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Abstract. We propose a novel motion segmentation formulation over
spatio-temporal depth images obtained from stereo sequences that seg-
ments multiple motion models in the scene in an unsupervised manner.
The motion segmentation is obtained at frame rates that compete with
the speed of the stereo depth computation. This is possible due to a
decoupling framework that first delineates spatial clusters and subse-
quently assigns motion labels to each of these cluster with analysis of
a novel motion graph model. A principled computation of the weights
of the motion graph that signifies the relative shear and stretch between
possible clusters lends itself to a high fidelity segmentation of the motion
models in the scene.
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1 Introduction

Motion Segmentation in cluttered and unstructured environments is challenging
but pivotal for various situations that arise in autonomous driving and driver
assistive systems. To do this in real-time further complicates the problem. This
paper reveals a fast spatio-temporal spectral clustering formulation over stereo
depths that is able to provide for both high fidelity and high rate motion seg-
mentation on challenging native road scenes. An illustration of the output from
the proposed framework can be seen in Fig. 1.

The paper contributes through a robust obstacle detection algorithm, which
can work in highly cluttered and unstructured environment. And a decoupled
formulation, where spatial clustering is performed at dense point level to recover
object level clusters that are then made temporally coherent across a subset of
consecutive frames using aggregated optical tracks. Subsequently, these clusters
are modeled as nodes of a motion graph where edge weights capture motion
similarity among them. Finally, a spectral clustering is invoked on motion graph
to recover motion models to segment moving obstacles from stationary.
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Fig. 1. (Top) Input stereo sequence, (Bottom) output of our motion segmentation green
represents moving/dynamic and red represents static objects (Color figure online)

It is important to note that the proposed method is independent of the
label/model priors while capable of incorporating such priors when they become
available. It’s fidelity is not contingent on ego motion compensation or high
accuracy LIDAR scan data or the availability of object and semantic priors.
Semantic segmentation of these scenes itself is a challenging task due to various
different types of vehicles which can be found on Indian roads. This way it
contrasts itself with previous methods [1–5], a review of those is presented in the
subsequent section. Comparative results vis-a-vis methods that segment motion
based on stereo [1,2] showcases the performance gain due to the present method.
The paper also proposes a framework to ground-truth motion models and a
metric to evaluate performance based on such a ground truth.

2 Prior Art

Sensing the environment around the host vehicle is an essential task of
autonomous driving systems and advanced driver assistance systems in dynamic
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environments. It forms the basis of many kinds of high-level tasks such as situa-
tion analysis, collision avoidance and path planning. Disparity based algorithm
work directly on the output of stereo cameras. The V-disparity approach [6]
is widely to detect road surface. This method was extended by U-V disparity
method, introduced in [7], to detect planar obstacles alongside road. Both these
methods perform poorly in cluttered scenes like Figs. 3(a) and 5(a). To overcome
this issue [6] proposed a 2-step solution to the problem of obstacle detection. In
the first step they detect larger obstacles using density, subsequently they fit
a road surface model on the remaining pointcloud to detect remaining obsta-
cles. We improve this by using more robust variance feature instead of density
and using a simpler road model which performs better in cluttered environment
(Fig. 2).

Motion segmentationStereo images

Object 
Detector

Cluster 
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Motion 
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Fig. 2. The proposed pipeline for motion segmentation

Once reliable obstacles are detected, classifying moving obstacles becomes
imperative for path planning for autonomous driving. Among many existing
ways of classifying motion segmentation methods, for the purpose of this work,
we review it based on the sensing modality: monocular methods, stereo based
methods and LIDAR based approaches. Existing literature has large collection of
monocular motion segmentation methods [4]. Most monocular motion segmen-
tation approaches fall in three categories: subspace clustering methods [8–12],
gestalt and motion coherence based methods and optical flow cum multi view
geometry based methods [5,13–15]. The results of subspace clustering methods
do not handle degeneracies such as when the camera motion follows the object
typically encountered in on-road scenes wherein the motion model of the moving
object lies in the same subspace as those of stationary ones. The results of such
methods are typically restricted to Hopkins dataset where the degenerate scenes
are not prominent. While few such as SCC [10] and [12] are able to handle the
degenerate scenarios, but are limited by the prior input for number of motion
models in the scene or dimensionality of motion subspaces.

