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Abstract. Current action anticipation approaches often neglect the
intrinsic uncertainty of future predictions when loss functions or eval-
uation measures are designed. The uncertainty of future observations
is especially relevant in the context of egocentric visual data, which is
naturally exposed to a great deal of variability. Considering the prob-
lem of egocentric action anticipation, we investigate how loss functions
and evaluation measures can be designed to explicitly take into account
the natural multi-modality of future events. In particular, we discuss
suitable measures to evaluate egocentric action anticipation and study
how loss functions can be defined to incorporate the uncertainty aris-
ing from the prediction of future events. Experiments performed on the
EPIC-KITCHENS dataset show that the proposed loss function allows
improving the results of both egocentric action anticipation and recog-
nition methods.
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1 Introduction

Egocentric vision aims at enabling intelligent wearable assistants to under-
stand the user’s needs and augment their abilities [15]. Among other tasks to
be addressed to allow user behavior understanding from egocentric imagery,
the ability to anticipate what is likely to happen in the near future is of
great importance. Previous works investigated different egocentric anticipation
tasks [4,7,11,24–26,28,29,37,39]. Egocentric action anticipation has recently
gained attention with the release of the EPIC-KITCHEN dataset and its related
challenges [6]. We focus on the egocentric action anticipation challenge, the task
of predicting the most likely actions which will be performed by the camera
wearer from an egocentric observation of the past.

Humans anticipate future events with natural uncertainty. Consider Fig. 1:
what is going to happen after the observations on the left? There are probably
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more than one likely answers to this question and some answers are clearly
not correct. This simple example highlights the intrinsic multi-modal nature of
anticipation tasks1, i.e., given the observation of the present, multiple predictions
about the future are possible.

Even if the anticipation of future events is by nature a multi-modal task,
current approaches rarely take into account such uncertainty either when the
algorithm is designed or when it is evaluated. One of the main motivations of
this lack of exploration is due to the fact that the explicit modeling of the multi-
modal dependence between past and future is hard, whereas connecting a past
observation to the future action immediately following in a video stream is, on
the contrary, straightforward.

peel squash

put down rag

put down sponge

wash bowl

take sponge

?

?

?

?

?

Fig. 1. An observed video sequence (left) along with five possible subsequent action
segments (right). Which actions are likely to happen after the observation on the left?
Note that some of the actions (e.g., “peel squash” or “put down rag”) are less likely to
happen than others.

In this study, we explore how this multi-modality assumption can be lever-
aged to design better loss functions and evaluation measures for egocentric action
anticipation. We begin by showing that egocentric action anticipation can be
regarded to as a special case of multi-label classification with missing labels [36].
We then show that the currently used TOP-1 accuracy is not always appropri-
ate to evaluate action anticipation algorithms, while scores based on TOP-K
criteria are more reliable and effective. This leads to the adoption of TOP-K
accuracy as a class-agnostic measure and to the definition of TOP-K recall as a

1 In this paper, the term “multi-modal” is used to refer to the presence of two or more
modes in the distribution of future events. This should not be confused with the
multi-modality of the inputs (e.g., images, audio, text, etc.).
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class-aware measure. Relying on the common (verb, noun) representation of ego-
centric actions, we investigate how loss functions can be relaxed to penalize less
partially correct predictions (i.e., only the verb or noun is predicted correctly).
This is done by introducing a Verb-Noun Marginal Cross Entropy (VNMCE)
training objective which encourages an action anticipation model to anticipate
correct verbs or nouns alone when correct action anticipation is not possible.
The proposed loss is empirically shown to improve the results of both egocentric
action anticipation and recognition. Finally, we show that the use of TOP-K
losses can improve egocentric action anticipation models. All experiments are
performed on the large-scale EPIC-KITCHEN dataset [6], which is a realistic
and diverse set of data, with the aim to draw general conclusions which might
be useful for future research in the field of egocentric anticipation.

In sum, the contributions of this paper are as follows: (1) we discuss which
evaluation measures are appropriate for action anticipation, (2) we introduce
a novel loss which improves the training of both egocentric action recognition
and anticipation models2, (3) we investigate the use of TOP-K losses to improve
action anticipation results.

