
Driving Data Collection Framework
Using Low Cost Hardware

Johnny Jacob(B) and Pankaj Rabha(B)

Intel Corporation, Bengaluru, India
{johnny.jacob,pankaj.rabha}@intel.com

http://www.intel.com

Abstract. Autonomous driving is driven by data. The availability of
large and diverse data set from different geographies can help in matur-
ing Autonomous driving technology faster. It is challenging to build a
system to collect driving data which is cost intensive especially in emerg-
ing economies. Paradoxically these economies have chaotic driving condi-
tions leading to a valuable data set. To address the issue of cost and scale,
we have developed a data collection framework. In this paper, we’ll dis-
cuss our motive for the framework, performance bottlenecks, a two stage
pipeline design and insights on how to tune the system to get maximum
throughput.

Keywords: Autonomous driving · Data collection · ROS · Sensing
Perception · Dataset

1 Introduction

Our motivation for a data collection framework is to enable a community based
effort to collect driving data in India. Challenges in this ecosystem are high
cost and steep learning curve of technical know-how. A low cost off-the-shelf
solution used as-is falls short to meet reliability, quality, performance and real-
time requirements. There are several proposed systems (Table 1) for real time
data collection. But, as we can see (Table 4) cost of those systems are quite
prohibitive for a developing economy. To address this challenge, we have created
a recipe for a reference hardware and the associated software framework which is
scalable in performance and minimizes initial capital investment. Also, the stack
is designed to achieve maximum throughput possible in a commercial automotive
grade system with real time constraints.

1.1 Related and Prior Work

Table 1 provides a list of related data collection frameworks. Most of the frame-
works use monocular cameras [4,9,10]. And the ones that use stereo support
a maximum of 2 instances [5]. Our goal is to capture surround stereo camera

c© Springer Nature Switzerland AG 2019
L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11133, pp. 617–625, 2019.
https://doi.org/10.1007/978-3-030-11021-5_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11021-5_38&domain=pdf
http://orcid.org/0000-0002-4621-4237
http://orcid.org/0000-0003-4477-0464
https://doi.org/10.1007/978-3-030-11021-5_38


618 J. Jacob and P. Rabha

data to enable stereo based algorithm development which needs minimum of 4
stereo cameras. Available published frameworks describe use of high end servers
for computation. Ford Campus Vision [9] uses four 2U servers with quad-core
processors; LISA-A [10] uses two servers with 4 Xeon processor with a total of 32
threads each. Our work, DDCF1 stands apart in the usage of low cost compute
without compromising the state-of-the-art benchmark in-terms of sampling rate
and data resolution. There is no existing robust data collection system using
compute which costs less than 1000$. This is the prime motivation for this work.

Table 1. Comparison of related data collection frameworks [from LISA-A[10]]

Ford campus [9] TME [1] LISA-audi Cityscapes [2] LISA surround [4] LISA A [10]

Year 2011 2012 2012 2016 2016 2017

Camera resolution 800 × 600 1024 × 768 1024 × 522 2048 × 1024 2704 × 1440 1600 × 1200

Camera FPS 8Hz 20Hz 25Hz 17Hz 12Hz 30Hz

Total cameras 6 2 1 2 4 8

Stereo rig n y y y n n

Panaromic camera y n n n y y

LiDAR y y y n n y

Radar n n n y n y

GPS/IMU y n y y n y

Vehicle parameters n n y y n y

The rest of the paper is organized as follows: In Sect. 2, we discuss the chal-
lenges faced in designing a system for our target community. Section 3 discusses
about the system design and architecture. Section 4 discusses the system con-
figuration and sensor suite used. Section 5 discusses the shortcomings and scope
for improvement.

2 Challenges

Based on our experience, the community was apprehensive of investing a huge
capital upfront and were more inclined towards incremental upgrades2 to their
data collection rig. Field engineers using the data collection vehicle faced chal-
lenges in configuring, running and maintaining the system. They expect minimal
pre-flight checks, consistency, repeatability and reliability. The system also have
to support high data bandwidth sensors (cameras etc.) as well as synchronization
among them. The basic requirements of such a system are

1. Scalability in-terms of performance, number of sensors and cost.
2. High resolution 1080p cameras at 30 fps
3. Uncompressed sensor data (E.g. YUYV, RGB, Point Cloud)
4. Synchronization of multimodal sensors: GPS, IMU, LIDAR and Camera.