Purely optical flow based methods suffer from edge effects and are erroneous
in the presence of dominant flow, while the fidelity of geometry based results rely
on accurate estimation of camera motion or the Fundamental matrix between
scenes. Considering these limitations, recent work in [4] came up with a method
based on relative shear and stretch cues as a means of combining over-segmented
affine motion models into the right number of motion labels. Nonetheless, this
method relies on the stability of long term tracks (over 16 frames) and is not fast
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enough for a live outdoor application. With the advent of deep learning, recur-
rent neural networks (RNN) and two-stream fusion networks for joint learning of
semantic and motion features have shown benchmark results for on-road driving
scenes [16–18]. The deep-learning approaches however either suffer from model
dependency or large running time ranging from seconds to few minutes and high
computational costs involved. There are also methods based on dense LIDAR
point clouds that segment motion such as in [3]. The method uses SHOT descrip-
tors for associating point clouds, which could prove expensive for obtaining an
immediate segmentation of the frames.

Fig. 3. Obstacle detection in dense traffic: (a) Input image. (b) and (c) are the calculate
mean and variance for the pointcloud in birds eye view, d) Detected obstacles (red)
and free space (green) (Color figure online)

The closest methods to the proposed framework are [1,2], and both use stereo
depth as the primary sensing modality. While [1] segments based on clusters
formed from sparse scene flow tracks, [2] uses motion potentials formed out of the
divergence between predicted and obtained optical flow as the guiding principle
for segmentation. The proposed method differs from both of them in terms of
its philosophy by determining the number of motion models than just detecting
motion regions. In terms of details, it incorporates previously segmented motion
models to enhance the accuracy of the subsequent clusters, while the weights of
the network are governed by the inter cluster shear and stretch cues. Since the
previous methods [1,2] detect motion but not the models of motion, we improvise
our method to a motion segmentation framework and compare and contrast the
advantages with respect to the prior work. While comparing with [2] we do not
use the semantic cues used there but limit the comparison only based on motion
cues based on flow divergence.

3 Method

We propose motion segmentation problem as spatio-temporal graph clustering
similar to work done in [19] by filtering points belonging to the foreground,
clustering them together spatially. We improve the foreground filtering to make
it more robust in unstructured scenes. These clusters are then tracked to cre-
ate a motion graph and spectral clustering is performed on this motion graph.
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In order to perform motion segmentation i.e segmenting moving and static
objects we add a reference node in the motion graph which mimics the motion
of a static object, The cluster containing this reference node will be marked as
static.

3.1 Obstacle Detection

For the task of motion segmentation we need to first segment obstacles from
drivable area. The task of obstacle detection with stereo pointcloud challenging
is because of the inherent noise in stereo disparity. Dense traffic of Indian road
further complicates this problem. We solve this problem by a 2-step method for
obstacle detection similar to [6]. We modified the algorithm to work in Indian
traffic conditions.

We project the Image to the 3D space using disparity maps and divide the
orthogonal 2D space relative to each frame into grids. We compute mean and
variance Fig. 3(b, c) of 3D points belonging to each grid location and threshold
it to select a grid location as belonging to foreground objects.

In the next step we remove these points from the mean map Fig. 3(c) and
fit a surface to it. The removal of high variance grid cells is critical for robust
ground fitting even in dense traffic scenes where only a small portion of ground
is visible.

We use a road model that allows quadratic variations of the height (Y) with
the depth and linear with the horizontal displacement. This performs better than
the road model described in [19] for detection of small curbs on the side of the
road.

Equation (1) shows the algebraic form of the road model, by defining the
height value Y with respect to Z and X.

Y = aX + bZ + b′Z2 + c (1)

Fitting the quadratic surface to a set of n 3D points involves minimizing an
error function. The error function S represents the sum of squared errors along
the height:

S =
n∑

i=1

(Yi − Ȳi)
2 (2)

where Yi is the height of the 3D point i and Ȳi is the height of the surface at
coordinates (Xi, Zi). By replacing (1) into (3), the function S is obtained, where
the unknowns are a, b, b, and c:

S =

n∑

i=1

(Yi − (aX + bZ + b′Z2 + c))2 (3)

At minimum value the partial derivatives with respect to unknowns would
be zero. In matrix form
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Equation (4) has 4 equation and four variables. We solve this using Gaussian
elimination method. The estimation of road surface is done using RANSAC
algorithm which gives us better fitting road surface in presence of noise. We use
M points from the pointcloud to fit the surface, these are selected at random.
Using more than the minimum required points to fit the surface gives us faster
convergence.