2 Related Work

Action Recognition: Our research is related to previous work on action recogni-
tion both from third and first person visual data. Wang et al. [33,34] designed
dense trajectories to describe local motion patterns and object appearance.
Karpathy et al. [16] evaluated Convolutional Neural Networks (CNN) on large
scale video classification. Simonyan et al. [27] designed a Two-Stream CNN (TS-
CNN) able to process both motion (optical flow) and appearance (RGB) data
for action classification. Feichtenhofer et al. [10] investigated ways to fuse spatio-
temporally motion and appearance to improve recognition. Wang et al. [35] pro-
posed Temporal Segment Network (TSN), a framework for video-based action
classification. Carreira and Zisserman [5] introduced inflated 3D CNNs to obtain
spatio-temporal representation for action recognition.

Egocentric action recognition has also been addressed in literature. Spriggs
et al. [30] employed Inertial Measurement Units (IMU) and a wearable camera
to segment an egocentric video into action segments. Fathi et al. [8] proposed
to model activities, hands and objects jointly. Fathi et al. [9] predicted gaze to
recognize activities which require eye-hand coordination. Li et al. [20] bench-
marked different egocentric cues for action recognition. Ma et al. [21] designed
a CNN architecture to integrate different egocentric cues for the recognition of
egocentric actions and activities. Recently, Damen et al. [6] proposed a large-
scale dataset of egocentric videos to encourage research on egocentric action
recognition.

2 The implementation of the proposed loss is available at the following URL: https://
github.com/antoninofurnari/action-anticipation-losses.

https://github.com/antoninofurnari/action-anticipation-losses
https://github.com/antoninofurnari/action-anticipation-losses
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Anticipation in Third Person Vision: Previous works investigated anticipation
from third person visual data. Huang and Kitani [13] explored activity forecast-
ing in the context of dual-agent interactions. Lan et al. [18] proposed a hierar-
chical representation for human action anticipation. Jain et al. [14] designed a
system to anticipate driving maneuvers before they occur by looking at both the
driver and the road. Walker et al. [32] use variational autoencoders to predict
the dense trajectory of pixels from a static image. Koppula and Saxena [17] pro-
posed to leverage object affordances to predict future human actions in order to
enable reactive robotic response. Vondrick et al. [31] adapted a deep convolu-
tional network to anticipate multiple future representation from current frames
and perform action anticipation. Gao et al. [12] proposed an encoder-decoder
LSTM model to anticipate future representations and actions. Mahmud et al. [23]
investigated the prediction of labels and starting times of future activities. Abu
et al. [1] designed two methods to predict future actions and their durations.

While these methods concentrate on third person vision, we focus on ego-
centric action anticipation, explicitly designing loss functions to exploit the
(verb, noun) representation of actions.

Anticipation in First Person Vision: Researchers have considered different ego-
centric anticipation tasks. Zhou et al. [39] studied computational approaches to
recover the correct order of egocentric video segments. Ryoo et al. [26] proposed
methods to anticipate human-robot interactions from the robotic perspective.
Soran et al. [29] designed a system capable of inferring whether the next action
likely to be performed is correct in a given work-flow. Park et al. [24] addressed
the prediction of future locations from egocentric video. Zhang et al. [37] pro-
posed to anticipate gaze in future frames. Furnari et al. [11] investigated methods
to anticipate user-object interactions. Chenyou et al. [7] designed a method to
forecast the position of hands and objects in future frames. Bokhari et al. [4]
and Rhinehart and Kitani [25] proposed methods to predict future activities
from first person video.

Differently from the aforementioned works, we seize the action anticipation
challenge proposed in [6], and investigate the design of evaluation measures and
loss functions, with the aim to draw general conclusions useful for future research.

Explicit Modeling of Uncertainty for Anticipation and Early Recognition: Some
researchers considered the explicit modeling of uncertainty of future predictions
either in the design of the algorithms or in the definition of loss functions. In
particular, Vondrick et al. [31] designed a deep multi-modal regressor to allow
multiple future predictions. Walker et al. [32] proposed a generative framework
which, given a static input image, outputs the space of possible future motions.
Rhinehart and Kitani [25] show that explicitly incorporating goal uncertainty
improves the results of their method. Park et al. [24] design methods for future
localization which find multiple hypotheses of future trajectories at test time.
Aliakbarian et al. [2] design a new loss function for early action recognition which
softens the penalization of false positives when the action has been only partially
observed. Similarly, Ma et al. [22] address early action detection constraining
predicted action scores to increase monotonically over time.
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Although the aforementioned works considered the inclusion of uncertainty
in different ways, action anticipation algorithms have usually been evaluated
and compared using standard evaluation measures based on TOP-1 accuracy.
Moreover, most of the considered works did not consider the egocentric point of
view. In this work, we investigate loss functions and evaluation measures which
consider uncertainty of future actions in egocentric vision.