1 Driving Data Collection Framework.
2 System can be scaled based on performance and cost requirements as described in

Sect. 3.1.



Driving Data Collection Framework Using Low Cost Hardware 619

Fig. 1. Sensor layout: an electric car with 4 stereo cameras, 1 LIDAR and 1 GPS/IMU

Apart from the support of multiple sensors, the selection of a framework or
middle-ware for such a system is a major challenge. Among many options ROS3

is the most suitable choice instead of a complete grounds up implementation.
But deploying ROS in a low cost platform had performance issues such as using
rosbag record to write image data to disk involves encoding of the image buffer,
multiple in-memory copies and serialization. This degrades performance in terms
of frames per second.

3 Driving Data Collection Framework

In this section we describe the proposed framework. We describe about the
architecture and the design of the system. We also elaborate on the optimization
approaches we took.

3.1 Architecture and Design

Scalability. We wanted scalability in terms of performance and cost as the most
important criterion for designing the system. We leverage ROS’s distributed
architecture to connect multiple low cost hosts across a network hub. If a host
H1 has maxed out its I/O bandwidth and compute with a set of sensors S1, to
add more sensors, a new host H2 with additional set of sensors S2 can be con-
nected using an Ethernet hub. New hosts Hn with sensors Sn can be added as
needed (Table 2). This enables low cost incremental scalability. Several changes
and enhancements are made to the standard ROS framework to meet our require-
ments. These are described below.

3 Robot Operating System http://wiki.ros.org/kinetic.

http://wiki.ros.org/kinetic


620 J. Jacob and P. Rabha

Table 2. Scalable configurations possible with DDCF

DDCF × 1 host DDCF × 2 hosts DDCF × 3 hosts DDCF × N hosts

Camera resolution 3840× 1080 3840× 1080 3840× 1080 3840× 1080

Camera FPS 30Hz 30Hz 30Hz 30Hz

Total cameras 4 8 12 4 *N

Stereo rig y y y y

Panaromic camera n n n n

LiDAR y y y y

Radar n n n n

GPS/IMU y y y y

Vehicle parameters y y y y

Messaging Architecture. The first problem we faced with the setup is the
data throughput. ROS has a distributed message passing framework. It allows
to run different processes/threads independently for capturing data. But, this
approach has a limitation especially in data heavy sensors like cameras. In stan-
dard ROS messaging system involves multiple copies and a serialization and
de-serialization, which introduces latency. To overcome this issue of ROS we
introduced a modified message parsing approach. In this approach we separated
the data and the metadata. Only the metadata is published as ROS messages
while every image frame is written directly to disk as binary files. The published
metadata of every frame is recorded as ROS bags. This approach is depicted in
the Figs. 2 and 3.

Fig. 2. Stage 1: capture - data is written to SSD as raw binary files. Metadata is
published as ROS messages.



Driving Data Collection Framework Using Low Cost Hardware 621

Fig. 3. Stage 2: consolidation - raw binary files are converted to coherent stream using
metatdata and published as a single ROS bag.

Two Stage Pipeline. A data collection system demands uninterrupted data
capture without information loss. A standard single stage pipeline design con-
sisting of capture and record did not meet the real time performance we needed
from the system. Hence the pipeline is broken into two stages. First stage is
capture, all raw sensor data is written to disk as binary files with appropriate
metadata recorded as ROS bags.

Second stage is consolidation, which is run offline to build a coherent data
stream i.e., combine the raw data from binary files and metadata from ROS bags
and output a single ROS bag as a final output.

Filesystem. Filesystems plays a major role in data throughput especially in real
time systems. In our scenario, we wanted to use a standard file system which can
meet our throughput requirements. We experimented with different file systems
that are available in Linux. With emphasis on ease of use, we consciously avoided
SSD specific file systems even though they have higher throughput. As shown in
Table 3, Btrfs4 has the highest write throughput for an application such as this.

