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Abstract. This paper considers a convolutional neural network for
image quality enhancement referred to as the fast and efficient qual-
ity enhancement (FEQE) that can be trained for either image super-
resolution or image enhancement to provide accurate yet visually pleas-
ing images on mobile devices by addressing the following three main
issues. First, the considered FEQE performs majority of its computation
in a low-resolution space. Second, the number of channels used in the
convolutional layers is small which allows FEQE to be very deep. Third,
the FEQE performs downsampling referred to as desubpixel that does
not lead to loss of information. Experimental results on a number of stan-
dard benchmark datasets show significant improvements in image fidelity
and reduction in processing time of the proposed FEQE compared to
the recent state-of-the-art methods. In the PIRM 2018 challenge, the
proposed FEQE placed first on the image super-resolution task for
mobile devices. The code is available at https://github.com/thangvubk/
FEQE.git.
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1 Introduction

Image transformation is a classical problem which includes image super-
resolution and image enhancement, where an input image is transformed into
an output image with the desired resolution, color, or style [1–3]. For example,
given a low-quality image, a transformation may be introduced to produce a
enhanced-quality image that is as similar as possible to the desired high-quality
image in terms of resolution and/or color rendition.

Recent example-based methods based on deep convolutional neural networks
(CNN) have made great strides in image quality enhancement. However, most
of the methods are focused on improving only the qualitative measure such as
peak signal-to-noise ratio and mean-opinion score without any consideration to
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Image super-resolution Image enhancement

Fig. 1. Comparison in PSNR and processing time of proposed FEQE with recent state-
of-the-art methods on image super-resolution and enhancement.

execution time. As a results, their computational requirements are enormous
even for high-end desktops, not to mention mobile devices.

To address this problem, this paper considers a CNN referred to as Fast and
Efficient image Quality Enhancement (FEQE) for both image super-resolution
and enhancement for mobile devices. Preliminary results are illustrated in Fig. 1.
To achieve the shown performance, the FEQE is designed to produce highest pos-
sible image quality under a certain memory and computational constraint. To
reduce the computational complexity, an input image is downsampled and then
upsampled at the very first and very last layers respectively, keeping the con-
volution operation mostly in the low-resolution space. However, downsampling
generally leads to loss in information such that the operation is irreversible. To
address this problem, FEQE provides an effective way to perform downsampling
without losing information such that the operation becomes reversible, which is
referred to as desubpixel.

The proposed desubpixel systematically rearranges spatial features into chan-
nels, keeping the feature values intact, hence providing sufficient information for
inferences in the following convolutional layers. To improve prediction accuracy
with restricted resources, the FEQE is designed to be deep as possible but with
small channel-depth. As investigated in [4], with the same number of parameters,
a deeper network provides considerably higher capacity compared to that of a
shallow network. Experimental results show that the proposed FEQE achieves
significant improvements in both accuracy and runtime compared to recent state-
of-the-art methods.

The rest of this paper is organized as follows. Section 2 reviews various image
super-resolution and enhancement methods. Section 3 presents and explains the
effectiveness of the proposed method. Section 4 reports experiment results on
standard benchmark datasets. Finally, Sect. 5 summarizes and concludes the
paper.
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2 Related Work

2.1 Image Super-Resolution

Image super-resolution has received substantial attention for its applications,
ranging from surveillance imaging [5,6], medical imaging [7,8] and object recog-
nition [9,10]. Conventional methods are based on interpolation such as bilinear,
bicubic, and Lancroz [11], which are simple but usually produce overly-smoothed
reconstructions. To mitigate this problem, example-based methods using hand-
crafted features have been proposed, ranging from dictionary learning [12–15],
neighborhood learning [16–18], to regression tree [19,20].

Recent advances in deep learning have made great strides in super-resolution
[1,21–23]. Dong et al. [1,24] first introduced SRCNN for learning the low- to
high-quality mapping in an end-to-end manner. Although SRCNN is only a
three-convolutional-layer network, it outperforms previous hand-crafted-feature-
based methods. In [25], Shi et al. propose subpixel modules, providing efficient
upsampling method for reconstructing high-quality images. It turns out super-
resolution also benefits from very deep networks as in many other applications.
The 5-layer FSRCNN [26], 20-layer VDSR [21], and 52-layer DRRN [27] show
significant improvements in terms of accuracy. Lim et al. [23] propose a very deep
modified ResNet [28] to achieve state-of-the-art PSNR performance. Although
their improvements in terms of accuracy are undeniable, the computational
requirements leave a lot to be desired especially for use in mobile devices.

2.2 Image Enhancement

Image enhancement aims to improve image quality in terms of colors, bright-
ness, and contrasts. Earlier methods are mainly based on histogram equalization
and gamma correction. Although these methods are simple and fast, their per-
formance are limited by the fact that individual pixels are enhanced without
consideration to contextual information. More advanced methods are based on
the retinex theory [29], and these methods estimate and normalize illumination
to obtain the enhanced image [30–32]. In [30], Zhang et al. utilize mutual conver-
sion between RBG and HSV color space in obtaining the desired illuminations
with a guided filter before obtaining the target enhanced image. Meanwhile,
Fu et al. [31] consider a novel retinex-based image enhancement using illumina-
tion adjustment.