Multi-label Classification and TOP-K Losses: Past literature investigated multi-
label classification [38], which arises when a given instance can be naturally
assigned to more than one label. Moreover, in certain cases, some labels can be
missing in the training set, which yields the problem of multi-label learning with
missing labels [36]. Interestingly, Lapin et al. [19] noted that class ambiguity
easily arises in single-label datasets with a large amount of classes. For instance,
an image labeled as “Mountain” could be correctly classified as belonging to
class “Chalet”. In such cases, evaluating classification algorithms using TOP-K
accuracy is a natural option. To allow training algorithms to incorporate uncer-
tainty during training and produce better TOP-K results, the authors of [19]
define and evaluate a series of TOP-K losses. With similar motivations, Berrada
et al. [3] proposed a smooth TOP-K SVM loss specifically designed for training
deep network classifiers such as CNNs.

3 Action Anticipation as Multi-label Learning
with Missing Labels

As previously discussed, the prediction of future events is by nature multi-modal,
which implies that multiple future actions can naturally follow a given observa-
tion. If we could label each observation with its potential set of future actions,
it would come clear that action anticipation can be seen as a multi-label learn-
ing problem [38]. For instance, the observation on the left of Fig. 1 could be
labeled correctly with the following future actions: “wash bowl”, “take sponge”,
“turn-off tap”. We should note that train and test data for action anticipation
is generally collected by exploiting datasets labeled for action recognition. This
is done by associating a video segment (the observation of the past) with the
labeled action following in the video of origin. Therefore, while multiple actions
can naturally follow a given observation, we systematically observe just one of
the possible actions happening. However, if the dataset is large enough, we can
expect to find a similar observation followed by a different, possible action. This
makes action anticipation an extreme case of multi-label learning with missing
labels [36], where each observation is assigned to a single label drawn from the
set of possible future actions.

Since action anticipation can be seen as a multi-label learning task, it would
be natural to evaluate anticipation algorithms using standard multi-label classi-
fication measures such as Example-Based precision and recall [38]. In particular,
in a multi-label classification scenario, Example-Based precision estimates the
fraction of correctly retrieved labels among all predicted labels for each example.
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The per-example scores are averaged over the whole test set to obtain a single
evaluation score. Example-Based precision is defined as follows:

PrecisionEB({Yi}i, {Ŷi}i) =
1
p

p∑

i=1

|Yi ∩ Ŷi|
|Ŷi|

(1)

where xi is the ith example in the test set, Yi is the set of ground truth labels
associated to example xi, Ŷi is the set of labels predicted for example xi and p
is the total number of examples in the test set. Similarly, Example-Based recall
measures the fraction of correctly retrieved labels among the ground truth labels
of each example. Example-Based recall is defined as follows:

RecallEB({Yi}i, {Ŷi}i) =
1
p

p∑

i=1

|Yi ∩ Ŷi|
|Yi| (2)

The reader is referred to [38] for a review of multi-label classification measures.

3.1 TOP-K Accuracy as a Class-Agnostic Measure

Since a given observation is associated to only one of the possible ground truth
labels, there is no direct way to measure Example-Based recall. On the con-
trary, we can approximate Example-Based precision by allowing the algorithm
to predict multiple labels (e.g., by choosing the K highest scored predictions) and
checking that the single ground truth label is among the K predicted ones. Please
note that this evaluation criterion corresponds to TOP-K accuracy. Although
the approximation of Example-Based precision by TOP-K accuracy is hindered
by the limitedness of the test set (i.e., only one of the possible labels are avail-
able), in the following we show that, under ideal circumstances, TOP-K accuracy
perfectly recovers Example-Based precision, whereas TOP-1 accuracy tends to
underestimates it.

