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Abstract. Understanding 3D semantics of the surrounding objects is
critically important and a challenging requirement from the safety per-
spective of autonomous driving. We present a localization prioritized
approach for effectively localizing the position of the object in the 3D
world and fit a complete 3D box around it. Our method requires a single
image and performs both 2D and 3D detection in an end to end fashion.
Estimating depth of an object from a monocular image is not as gen-
eralizable as pose and dimensions. Hence, we approach this problem by
effectively localizing the projection of the center of bottom face of 3D
bounding box (CBF) to the image. Later in our post processing stage,
we use a look up table based approach to reproject the CBF in the 3D
world. This stage is a single time setup and simple enough to be deployed
in fixed map communities where we can store complete knowledge about
the ground plane. The object’s dimension and pose are predicted in mul-
titask fashion using a shared set of features. Experiments show that our
method is able to produce smooth tracks for surround objects and out-
performs existing image based approaches in 3D localization.

Keywords: Single stage 3D object detection
Inverse perspective mapping · Effective near object localization

1 Introduction

Scene understanding is among the critical safety requirements to make an
autonomous system learn and adapt based on his interactions with the sur-
roundings. Works like [16] talk about the overall signal to semantics for surround
analysis. [15] and [17] present complete vision based surround understanding sys-
tems. Taking inspiration from these works, our work proposes a complete vision
based solution for estimating the location, dimension and pose of the surround-
ing objects. Complete 3D knowledge of the surround vehicles contributes to
efficient path planning and tracking for autonomous systems. 3D object detec-
tion involves 9 degrees of freedom accumulated as pose, dimensions and location.
In normal driving scenarios, we assume no roll and pitch of the objects and the
visual yaw fluctuates around 0◦, ±90◦ and 180◦. Also, the dimensions of on road
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objects like cars are highly invariant and have a high kurtosis. Effectively local-
izing the position of the object in 3D world become much more important for
good 3D object detection.

Fig. 1. Illustration of proposed approach: We train a detector to predict the keypoint
(green circle) that would result in the desired 3D location after inverse perspective
mapping (IPM). This is in contrast to traditional approaches where the bottom center
of the 2D detection box (red circle) would be used to carry out the IPM. (Cropped
image used from [3]) (Color figure online)

Most of the works in the domain of learning 3D semantics use expensive
LiDAR systems to learn object proposals like [2] and [20]. In this work, we just
use an input from a single camera and estimate the 3D location of the surround
objects. We tackle the object localization by first estimating the projection of
the center of the bottom face (CBF) on the image along with other parameters
in an end to end fashion. Recent advances in the field of object detection can be
broadly categorized into two stage and single stage architectures. The two stage
architectures involve a pooling stage which takes input from the proposal network
for all regions having the probability of an object. The detection architectures
are further extended as in [5] to perfrom keypoint and instance mask prediction.
On the other hand, architectures like [8,9,13] present a mechanism to learn the
posterior distribution of each class given region in the image in a single stage. We
take the inspiration from the success of these approaches and consider the 2D
projection of the center of the bottom face as a keypoint. In driving scenarios,
the position of this keypoint fluctuates a lot when the objects are in a certain
range of the ego vehicle. Hence we focus on developing an efficient estimation
scheme which prioritizes on localizing this keypoint against other learning tasks
in the network.

All object detection architectures use anchors of different scales and ratios
which are regressed over the whole feature map at different levels. The anchors
are labeled as positive if they overlap above a threshold with the ground truth
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location. Positive anchors are regressed to their corresponding ground truth
match. The same regression approach can be applied for locating the projec-
tion of the 3D bounding box’s center on the image plane which we refer as CBF
in our work. However instead of creating a separate regression head for CBF, we
change the anchor marking scheme to prioritize it’s learning. This scheme reduces
the total number of positive samples which might lead to heavy class imbalance.
To avoid that, we use Focal loss [8] which helps in modulating the loss perfectly
between the negative and positive examples. Our experiments show that change
in anchor marking scheme does not effect the 2D detection task. Our modifi-
cation implicitly helps in classifying those locations on the feature map which
are close to the center projection. Hence, the network does all the task learning
with reference to the keypoint’s location which in our case is the projection of
bottom face’s center to the image plane.