Latency Optimization. The data capture pipeline was optimized by using a
zero in-memory copy approach for persisting raw data which is very similar to the
approach adopted in several other ROS based implementations for autonomous
driving e.g., Apollo Baidu5. We were able to get near real-time performance
without going for a strict real time OS or bare-metal embedded system.

4 https://btrfs.wiki.kernel.org/.
5 http://apollo.auto/.

https://btrfs.wiki.kernel.org/
http://apollo.auto/


622 J. Jacob and P. Rabha

Table 3. Comparison of file systems performance

Filesystem Image resolution (pixels) MB per frame Average write time per frame

Ext 4 3840× 1080 12.4MB 310ms

XFS 3840× 1080 12.4MB 200ms

Btrfs 3840× 1080 12.4MB 167ms

Btrfs+LZO 3840× 1080 12.4MB 290ms

3.2 Sensor Calibration

Intrinsics and Stereo Calibration. Intrinsics of cameras is calibrated using
Zhang’s [11] checkerboard pattern approach. And stereo calibration is performed
using OpenCV tools.

Extrinsics for Non-overlapping Field of View. For extrinsic calibration
between cameras with non-overlapping field of view, we use a modified version
of Pagel [8] using AprilTag [7]. Using AprilTag array instead of checker board
pattern improved repeatability. Since the tag array can be uniquely identified,
calibration of fixed targets needs to be done only once.

Extrinsics of Camera and a LIDAR. For extrinsic calibration of camera and
a LIDAR, we used intermediate results of Dhall et al. [3]. It was challenging to
calibrate a 16 line LIDAR with a stereo camera because of sparse point cloud.
Multiple iterations were performed to reduce error.

4 System Configuration

The compute hardware is a low cost setup such as an Intel NUC. Since the
application demands a high disk write throughput, we recommend using SSD
with write speed of 520 MB/s for storage. RAID6 is desirable but not mandatory
as it increases cost. If a compute host has multiple disks, the disk I/O is balanced
after experimentation by assigning specific disks to sensor nodes. Optimal I/O
loading is capped at 80% bandwidth of disk’s write capability.
Our hardware is composed of

– Intel Core i5 Processor
– 4 × USB 3.0
– Ethernet
– 1 × 8 GB RAM
– 2 × 1 TB SSD

This hardware specification costs about 900 USD (Fig. 4). The compute is pow-
ered by the electric car’s battery. Using a low powered compute, the electric

6 Redundant Array of Independent Disks.



Driving Data Collection Framework Using Low Cost Hardware 623

car’s range was extended by 50%7. Table 4 shows comparison with similar data
collection frameworks and estimated cost8.

Fig. 4. An example of low cost data collection hardware kit built using the framework.
From top left to right: a suction mount, DC voltage regulator, low cost compute, GPS
and stereo camera

Table 4. Cost comparison of related data collection frameworks

Framework Estimated compute cost

LISA-A [10] 5800$

DDCF × 1 host [6] 900$

DDCF × 2 hostsa [6] 1800$

DDCF × 3 hostsa [6] 2100$
aSee footnote 2

Figure 1 shows our sensor layout on a electric car. Our test vehicle (Fig. 5)
has the following sensors:

– 4 × Zed Stereo Cameras9
– 1 × VLP 16 LIDAR
– 1 × Advanced Navigation Spatial GPS and IMU

Software stack has been chosen with readily available components:
7 In comparison to our initial hardware which was a dual socket Xeon 2U rugged

server.
8 Cost estimation is based on the description of compute.
9 GiGE cameras can be used for synchronized surround vision data.



624 J. Jacob and P. Rabha

Fig. 5. An electric car mounted with stereo cameras, LIDAR, GPS and IMU

– Ubuntu 16.04 LTS (in run level 3)
– ROS Kinetic

• Sensor nodes from open source community.
• New ROS messages for managing data and meta-data in disk [6]
• Tools for consolidation of data from different streams [6].