Let S = {(xi, Yi)}i be a set of multi-label examples. Let Ŝ = {(xj , yj)}j
be the corresponding set of single-label data where each multi-label observa-
tion (xi, {yi,1, yi,2, . . . , yi,n}) has been replaced by n single-label observations
Si = {(xi, yi,l)}l, i.e., Ŝ = ∪p

i Si. We refer to Si as the “expanded set” of the
example (xi, Yi) and Ŝ as the “expanded dataset” of S. Let also assume that the
cardinality of Yi is fixed and equal to K for each example xi, i.e., |Yi| = K ∀i
and that the model predicts exactly K labels for each observation xi ∈ S, i.e.,
|Ŷi| = K ∀i. The TOP-K accuracy on the test set Ŝ is computed as:

TOPK({yj}j , {Ŷj}j) =
1

K · p

K·p∑

j=1

[yj ∈ Ŷj ]

=
1
p

p∑

i=1

|Yi ∩ Ŷi|
K

= PrecisionEB({Yi}i, {Ŷi}i) (3)
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where {yj}j is the set of ground truth labels contained in Ŝ, Ŷj is the set of labels
predicted for sample xj , [·] denotes the Iverson bracket and K · p is the product
between the number of predicted labels K and the number of examples in the
dataset p. It should be noted that, while TOP-K accuracy recovers Example-
Based precision under the considered ideal conditions, standard TOP-1 accuracy
tends to underestimate it, as it is illustrated in the example in Fig. 2.

A

B

C

D

Predicted Labels Mul -Label GT 

A

E

C

F

Expanded Set

A E C F

Example-Based
Precision

TOP-4
Accuracy

1 0 1 0

TOP-1
Accuracy

1 0 0 0

Avg. Score

Fig. 2. An example of the differences between Example-Based precision, TOP-K accu-
racy and TOP-1 accuracy. The illustration reports the 4 labels Ŷi predicted by the
model for a given sample xi, along with the corresponding set of labels Yi and the
labels of its expanded set Si. As shown in the example, the TOP-4 accuracy computed
over the expanded set of xi recovers the Example-Based precision related to xi, while
the TOP-1 score underestimates it.

The ideal conditions considered in the previous paragraph may seem to strict
for real scenarios. To assess the behavior of the considered measures in a more
complex scenario, we performed the following simple experiment. We generated
a synthetic multi-label dataset S of 1, 000 examples. Each example contained
in average 5 labels drawn from 50 classes3. The expanded dataset Ŝ is hence
computed from S. To obtain a realistic set of single-label dataset, we drop each
sample from Ŝ with probability 1

2 . We trained multiple instances of an SVM
classifier with an RBF kernel and different choices of the γ parameter to predict
multiple labels for each example. Each classifier has been evaluated on the syn-
thetic set S using Example-Based precision and on its expanded counterpart Ŝ
using TOP-1 and TOP-5 accuracy. Table 1 reports the results of the experiment.
Along the values of each evaluation measure, we also report the induced rank in
3 The dataset has been generated using the make multilabel classification function

from the scikit-learn library.
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parenthesis. As can be noted, TOP-5 accuracy can effectively recover the rank
induced by Example-Based precision, even if such measure is underestimated due
to the non-ideal conditions introduced by the dataset. On the contrary, TOP-1
accuracy induces a different ranking of the algorithms, which points out that
such measure is not always appropriate to evaluate multi-label algorithms.

Table 1. Performance measures for different multi-label SVMs along with the induced
ranks (in parenthesis). As can be noted, the rank induced by TOP-5 accuracy is coher-
ent with the rank induced by Example-Based precision, while TOP-1 accuracy induces
a different rank.