3.2 Spatial Grouping

To cluster 2D points that are obtained by foreground filtering on orthographic
projection of 3D points recovered from depth estimation performed over video
frames [20,21]. We adopt DBSCAN [22] for spatial clustering as it is an unsu-
pervised density based clustering technique. Let F1, · · · ,Fτ be the set of τ
number of frames in a given video. For any frame F l (1 ≤ l ≤ τ), let Xl =
[xl

1,x
l
2, · · · ,xl

n] be the set of selected n 2D points (pixels) in the image plane
(i.e., x ∈ R

2) that belong to foreground after filtering. Let Zl = [zl
1, z

l
2, · · · , zl

n]
and Yl = [yl

1,y
l
2, · · · ,yl

n] be the respective 3D points (z ∈ R
3) and their 2D

projection on orthographic plane (y ∈ R
2). We propose to incorporate prior in

order to improve the performance of DBSCAN. These priors are obtained by
motion model recovered in previous frame and projected to the current frame
using the dense optical flow. The prior Mŷl

i
is motion cluster to which pixel ŷi

belonged in the previous frame. DBSCAN clustering by modifying the Euclidean
distance metric as follows:

Dist(ŷl
i, ŷ

l
j) = β ||ŷl

i, ŷ
l
j || + (1 − β) |Mŷl

i
, Mŷl

j)
| (5)

if Mŷl
i

== Mŷl
i
, |Mŷl

i
, Mŷl

j)
| = 0 else |Mŷl

i
, Mŷl

j)
| = 1 (6)

Input Image Mean Centers Motion segmentation

Ft Ft-1 Ft-2

Fig. 4. Change of mean positions in orthographic space of clusters. Note how the
postion cluster 1 (green) changes with respect to the other two clusters, this change
is captured by the motion graph which leads to motion segmentation. (Color figure
online)
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Let Ot = [Ot
1, · · · ,Ot

cl
] be the cl number of clusters obtained by spatial cluster-

ing of ̂Yt in frame F t. Here, Ol
i ∈ R

2 is the mean vector computed over all 2D
points belonging to ith cluster. We interpret these clusters as individual objects
present in the scene and hence call them object level clusters.

3.3 Spatio-Temporal (s-t) Graph Construction

1. Cluster Tracking: To construct a motion graph we track the the spatially
clustered objects using optical flow. 2D image Points belonging to each cluster
(spatial cluster) in frame are mapped to 2D image points in the next frame
using dense optical flow. We track and keep only the points whose tracks are
available in more than half number of frames of the window. These common
points are then projected in the 3D space and used to calculate the mean
spatial position of the object in the 3D space. As new points may be added
or subtracted from the cluster across frames which may change the motion of
the mean to something different than the actual motion of the object. Using
common points makes mean position of objects more stable and provides an
honest motion of that cluster across frames (Fig. 4).

2. Creating Motion Graph: We now construct the motion graph ̂W over p
frames. each node in the motion graph is represented as pair of the object
level clusters. Let motion graph is represented as ̂Gt = {̂Vt, ̂Et, ̂Wt}, and
each v̂t

i ∈ ̂Vt represents the motion of object center between the frame t
and t−1. v̂t

i = {Ot
i,O

t−1
i }. Every pair of nodes (v̂t

i , v̂
t
j) will be connected

by respective edge êt
i,j ∈ ̂Et with a positive valued weight wt

i,j capturing the
motion similarity

wt
i,j = exp

(

−
(

d2

σm

)

−
(

d2θ
σθ

)

)

(7)

d =
∥

∥vt
i − vt

j

∥

∥ −
∥

∥vt−1
i − vt−1

j

∥

∥ (8)

dθ = tan−1
(

vt
i ,v

t
j

)

− tan−1
(

vt−1
i ,vt−1

j

)

(9)

Thus, for every pair of consecutive frames F t,F t−1, we would recover a
motion graph ̂Gt. We propose to combine (p − 1) such graphs to form a
single motion graph ̂G across frames F t, · · · F t−p where binary edges between
v̂t

i , v̂
t−1
i are assigned using the cluster level tracks.

3.4 Motion Segmentation

Spectral clustering [23] is a popular unsupervised graph clustering technique. The
key idea in spectral clustering is to embed the graph by projecting each node into
Euclidean space spanned by the graph Laplacian eigenvectors. Interestingly, the
Euclidean distance in embedding space approximates the average connectivity
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Fig. 5. Obstacle detection on Indian roads: (a) Cluttered scene with occluded ground.
(b) Pedestrians crossing road. (c) Small curbs, (d–f) Obstacle detection result, detected
obstacles (red) and free space (green) (Color figure online)

on graph and therefore graph nodes that are strongly connected by paths of
multiple lengths will be projected much closer and nodes that are relatively far
away in connectivity space will be projected much farther. We add a pseudo
static node in the motion graph, which behaves as an static object in the 3D
world space. This node will act as the reference for labeling the cluster to which
this node is assigned as static.