5 Conclusion and Future Work

Our framework is designed for use in capturing of data for any driving scenarios
and is being improved continuously as an opensource project [6].

Using USB cameras, synchronization between cameras was not possible. We
plan to add support for more sensors like PCIe based cameras etc.

Processing of raw data from capture has to be done offline. A live second
stage consolidation node to perform lazy consolidation of data during capture
will extend the capture time and optimize the use of available storage.

We are working towards our goal of creating an approachable recipe in terms
of time, effort and cost for anybody to create a data collection rig using low
cost hardware. We believe this will enable a wider participation of community
in creation of datasets for autonomous driving research.



Driving Data Collection Framework Using Low Cost Hardware 625

References

1. Caraffi, C., Voj́ı̌r, T., Trefný, J., Šochman, J., Matas, J.: A system for real-time
detection and tracking of vehicles from a single car-mounted camera. In: 2012 15th
International IEEE Conference on Intelligent Transportation Systems, pp. 975–
982, September 2012. https://doi.org/10.1109/ITSC.2012.6338748

2. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding.
CoRR abs/1604.01685 (2016). http://arxiv.org/abs/1604.01685

3. Dhall, A., Chelani, K., Radhakrishnan, V., Krishna, K.M.: LiDAR-camera calibra-
tion using 3D-3D point correspondences. ArXiv e-prints, May 2017

4. Dueholm, J.V., Kristoffersen, M.S., Satzoda, R.K., Ohn-Bar, E., Moeslund,
T.B., Trivedi, M.M.: Multi-perspective vehicle detection and tracking: challenges,
dataset, and metrics. In: 2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), pp. 959–964, November 2016. https://doi.org/10.
1109/ITSC.2016.7795671

5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3354–3361, June 2012. https://doi.org/10.1109/CVPR.
2012.6248074

6. Kumar, A., Kambaluru, S., Vanguri, V.R.P., Jacob, J., Rabha, P.: Driving data
collection reference kit opensource repository (2018). https://github.com/intel/
driving-data-collection-reference-kit. Accessed 17 July 2018

7. Olson, E.: AprilTag: a robust and flexible multi-purpose fiducial system. Technical
report, University of Michigan APRIL Laboratory, May 2010

8. Pagel, F.: Calibration of non-overlapping cameras in vehicles. In: 2010 IEEE Intel-
ligent Vehicles Symposium, pp. 1178–1183, June 2010. https://doi.org/10.1109/
IVS.2010.5547991

9. Pandey, G., McBride, J.R., Eustice, R.M.: Ford campus vision and lidar data
set. Int. J. Robot. Res. 30(13), 1543–1552 (2011). https://doi.org/10.1177/
0278364911400640

10. Rangesh, A., Yuen, K., Satzoda, R.K., Rajaram, R.N., Gunaratne, P., Trivedi,
M.M.: A multimodal, full-surround vehicular testbed for naturalistic studies and
benchmarking: design, calibration and deployment. CoRR abs/1709.07502 (2017).
http://arxiv.org/abs/1709.07502

11. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern
Anal. Mach. Intell. 22(11), 1330–1334 (2000). https://doi.org/10.1109/34.888718

https://doi.org/10.1109/ITSC.2012.6338748
http://arxiv.org/abs/1604.01685
https://doi.org/10.1109/ITSC.2016.7795671
https://doi.org/10.1109/ITSC.2016.7795671
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://github.com/intel/driving-data-collection-reference-kit
https://github.com/intel/driving-data-collection-reference-kit
https://doi.org/10.1109/IVS.2010.5547991
https://doi.org/10.1109/IVS.2010.5547991
https://doi.org/10.1177/0278364911400640
https://doi.org/10.1177/0278364911400640
http://arxiv.org/abs/1709.07502
https://doi.org/10.1109/34.888718

	Driving Data Collection Framework Using Low Cost Hardware
	1 Introduction
	1.1 Related and Prior Work

	2 Challenges
	3 Driving Data Collection Framework
	3.1 Architecture and Design
	3.2 Sensor Calibration

	4 System Configuration
	5 Conclusion and Future Work
	References