γ PrecisionEB% TOP-5% TOP-1%

0.10 100.0 (1) 82.14 (1) 20.48 (2)

0.09 100.0 (2) 81.23 (2) 20.71 (1)

0.08 99.80 (3) 79.60 (3) 20.48 (3)

0.07 99.50 (4) 75.79 (4) 20.08 (5)

0.06 98.40 (5) 70.04 (5) 20.20 (4)

0.05 93.80 (6) 58.65 (6) 19.40 (6)

0.04 81.50 (7) 41.67 (7) 16.70 (7)

0.03 51.00 (8) 24.21 (8) 11.39 (8)

0.02 21.80 (9) 13.76 (9) 06.03 (9)

0.01 03.40 (10) 08.97 (10) 02.66 (10)

3.2 TOP-K Recall as a Class-Aware Measure

TOP-K accuracy can be used to the measure the overall performance of an action
anticipation method. However, when the dataset is unbalanced, it is often useful
to refer to class-aware measures such as per-class precision and recall. Per-class
precision is not easy to measure in the case of multi-label learning with missing
labels. Indeed, it is not possible to assess if a predicted label which is not in
the available set of ground truth labels is correct or not (it might be one of
the missing labels). On the contrary, it is much more straightforward to assess
per-class recall, i.e., the fraction of cases in which the ground truth class is the
list of the K predicted labels. We refer to this measure as TOP-K recall and
define it as follows:

RECc
K({yj}j , {Ŷj}j) =

1
pc

pc∑

j=1

[yj ∈ Ŷi ∧ yj = c] (4)

where c denotes the class with respect to which TOP-K recall is computed and
pc =

∑p
j [yj = p] is the number of examples belonging to class c.
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4 Loss Functions for Egocentric Action Anticipation

As discussed in the previous section, action anticipation algorithms should be
able to associate a single observation to a set of possible future actions. However,
standard loss functions employed for classification tasks encourage the model to
predict a large score for the ground truth class and small scores for all other
classes. We explore two different ways to relax this constraint and improve the
quality of action anticipation predictions. Specifically, we introduce a novel verb-
noun marginal cross entropy loss in Sect. 4.1 and summarize the relevance of
TOP-K loss in Sect. 4.2.

4.1 Verb-Noun Marginal Cross Entropy Loss

Egocentric actions are generally represented as (verb, noun) pairs [6]. However,
directly anticipating (verb, noun) pairs, can be difficult for the following rea-
sons: (1) future actions can be ambiguous and hence anticipating the correct
(verb, noun) pair can be much more difficult than anticipating the correct verb or
noun alone; (2) egocentric data collected in a natural way can present thousands
of unique (verb, noun) pairs, the majority of which appear just a few times [6].
Standard classification loss functions would force anticipation algorithms to asso-
ciate a given observation with the related (verb, noun) pair, ignoring for instance
that the same observation could be associated to the same noun but a different
verb. To mitigate this effect, previous works proposed to predict verb and noun
separately [6]. However, such approach moves the focus away from (verb, noun)
pairs and might encourage suboptimal action anticipations as we show in the
experiments. We propose a novel loss function which, while maintaining the
focus on actions, allows to leverage the uncertainty offered by the (verb, noun)
representation.

Let V be the set of verbs, N the set of nouns and A ⊆ V×N the set of actions.
Note that some of the (verb, noun) pairs might be not possible, in which case
A ⊂ V × N . Given a verb v ∈ V, let AV(v) be the set of actions including
verb v, i.e., AV(v) = {(v, n) ∈ A | v = v}. Similarly, given a noun n ∈ N ,
let AN (n) = {(v, n) ∈ A | n = n}. Let p(a|xi) be the posterior probability
distribution over the set of actions a = (v, n) ∈ A given the observation xi.
The posterior probability distributions for verbs and nouns can be obtained by
marginalizing:

p(v|xi) =
∑

a∈AV(v)

p(a|xi), p(n|xi) =
∑

a∈AN (n)

p(a|xi). (5)

We formulate Verb-Noun Marginal Cross Entropy Loss (VNMCE) for obser-
vation xi as the sum of the Cross Entropy loss computed with respect to the
three posterior probability distributions p(ai|xi), p(vi|xi), p(ni|xi):

V NMCE(xi, ai = (vi, ni)) = − log(p(ai|xi)) − log(p(vi|xi)) − log(p(ni|xi)) (6)
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where ai = (vi, ni) is the ground truth action composed by verb vi and noun ni.
We note that:

− log(p(ai|xi)) = − log
( exp(siai

)∑
a∈A exp(sia)

)
= −siai

+ log
( ∑

a∈A
exp(sia)

)
(7)

where si is the vector of action class scores produced by the model for observation
xi and sia is the score predicted for class a. Analogously, and applying Eq. (5):