Our main contributions presented in this paper can be summarized as follows
- (1) We approach the 3D bounding box learning task in an end to end fashion
and propose a complete image based solution. (2) We modify the single stage
detection architecture to prioritize learning based on the keypoint location. (3)
We demonstrate an alternative approach to traditional approaches which per-
form IPM (Inverse Perspective Mapping) on the center of the bottom edge of the
2D bounding box to find the corresponding location in the world coordinates.
(4) We present a look up table based approach for reprojecting the center to the
3D world.

2 Related Research

We highlight some representative works in the 3D Object Detection in
Autonomous Driving using different sensor modalities. Most approaches use
depth sensors like LiDAR or a stereo setup. Chen et al. [2] learn proposals
from the bird eye view of the LiDAR point cloud and use the corresponding
region proposal in the image and the LiDAR front view to generate a pooled
feature map from both LiDAR and camera modalities. The final 3D box regres-
sion and multi-class classification is performed after series of fusion operations.
In [20], they distribute the complete LiDAR point cloud into voxels and perform
learning upon the voxelized feature map. Each voxel’s feature capture the local
and global semantics for all the points inside that voxel. In [11], they run a 2D
object detector over an image and seek for the LiDAR points corresponding to
each object’s frustum. Once, in the constrained LiDAR space, instance segmen-
tation of 3D points is performed as done in [12]. All these techniques either learn
proposals in the depth space or use it for post analysis. On the other hand, our
approach just uses a single image and encourages a very cheap solution which
can be deployed for near range scene perception. Our approach shows a happy
marriage between Inverse Perspective Mapping(IPM) and deep network based
predictions. Hence in a fixed map environment where there is complete knowl-
edge of ground plane, our solution’s performance becomes invariant to the range
of the vehicle from the ego one.
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Previous works which do 3D object detection using images, like [1] either
rely on regressing 3D anchor boxes in the image using cues from complex fea-
tures like segmentation maps, contextual pooling and location prior from the
ground truth data. [10] learns dimensions and pose from cropped image features
and uses projective constraints to compute the translation from the ego vehicle.
They also analyzed how regressing the center of the 3D box against dimensions is
sensitive to learning accurate 3D boxes. These approaches either compute com-
plex features to regress the boxes in the 3D space or are not end to end learned.
Our work shows a simple and efficient approach to compute the localization and
a post processing stage to fit a 3D box over the object. We leverage upon works
like [7] and present an end to end learning platform for 3D object detection.

3 Monocular 3D Localization

3.1 Problem Formulation

Given a single camera image, we have to estimate the location, dimensions and
the pose of the all the objects in the field of view. The center of the bottom
face of a 3D box lies on the ground plane. We use this constraint and design a
supervised learning scheme which is able to localize the projection of the center
on the image plane. Then we use the ground plane information by fitting a fixed
number of planes on the ground surface and find the best plane which has the
least inverse re-projection error. Note, this technique is only applicable for the
points which lie on the ground plane. Hence, it is different from some other works
which use the center as the intersection of the diagonals of the 3D box. We also
extended our single stage architecture to predict the dimensions and the pose to
fit a complete 3D box.

3.2 CBF Based Region Proposal

The original anchor based region proposal scheme takes as input a downscaled
feature map and at each location on the feature map, we propose anchors of
different scales and ratios. Assuming N anchors at each scale, only those anchors
are marked as positive which have an intersection more than a threshold with any
ground truth object. However we move slightly from this strategy. We project all
the 3D center of the object to the image using camera projection matrices. The
location of the projection is computed on each downscaled feature map which will
be used for supervision. As the computed location will not be an integer, we mark
all the nearest integer neighbors corresponding to that ground truth location in
each feature map. Figure 2 shows the center of the positive anchors selected
(red) and the location of the CBF projection (yellow). We perform regression
on features maps which are downscaled by a factor of 1/2i, ∀i = 3, 4, 5, 6, 7 with
respect to the original image size. Figure 3 shows how to determine the location
of the positive anchors on any feature map. If both x and y coordinates of the
center projection needs to be discretized, we choose the nearest 4 neighbors to it
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on the feature map i.e (x−1, y−1), (x+1, y+1), (x−1, y+1), (x+1, y−1). For
cases, when either x or y coordinate is integer, we choose 6 neighbors by adding
((x, y + 1), (x, y − 1)) or ((x − 1, y), (x + 1, y)) in the two cases.

