on KITTI
2015 dataset. “Object map” ground truth is provided in this dataset to dinstin-
guish foreground and background in flow evaluation. Such dense motion mask
serve as ground truth in our segmentation evaluation. Figure 6 (second column)
shows some visualization of segmentation ground truths.

For better quantitative comparison, we propose several baseline methods to
do moving object segmentation, including: (1) Using segment mask from Motion-
Net in the same way as explainability mask of [2] with our learning pipeline
by removing HMP; (2) Compute a residual flow map by substracting 3D flow
induced by camera motion (using Tt→s,Dt,Vt) from the full 3D scene flow
(using Ft→s,Dt,Ds,Vt). Then, we apply a two-class Gaussian Mixture Model
(GMM) to fit the flow magnitude, on which do graph cut to generate the seg-
mentation results (Graphcut on residual flow). We leave the segmentation details
in supplementary material due to space limit.
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Evaluation Results. We compare our segmentation results from the motion
mask and those from the two baseline methods. As the Table 4 shows, our seg-
mentation results from the motion mask shows superior performance compared
to the masks applied in depth reconstruction or masks calculated from the scene
flow residual. Visualization examples of segmentation are presented in Fig. 6. Our
segmentation results are focused on moving object compared to the explainabil-
ity masks similar to [2], which is optimized to filter out any reconstruction error.

Table 4. Foreground moving object segmentation performance on KITTI 2015 dataset.

pixel acc. mean acc. mean IoU f.w. IoU

Explainability mask 70.32 58.24 41.95 67.56

Graphcut on residual flow 75.05 67.26 50.83 71.32

Ours 88.71 74.59 52.25 86.53

Fig. 6. Moving object segmentation results.

5 Conclusion

In this paper, we proposed a self-supervised framework for joint 3D geometry
and dense object motion learning. A novel depth estimation framework is pro-
posed to model better depth estimation and also the ego-motion. A holistic 3D
motion parser (HMP) is proposed to model the consistency between depth and
2D optical flow estimation. Such consistency is proved to be helpful for super-
vising depth learning. We conducted comprehensive experiments to present the
performance. On KITTI dataset, our approach achieves SOTA performance on
all depth, scene flow and moving object segmentation evaluations. In the future,
we would like to extend our framework to other motion video data sets con-
taining deformable and articulated non-rigid objects such as MoSeg [53] etc., in
order to make the learning as general as possible.
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13. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular slam.
In: ECCV (2014)

14. Newcombe, R.A., Lovegrove, S., Davison, A.J.: DTAM: dense tracking and map-
ping in real-time. In: ICCV (2011)

15. Dai, Y., Li, H., He, M.: A simple prior-free method for non-rigid structure-from-
motion factorization. Int. J. Comput. Vis. 107(2), 101–122 (2014)

16. Taylor, J., Jepson, A.D., Kutulakos, K.N.: Non-rigid structure from locally-rigid
motion. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2761–2768. IEEE (2010)

17. Kumar, S., Dai, Y., Li, H.: Monocular dense 3D reconstruction of a complex
dynamic scene from two perspective frames. In: ICCV (2017)

18. Kumar, S., Dai, Y., Li, H.: Multi-body non-rigid structure-from-motion. In: 2016
Fourth International Conference on 3D Vision (3DV), pp. 148–156. IEEE (2016)

19. Hoiem, D., Efros, A.A., Hebert, M.: Recovering surface layout from an image. In:
ICCV (2007)

20. Prados, E., Faugeras, O.: Shape from shading. In: Paragios, N., Chen, Y., Faugeras,
O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 375–388.
Springer, Boston (2006). https://doi.org/10.1007/0-387-28831-7 23

21. Kong, N., Black, M.J.: Intrinsic depth: improving depth transfer with intrinsic
images. In: ICCV (2015)

22. Schwing, A.G., Fidler, S., Pollefeys, M., Urtasun, R.: Box in the box: Joint 3D
layout and object reasoning from single images. In: ICCV (2013)

23. Srajer, F., Schwing, A.G., Pollefeys, M., Pajdla, T.: Match box: indoor image
matching via box-like scene estimation. In: 3DV (2014)

https://doi.org/10.1007/0-387-28831-7_23


Every Pixel Counts: Unsupervised Geometry Learning 707

24. Wang, X., Fouhey, D., Gupta, A.: Designing deep networks for surface normal
estimation. In: CVPR (2015)

25. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture. In: ICCV (2015)

26. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth
prediction with fully convolutional residual networks. In: 2016 Fourth International
Conference on 3D Vision (3DV), pp. 239–248. IEEE (2016)

27. Li, J., Klein, R., Yao, A.: A two-streamed network for estimating fine-scaled depth
maps from single RGB images. In: ICCV (2017)

28. Karsch, K., Liu, C., Kang, S.B.: Depth transfer: depth extraction from video using
non-parametric sampling. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2144–
2158 (2014)

29. Ladicky, L., Shi, J., Pollefeys, M.: Pulling things out of perspective. In: CVPR
(2014)
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