− log(p(vi|xi)) = − log
( ∑

a∈AV(vi)
exp(sia)∑

v∈V
∑

a∈AV(v) exp
(
sia

)
)

=

− log
( ∑

a∈AV(vi)

exp(sia)
)

+ log
( ∑

a∈A
exp(sia)

)
. (8)

Similarly for nouns:

− log(p(ni|xi)) = − log
( ∑

a∈AN (ni)

exp(sia)
)

+ log
( ∑

a∈A
exp(sia)

)
. (9)

Using Eqs. (7)–(9), the VNMCE loss can be re-written as:

V NMCE(xi, ai) = 3 log
( ∑

a∈A
exp(sia)

)
− siai

− log
( ∑

a∈AV(vi)

exp(sia)
)

− log
( ∑

a∈AN (ni)

exp(sia)
)
. (10)

Note that the proposed V NMCE loss leverages the assumption that verb
and noun are not conditionally independent with respect to the input sample x,
and hence p((vi, ni)|xi) 	= p(vi|xi)p(ni|xI). In the following sections, we evaluate
the proposed loss with respect to standard Cross Entropy Loss in the tasks of
action anticipation and recognition.

4.2 TOP-K Losses

As discussed in Sect. 3, the TOP-1 accuracy is not always suitable to evaluate
anticipation methods. However, standard loss functions for classification, such
as the cross entropy loss, are designed to penalize all predictions which do not
score the ground truth class in the first position, hence forcing the model to con-
centrate on a single future class for each sample. It is hence natural to exploit
loss functions targeted to the optimization of TOP-K scores such as the Trun-
cated TOP-K Entropy Loss proposed in [19] and the Smooth TOP-K SVM loss
proposed in [3]. Differently from standard Cross Entropy loss, TOP-K losses are
designed to produce a small error whenever the correct class is ranked among
the TOP-K predictions. We considered this class of loss functions in our study
to point out the relevancy of this aspect.
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5 Experimental Settings

Dataset: We perform experiments on the EPIC-KITCHENS dataset [6] to assess
the performance of the considered loss functions. Since only the training anno-
tations of the EPIC-KITCHENS dataset are available for the challenge, we ran-
domly split the set of training videos into three parts and consider two folds
for training and the remaining fold for testing. The considered split consists
of 19, 452 training action annotations, 9, 018 testing action annotations, 2521
different action classes, 125 verbs and 352 nouns.

Action Anticipation and Classification Baselines: We use the investigated loss
functions to train a Temporal Segment Network (TSN) [35] for anticipation and
classification following the baselines in [6]. In particular, for action anticipa-
tion [6], given an action segment Ai = [tsi , tei ], where tsi and tei denote the
starting and ending times of the action segment Ai, we train the TSN model
to predict the action/verb/noun label related to action segment Ai by observ-
ing the τo long video segment preceding the action start time tsi by τa, that is
[tsi − (τa + τo), tsi − τa]. We follow the settings of [6] and set both the antic-
ipation and observation time to 1s: τa = 1s, τo = 1s. All models are trained
for 160 epochs with a starting learning rate equal to 0.001. The learning rate is
decreased by a factor of 10 after 80 epochs. At the end of the training, we selected
the iteration reporting the best performance. In particular, we selected the best
iteration using the TOP-1 accuracy in the case of classification. In the case of
anticipation we use TOP-5 accuracy for losses not based on TOP-K criteria and
TOP-K accuracy in the case of TOP-K losses. RGB and Flow predictions are
fused using weights 0.6 and 0.4 respectively. Testing is performed by averaging
the class scores predicted for the center crop of 25 temporal segment sampled
from each observation.

Compared Methods: We compared the following methods:

– VN-CE [6]: the model predicts the posterior probability distributions of verbs
and nouns p(v|xi), and p(n|xi) independently. Actions are anticipated by
assuming verbs and nouns to be independent and computing the probability
distribution of actions as p(a = (v, n)|xi) = p(v|xi)p(n|xi). The loss function
used to train the model is the sum of the Cross Entropy Loss (CE) function
computed with respect to verbs and nouns;

– A-CE : the model predicts the posterior probability distribution of actions
p(v|xi) directly. It is trained using Cross Entropy (CE) loss;