Fig. 2. The red circle shows the center of positive anchors selected by our approach and
the yellow circle shows the projection of the center of the ground truth 3D bounding
box. In comparison to IOU (Intersection Over Union) based anchor labeling approach,
we label very few anchors as positive. Also depending upon the size of the anchor, IOU
of the positive anchor with the object can be less than 0.5. (Color figure online)

Fig. 3. The red dot shows the CBF projection in a feature map and the green dot
shows the nearest integer neighbors. Depending on the data type of the ground truth,
an object can not have more than six positive anchors. (Color figure online)

3.3 Regression Parameters

As described, our region proposal architecture marks only those anchors as pos-
itive which are around the CBF in the feature map. Simply classifying those
anchors as positive will not suffice the purpose of accurate prediction of 3D
translation. Hence, we attach a CBF regression head to the class body as shown
in Fig. 4. The CBF head will help in accounting the problem caused by dis-
cretization of the CBF location in the feature map. We use the same approach
as in [14] for regressing Δcbfx and Δcbfy. Apart from that we regress the Δxc,
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Δyc, Δw, Δl for estimating the center and the dimensions of the 2D bounding
box. As learning progresses, the classification head will learn to heat up only
around the CBF location in the feature map. The shared pool of features learnt
by the localization and the classification body can also be used to learn all the
parameters for estimating an accurate 3D bounding box. Hence, we attach pre-
diction heads for dimension and yaw in each prediction blob as shown in Fig. 4.
For the classification head, we used the focal loss [8] which is excellent in han-
dling the class imbalance between the positive and negative samples. Handling
this imbalance is necessary because our location based anchor marking app-
roach reduces the number of positive anchors per object. The regression targets
for CBF and location head are learnt using Smooth-L1 loss, as in [4]. The regres-
sion loss is only computed for the positive anchors. Because of our new region
proposal approach, we decrease the positive IOU threshold from 0.5, (as used
in most of the cases) to 0.2. Anchors having a non zero IOU less than 0.2 are
ignored while back propagation. Hence, the negative examples in our case will
also include those anchors which are having a large overlap with the object of
interest. The dimension head estimates the deviation from the mean dimensions
of the dataset. This makes the learning easier because gradients will not be fluc-
tuating heavily at the start of the training. The mean dimension (l,w,h) of cars
in KITTI dataset is (3.88, 1.63, 1.52) in meters. We use multibin loss to predict
the camera yaw using 2 bins for classification, (−π, 0) and (0, π). Camera yaw
can be defined as the angle made by the camera axis of the surround object with
the light ray from ego camera. The overall loss function for all the predictions
can be written as:-

L = Lloc + α · Lclass + β · Lcbf + γ · Ldim + Lθ (1)

Lθ = Lθclass
+ Lθreg

(2)

We experiment with different weights for learning different tasks simultaneously.
From our observations, using large weights during the start diverges the training.
Hence, for the first 10 epochs, we use the same weight for all the tasks and
eventually put α, β and γ to 8, 8 and 2 respectively. All the loss functions are
formulated as follows:-

Lloc = SmoothL1(tx, tx∗ , ty, ty∗ , tw, tw∗ , th, th∗) (3)

LCBF = SmoothL1(tCBF , tCBF ∗) (4)

Ldim = 1/n
∑

(d − d∗)2 (5)

Lθclass
= SoftmaxLoss (6)

Lθreg
= 1/nbins((cosθ − cosθ∗)2 + (sinθ − sinθ∗)2) (7)
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Fig. 4. Single stage multi-task learning framework for 3D bounding box estimation.
Feature pyramid with resnet backbone is used to extract the features for all the pre-
diction blobs. Each feature pyramid level predicts the location, dimension and pose of
the object.