1. Pseudo Static Node: Visual odometry provides the rotation R(3 × 3
matrix) and translation T (3 × 1 matrix) of the camera mounted on the ego
vehicle between frames F t and F t−1. We use libviso [24] to get R, T and use
it to model the motion of static objects. Any static object in camera frame
(as seen in 3D reconstruction by the ego vehicle’s camera) will follow inverse
of ego vehicle’s motion in world frame.
We model our pseudo static node’s motion between frames F t and F t−1 as
seen by the ego vehicle’s camera as X ′ - X , where X is the position of pseudo
static node in frame F t−1 and X ′ is the position in frame F t. For the first
frame X is initialized as {0, 0, 0, 1}T in homogeneous co-ordinates and X ′ is
defined as

X ′ =
[

R T
0 1

]−1

. X

similarly for each frame we calculate the position X t and these tracks are then
added to the motion graph. We calculate the motion of the static node inde-
pendently for each window because the motion graph formulation depends
on relative motion between cluster rather than actual position of the cluster.

2. Graph Spectral clustering: Given a weighted adjacency matrix ̂W of a
motion graph, the un-normalized graph Laplacian matrix L is derived as:
L = D − ̂W, where D is the diagonal degree matrix of the graph with
Di,i =

∑n
j=1

̂Wij . The K-dimensional Laplacian embedding of graph nodes is
obtained using the K eigenvectors of the graph Laplacian matrix. As stated
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earlier, spectral clustering involves selecting a subset of K Laplacian eigenvec-
tors (corresponding to smallest non-zero eigenvalues) and employing K-means
clustering in the embedding space to recover K clusters. The K is obtained
from eigen gap analysis after getting the K clusters we mark the cluster con-
taining the pseudo static node as static cluster and any node associated with
this cluster is labeled as static. All the remaining motion models are consid-
ered as dynamic.

Fig. 6. Qualitative analysis of our method on indian sequences.

4 Implementation and Experiments

4.1 Experiments

We evaluate the proposed method on highly dynamic native sequences collected
by us. The sequences contains dense traffic scenes and a wide variety of distinct
objects/obstacles which have an even more diverse motion. Our method is able
detect Fig. 5 and segment out distinct objects as moving or stationery as seen
Fig. 6(a) where a large part of image is occupied by a moving bus which disturbs
the prediction of visual odometry but our method still able to segment out the
two buses as static and dynamic correctly. Figure 6(b) shows that non standard
objects like bikes , pedestrians are correctly segmented as stationery and Fig. 6(c)
shows that the method works even without any static reference apart from the
pseudo static node and segments all the moving objects as dynamic. In Fig. 7(a),
(b) we show that our method is able to segment the stationary cars correctly and
in Fig. 7(c) it is able so detect and distinguish between walking and stationary
pedestrians.

4.2 Implementation

The method was implemented in C++ and tested on an intel i7, 3.0 GHz proces-
sor. We found that using a window size of 3 gave us the best trade off between
motion segmentation accuracy and time taken per frame. Our approach takes
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around 180 ms per frame for motion segmentation. For the motion graph con-
struction we used σ1 = 0.01 and σ2 = 0.04. The dataset was collected using a
ZED Stereo Camera with baseline of 12 cm at 30 fps (Table 1 and Fig. 8).

Fig. 7. Note here major part of the image is occupied by objects which makes object
detection difficult and subsequently makes motion segmentation difficult

Table 1. Quantitative motion segmentation evaluation of our proposed approach
against SCENE-M [1] , FLOW-M [2] and SSD - M [19] with different priors

Method Motion accuracy(%)

SCENE-M [1] 72.51

FLOW-M [2] + DIS [25] + SGBM [20] 61.57

FLOW-M [2] + DIS [25] + BM [21] 62.73

FLOW-M [2] + DeepFlow [26] + BM [20] 67.38

FLOW-M [2] + DeepFlow [26] + SGBM [21] 69.11

Ours 81.03

Fig. 8. Qualitative evaluation on indian on-road sequences
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5 Conclusions

This paper proposed a method to segment motion through spectral decomposi-
tion. We make use of the motion model clustering framework described in [19]
and adapt it to perform motion segmentation in unstructured Indian scenes. We
propose our novel object detector which works even with dense traffic where
very less ground plane is visible thus providing accurate objects for tracking and
Spectral clustering. Using visual odometry as a reference static node we are suc-
cessfully able to perform motion segmentation. The method works even without
accurate visual odometry because spectral clustering projects the pseudo static
node in euclidean space where it will be nearer to ground truth static motion
model thus making it robust in highly dynamic and diverse conditions.

Acknowledgement. The work described in this paper is supported by MathWorks.
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necessarily that of the funding bodies.
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