– VNMCE : action anticipation TSN (same as A-CE) trained using the loss
proposed in Eq. (10);

– TE-TOP3 [19]: action anticipation TSN trained using the Truncated TOP-K
Entropy Loss proposed in [19] with K = 3;

– TE-TOP5 [19]: same as TE-TOP3 with K = 5;
– SVM-TOP3 [3]: action anticipation TSN trained using the Smooth TOP-K

SVM loss proposed in [3] with K = 3;
– SVM-TOP5 [3]: same as SVM-TOP3 with K = 5;
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– VNCME+T3 : action anticipation TSN trained combining the loss proposed
in Eq. (10) and the Truncated TOP-K Entropy Loss proposed in [19] with
K = 3. TOP-K truncation is only applied to the part of the loss in Eq. (10)
dealing with actions;

– VNCME+T5 : same as VNCME+T3 but with K = 5.

6 Results

Table 2 reports the results of the TSN action anticipation baseline trained using
different loss functions. TOP-K recalls are averaged over the many shot sets
of verbs, nouns and actions provided by [6]. For each method, we evaluate the
ability to predict verbs, nouns and actions. For all methods except VN-CE,
we compute verb and noun probabilities by marginalization. Best results per-
columns are reported in bold numbers.

Table 2. Action anticipation results of the investigated methods according to different
evaluation measures. Best per-column results are reported in bold for each section of
the table. Global per-column best results are underlined.

We begin by comparing VN-CE with respect to A-CE and the method based
on the proposed loss VNMCE (top part of Table 2). Putting emphasis on the
independent prediction of verbs and nouns, VN-CE anticipates verbs and nouns
better than its action-based counterpart A-CE (e.g., VN-CE obtains a TOP-3
score of 66.01% for verbs, whereas A-CE obtains a TOP-3 score of 59.16%).
However, the performance of VN-CE on action anticipation (i.e., independent
prediction of verbs and nouns) is pretty low as compared to A-CE according to
all evaluation measures (e.g., 17.31% vs 25.40% in the case of the TOP-5 Accu-
racy). This suggest that VN-CE is not able to effectively model the relationships
between verbs and nouns (e.g., meaningless (verb, noun) combinations such as
“wash door” could be predicted). On the contrary, optimizing directly for actions
allows for a significant gain in performance. It should be noted that, while this
is true for class-agnostic metrics, the same observations do not hold for average
TOP-3 and TOP-5 recall, where the VN-CE method seems to outperform the
action-based losses. As can be observed from Table 3, this happens consistently
also in the case of action recognition and it is probably due to the long tail
distribution characterizing actions (some actions appear just once in the whole
dataset). The proposed VNMCE loss allows to obtain action recognition results
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similar to A-CE (e.g., 19.61% vs 19.37% in the case of the TOP-3 accuracy,
or 25.14% vs 25.40% in the case of the TOP-5 accuracy), while occasionally
allowing to obtain better performance for verb or noun prediction alone (e.g.,
26.61% vs 24.86% in the case of TOP-1 verb accuracy or 34.21% vs 31.38% for
Avg. TOP-5 noun recall). However, it should be noted that such gains are not
consistent over all the evaluation metrics.

The middle part of Table 2 reports the results obtained using the two inves-
tigated TOP-K losses with K = 3, 5. As can be noted, TOP-K losses in general
allow to improve action anticipation results (e.g., 11.09% vs 09.89% in the case
of TOP-1 action accuracy and 44.14% vs 41.40% in the case of Avg. TOP-5
noun recall). These results suggest that relaxing the training objective allows
models to diversify the predictions and obtain more general anticipations rather
than concentrating on the single (verb, noun) label associated to a given training
sample.

We finally assess the effect of combining TOP-K losses with the proposed
VNMCE loss in the bottom part of Table 2. The combined VNMCE+T3 loss
allows to improve verb accuracy with respect to TOP-K losses in some cases
(e.g., 27.63% vs 25.65% in the case of TOP-1 verb accuracy), while performing
in general similarly to TOP-K losses.

Figure 3 reports some qualitative examples of the action anticipation pre-
dictions obtained by VN-CE, A-CE, VNMCE, and VNMCE+T3. As can be
observed, due to the independent modeling of verbs and nouns, VN-CE often
predicts unfeasible actions such as “wash tap”, “place tap” or “open dish”.