3.4 IPM Based Projection

The proposed network is capable to predict accurate location of the center pro-
jection on the image (CBF). Now we present a simple approach to map each
CBF prediction to it’s corresponding 3D location. The center of the 3D Box lies
on the ground plane which allows approaches like Inverse Perspective Mapping
to be applicable in our case. However instead of learning the transformation from
ground plane to the image plane, we use a look-up table based approach which
is easily extendable to more than one transformation. Multiple transformations
will not restrict vehicles at different ranges to lie on a single ground plane. Also,
the complete pipeline for reprojection of CBF is a one time setup. We use the
ground LiDAR points for each scene in KITTI to kick start this one time setup.
RANSAC is used to fit multiple planes to a given set of laser points. Upon a
fixed 2D mesh grid, each plane equation will provide a different depth value. The
2D mesh grid includes points for which X ranges from 0 to 100 m and Y ranges
from −40 to 40 m at a resolution of 0.01 m. Each 3D location is then projected
to the image and stored in a separate KD-Tree for each plane. Also, we store
the corresponding 3D location for each 2D location on the image. For each CBF
prediction, we query all the KD-Trees to find the best possible solution. The 3D
coordinates of the nearest neighbour are looked in the corresponding look up
table and used as the center of the 3D box. The complete setup is summarized
in the algorithm below:
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Algorithm 1. IPM Setup Algorithm
1: procedure SetupIPM(ground pts, tf img 3d) � Returns possible ground planes
2: ground planes = RANSAC(ground pts)
3: mesh 2d ← get 2d mesh(xmin, xmax, ymin, ymax, xres, yres)
4: i ← 0
5: for all plane ∈ ground planes do
6: pts 3d[i] = get lidar mesh(plane, xmin, xmax, xres, ymin, ymax, yres)
7: pts 2d[i] = tf img 3d.project(mesh 3d[i])
8: kd trees[i] = KDTREE(pts 2d[i])
9: i ← i + 1

10: end for
11: return kd trees, pts 3d, pts 2d
12: end procedure

3.5 Implementation

The complete architectural flow is shown in Fig. 4. We use the ResNet body [6]
as our basenet and use feature pyramid as proposed in [7] to construct multi-
scale feature maps. As shown in the architecture, each lower level of pyramid is
formed by bi-linearly upsampling the upper level and adding the corresponding
block’s output from the basenet body. Each pyramid level is used to learn objects
at different scales. Therefore, we chose anchor boxes of different sizes keeping
number of aspect ratios to be constant at each level. We pull feature maps from
five levels and use anchors boxes with sizes (32 × 32, 64 × 64, 128 × 128, 256 ×
256, 512×512) corresponding to each level. Anchor boxes are further changed to
following aspect ratios (1, 1/2, 2/1) at each level. The ResNet body is initialized
with pretrained imagenet weights.

We use KITTI’s 3D object detection dataset [3] for the training. The input
resolution of the training data set is 1242 × 375, which is resized by changing
the maximum dimension to 1024 keeping the aspect ratio constant. As different
object scales are learnt efficiently using feature pyramid networks, we kept the
input batch size as constant for entire training process. The KITTI training
labels contain the translation for each labelled object which is transformed to the
image using the LiDAR to camera and the rectified image projection matrices.
We pad the image with zeros to take into account the cases where the CBF
lies outside the image plane. We split the KITTI training data as proposed in
[18] by ensuring that the same video sequence is not used in both training and
validation set. The network is trained end to end with a batch size of 4 for 80
epochs. We use constant learning rate of 0.001 with a momentum of 0.9. Weight
decay of 0.0001 is used to regularize the weights at each training step. During
inference, the network will classify the regions surrounding the CBF projection
as positive. We perform Non-Maximum Suppression (NMS) on the 2D bounding
boxes by sorting the box predictions with the classification score. We use a
NMS threshold of 0.3 and classification threshold of 0.5 during evaluation. The
complete implementation can be summarized in an algorithm as follows.
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Algorithm 2. Our Monocular 3D-BBOX Algorithm
1: procedure get3DBBOX(img, kd trees, meshes 3d)