OBSERVED SEGMENT VN-CE [6] A-CE VNMCE VNMCE+T3 [19] GT

wash tap
wash board
place tap
close tap
wipe sink

put board
take spoon
put box
put knife
take bowl

put knife
wash board
put board
take knife
take spoon

wash board
put board
put knife
wash knife
take spoon

wash board

wash tap
wash pan
place tap
put pan
open tap

open tap
close tap
turn-on tap
wash spoon
wash pan

open tap
wash spoon
close tap
take spoon
rinse hand

open tap
close tap

wash container
wash spoon
turn on tap

close tap

take plastic
put packet
take cookie
take knife
place cookie

open door
put knife
wash spoon
open fridge
open packet

open fridge
take knife
put towel
open door
put knife

put towel
open fridge
open door
put knife
take knife

put towel

put plate
place tap
put bowl
wash plate
open dish

put plate
open door
put bowl
open tap
put lid

put plate
open tap
open door
put bowl
take cutlery

put glass
open tap
put bowl
open door
put plate

put glass

Fig. 3. Example action anticipation predictions obtained by some of the investigated
approaches. For each example we report the observed video segment preceding the
action by 1 second, the TOP-5 predictions obtained by the algorithms and the ground
truth label associated to the segment. Correct verb or noun predictions are reported
in bold, whereas correct action predictions are underlined
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Modeling actions directly, A-CE allows to predict feasible actions, even when
they do not match with the ground truth annotations (e.g., “put board” in the
first example and “put plate” in the last example). VNMCE overall allows to
obtain better predictions thanks to the extra emphasis which is put on verbs
and nouns. An interesting example is given in the third row of Fig. 3, where the
“put towel” action is correctly anticipated even if it appears only 19 times in the
dataset, whereas “put” appears 251 times and “glass” appears 513 times. The
predictions of VNMCE+T3 are similar to the ones of VNMCE, but VNMCE+T3
often ranks the ground truth action higher than the other methods.

Finally, Table 3 reports the results of action recognition experiments. In par-
ticular, we compare the use of the proposed VNMCE loss with respect to the
separate classification of verbs and nouns (VN-CE) and standard cross entropy
on actions (A-CE). Following [6], we use TOP-K accuracy as class agnostic mea-
sures and average class precision and recall for class-aware measures. Also in
this case, we use the provided many shot nouns, verbs and actions to compute
the average precision and recall values. Similarly to what observed in the case
of action anticipation, the independent prediction of verbs and nouns generally
leads to suboptimal action recognition results (compare the action recognition
scores of VN-CE with those obtained by the other methods). This happens for
all measures except average class precision. Modeling actions directly (A-CE)
allows to generally obtain better results (e.g., A-CE achieves a TOP-1 Accuracy
of 26.48% vs 23.28% of VN-CE). Interestingly, VNMCE allows to systematically
improve action recognition performances according to all class-agnostic measures
(e.g., 27.15% vs 26.48% in the case of TOP-1 accuracy and 47.72% vs 46.71% in
the case of TOP-5 accuracy). Moreover, VNMCE always obtains higher verb and
noun accuracies with respect to A-CE for class-agnostic measures (e.g., 53.02%
vs 51.72 TOP-1 verb accuracy).

Table 3. Action recognition results of the investigated methods according to different
evaluation measures. Best per-column results are reported in bold.

7 Conclusion

We have studied the role of uncertainty of egocentric action anticipation in the
definition of suitable evaluation measures and loss functions. We first showed
that action anticipation can be seen as a multi-label learning problem in the
presence of missing label. Under this perspective, we highlighted that TOP-K
criteria should be preferred when evaluating action anticipation methods. We
further extended the analysis showing how the uncertainty of egocentric action
anticipation can be leveraged to design loss functions capable of diversifying the
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predictions and improve anticipation results. Specifically, we introduced a novel
Verb-Noun Marginal Cross Entropy Loss (VNMCE) which encourages the model
to focus on verbs and nouns in addition to actions and explored the potential
of TOP-K losses for action anticipation. Experiments and qualitative results
have shown that TOP-K losses allow to obtain promising action anticipation
results. Finally, the proposed VNMCE loss is shown to improve egocentric action
recognition results.
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