2: loc preds, cls preds, cbf preds, dim preds, yaw preds ← net(image)
3: bbox 2d, scores ← decode(loc preds, cls preds) � 2D Location of Object in Image

4: for all pred ∈ cbf preds do

5: i ← 0

6: min dist ← ∞
7: for all tree ∈ kd trees do
8: dist, loc ← tree.query(pred)
9: if dist < min dist then

10: min dist ← dist

11: loc 3d[i] ← meshes 3d[loc]
12: end if
13: end for

14: dim l[i] ← mean l + dim preds[i][0]

15: dim w[i] ← mean w + dim preds[i][1]
16: dim h[i] ← mean h + dim preds[i][2]

17: yaw[i] ← decode multibin pred(yaw preds[i])
18: i ← i + 1

19: end for
20: return loc 3d, dim l, dim w, dim h, yaw

21: end procedure

4 Experimental Evaluation

We perform evaluation using the KITTI 3D object detection dataset. We are
focusing our experiments only on the vehicle category in the KITTI. Figure 9
shows some qualitative results from our approach on KITTI cars in our test set.

4.1 Comparison with Direct CBF Regression

In this section, we compare our approach with the one where we keep the original
IOU based region proposal methodology and add a regression head for CBF
prediction. Our proposed positive anchor marking scheme gives better results
than IOU based scheme. A variant of Chamfer Distance is used to evaluate and
compare both the approaches. For each predicted CBF projection in the image,
we find the closest ground truth correspondence to it. We also verify that the
nearest neighbor should lie inside the region formed by expanding the predicted
bounding box by factor of 1.5.

Figure 5 shows the improvement in pixel level estimation of the CBF with
our proposed approach. Figure 6 illustrates some tracks picked from KITTI
sequences. We can see how the flat ground plane assumption by IPM brings
some jitters in the tracks. Next we also show that how our learning scheme is
able to produce very similar tracks to the ones after applying IPM to ground
trajectories. Figure 8 shows some visual examples where our proposed change
helps in improving the CBF prediction.
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Fig. 5. We compare our change in the anchor labeling pipeline with IOU based anchor
labeling. The blue bar shows the average prediction error for some KITTI streams
used in the validation set. The yellow bar shows error for the case when the same
architecture is trained with IOU based labeling. (Color figure online)

4.2 Effect of Range on Localization

In this section, we analyze how the 3D localization performance starts to degrade
as the distance of the surround vehicle increases from the ego vehicle. We only
analyze objects which are within a range of 50 m from the ego vehicle and show
our performance at range interval of 10 m. Tables 1 and 2 show the 3D localiza-
tion error after applying IPM over the predicted location of the center in the
image and with/without applying IPM to the ground truth 3D location.

Table 1. 3D localization error variation with distance from ego vehicle after applying
IPM to the ground truth annotations. We use only plane for our IPM based post
processing. Multiple IPM planes can help in maintaining the same performance across
all ranges.

Range (in meters) C.D

[0–10) 0.312

[10–20) 0.668

[20–30) 1.103

[30–40) 1.582

[40–50) 2.212

4.3 Effect on the Detection Performance

The proposed change reduces the number of positive anchors in comparison to
original anchor design. Also, the positive anchors are less overlapping with the
objects because the CBF is most of the time near the bottom edge of 2D box.
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Fig. 6. We use the predicted center of the 3D box to form a complete trajectory for
all the objects seen in the KITTI clip. Better object localization will remover the
jitteriness from the tracks. Grid Resolution used is 2 × 2 m. The third column shows
the trajectories formed using our approach. They are quite comparable to the ones in
the second column which is formed after applying IPM on ground truth location and
are much smoother than ones in the fourth column.

Fig. 7. ROC curve at IOU threshold of 0.5

Table 2. 3D localization error variation with distance from ego vehicle without apply-
ing IPM to the ground truth annotations. After comparison from Table 1, we can say
that localization of the center on image plane is perfect and can be improved by using
multiple IPM planes and better ground plane information.

Range (in meters) C.D

[0–10) 0.454

[10–20) 1.446

[20–30) 2.358

[30–40) 4.532

[40–50) 7.823
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Fig. 8. Illustration showing the improvements in pixel error (increase in concentric
overlap) with the proposed approach. The red circles are the ground truth and yellow
circles are the predictions. All circles have a radius of 5 pixels (Color figure online)

Table 3. Car detection results on the KITTI test set

Benchmark Easy Moderate Hard

Car (detection) 79.87% 64.98% 49.31%

The results from the validation set on KITTI shows that our new design does
not hamper the 2D localization. Figure 7 shows the ROC curve for the same.

As our main motivation was to analyze the quality of 3D bounding box,
we ignored those samples which are heavily occluded and truncated from our
training set. On the KITTI test dataset, we get reasonable recall at all dis-
tance ranges. Table 3 shows results obtained on KITTI test set for car detection.
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Fig. 9. Illustration of the 2D detection boxes and the corresponding 3D projections
estimated by our proposed approach.

Further improvements in the MAP can be obtained after performing padding on
the image and including all truncated cases in the training.

4.4 3D Bounding Box Evaluation

To evaluate the accuracy of the predicted 3D bounding box, we compute the
3D Intersection over Union (IOU) and do a comparative analysis over surround
objects from the ego vehicle. For objects which are in the range of [0–10] m, a
good fitted 3D bounding box provides good scene understanding for near range
perception activities. We compare our approach against [10] which also present a
complete image based solution for 3D box estimation. In [10], first a 2D detector
is ran over the image to obtain all the detections, whereas in contrast to that
our approach learns the complete task of detection, 3D localization, orientation
and dimension estimation in single step. Hence our evaluation is not variant
to the performance of any component in our pipeline. Also, we evaluate the
Average Orientation Similarity for KITTI Cars as shown in Table 4. The AOS
score computes the cosine difference of the predicted yaw with the ground truth
yaw and averages this over recall steps. We emulate KITTI’s 3D bounding box
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overlap strategy to compute the 3D IOU in our analysis. 3D recall at different
ranges depends on the training samples which we include during training our
architecture. On the other hand [10] are computing the mean 3D IOU after
obtaining the cropped region from the 2D detector. Hence, even currently at
lower recall from other approaches we are still able to outperform or match
the 3D IOU across all distance ranges, as shown in Table 5. The recall of our
approach for different distance ranges are shown in Table 6.

Table 4. Car orientation results on the KITTI test set

Benchmark Easy Moderate Hard

Car (orientation) 50.26% 41.10% 32.03%

Table 5. 3D IOU variation with distance from ego vehicle

Method [0–10) [10–20) [20–30) [30–40) [40–50)

SubCNN [19] 0.210 0.175 0.125 0.075 0.020

3D Bbox [10] 0.275 0.315 0.200 0.152 0.100

Our method 0.487 0.324 0.1958 0.143 0.121

Table 6. Recall for KITTI cars across distance ranges from ego vehicle

Range (in meters) C.D

[0–10) 0.465

[10–20) 0.711

[20–30) 0.464

[30–40) 0.324

[40–50) 0.219

The large gain in 3D IOU for surround vehicles in the range of [0–10) should
be credited to our localization prioritized approach. In Table 7 we compare the
same localization error mentioned in Table 2 with the state of the art works
selected for 3D IOU comparison. The single ground plane assumption suppresses
our approach as the distance of surround vehicle increases from the ego.
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Table 7. Localization error variation with distance from ego vehicle

Method [0–10) [10–20) [20–30)

SubCNN [19] 1.449 1.887 2.437

3D Bbox [10] 1.447 1.112 1.959

Our method 0.454 1.446 2.358

5 Conclusions

In this paper, we propose a complete camera based solution to localize the sur-
rounding objects in the 3D world. Our method helps in better estimation of
the projection of the center in comparison to direct regression. For fixed map
environments, the assumption of flat ground in IPM projection is resolved by
learning a data dependent approach and choosing the best K fitting planes for
all the points on the ground plane. This is a one time setup and the number
of planes can be tuned without changing the inference pipeline. This learned
module can be extended in future for learning the object maneuver and track
prediction.
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