Recently, various CNN-based methods have been demonstrated to be con-
ducive for image enhancement [2,33,34]. Showing that multi-scale retinex is
equivalent to CNN with different Gaussion kernels, Shen et al. [33] propose
MSR-net to learn an end-to-end mapping between a low-light and a bright image.
Ignatov et al. [2] propose DPED to produce DLSR- from mobile-quality images
by using deep residual networks trained with a composite loss function of content,
color, and texture. Despite showing improvements in enhancing image quality,
these method exposed limitations in processing time since the computational
operations are performed in the high-resolution space.
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2.3 Convolutional Network for Mobile Devices

There has been considerable interest in building small and fast networks to
perform various computer vision tasks for mobile devices [35–39]. To accelerate
the networks, recent methods often simplify the convolution operation. One such
method simultaneously performs spatial convolution in each channel and linear
projection across channels [35]. In [36], Iandola et al. introduce Squeezenet which
achieves Alexnet-level accuracy with 50 times fewer parameters by leveraging
small filter sizes. Meanwhile, Howard et al. [39] propose Mobilenet built from
depthwise separable convolutions, showing promising results on various vision
problems on mobile devices.

Fig. 2. Architecture of the proposed FEQE

Beside speed, a small network is essential for mobile devices, which is gener-
ally obtained by shrinking, compressing, and quantizing the network. Molchanov
et al. [38] propose a pruning mechanism for resource efficient inferences by dis-
carding the least important neurons. In [37], Kim et al. perform network decom-
position which provides light networks for mobile applications. Another approach
is distillation [40], where a large network is trained to teach a small network.
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3 Proposed Method

3.1 Network Architecture

Overview. Figure 2 presents the architecture of the proposed FEQE. Here, a
low-quality image is first downsampled with a factor of 4 using two proposed ×2
desubpixel modules. An 1×1 convolutional layer is used to adjust the number of
channels into the desired value. After downsampling into a low-resolution space,
the features are fed into a series of N residual blocks, each of which consists
of two 3 × 3 convolutional layers followed by instance normalization and ReLU
activations. It is noted that the instance normalization layers are used for image
enhancement task only to normalize the contrast variation among samples. The
output of the N -th residual block is upsampled using two ×2 subpixel models
before summing with the low-quality input image to produce a predicted high-
quality output image.

The proposed FEQE is a fast and efficient method for the following three
reasons. First, the considered FEQE performs the majority of its computation
in the low-resolution space. As illustrated in Fig. 3, the computational complexity
of FEQE is much lower than that of resolution-unchanged or progressive encoder-
decoder networks. Second, the number of channels used in the residual blocks is
small which allows FEQE to be very deep. The reason is a convolutional layer
requires C2K2 parameters to map from a C-channel input to a C-channel output

Fixed-resolution network

Progressive encoder-decoder network

The proposed FEQE

Fig. 3. Feature dimensions of the proposed FEQE in comparison with other networks.
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using a kernel size of K × K. Therefore, using the same number of parameters,
reducing the number of channels n times can allow the network to be deeper by a
factor of n2. Third, the FEQE performs downsampling referred to as desubpixel
that does not lead to loss of information. The details of the desubpixel modules
are presented in the following subsections.

Desubpixel Downsample. Downsampling generally leads to loss of informa-
tion which is more severe when performed early in the network. Inspired by
the subpixel upsampling in [25], a reversible downsampling module referred to
as desubpixel performs downsampling such that its input can be recovered as
shown in Fig. 4. The proposed desubpixel module systematically rearranges the
spatial features into channels to reduce spatial dimensions without losing infor-
mation. Let U and D respectively denote subpixel-upsampling and desubpixel-
downsampling function. A concatenation of downsampling and upsampling oper-
ation leads to the identity transform such that:

U(D(X)) = X. (1)

x2 Desubpixel

x2 Subpixel

Fig. 4. Subpixel and the proposed desubpixel

Figure 5 illustrates the effectiveness of the proposed desubpixel over other
common downsampling methods that includes convolution with stride 2, max-
pooling, and bilinear interpolation. It is assumed the contribution that a neuron
makes in a network is proportional to the number of links to the next layer. For
the 3×3 convolution with stride 2, the number of times a neuron in a particular
layer is filtered varies from 1, 2 and 4. Here, a neuron indicated by the darkest
shade of blue is filtered 4 times while a neuron indicated by the lightest shade of
blue is filtered only once. Downsampling requires the stride to be at least 2, and
this leads to non-uniform contribution of neurons. In other words, certain neu-
rons of high importance may not be given a chance to contribute adequately. In
the 2×2 max-pooling, only one out of four neurons in a 2×2 block is connected
to the next layer. Although the pooling filter selects the most prominent neuron,
the accuracy degradation in the reconstruction is inevitable as a result of prun-
ing. In the bilinear interpolation, every 2 × 2 neurons are represented by their
weighted sum, which can be thought of as a “relaxed” max-pooling. As in other
two, the bilinear interpolation is irreversible. The proposed ×2 desubpixel per-
mits for all neurons an equal opportunity to contribute. The desubpixel allows
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Conv 3 × 3, /2 2 × 2 Max pooling Bilinear ×2 desubpixel (ours)

Fig. 5. Impact of each neuron in current layer to next layer in considered down-
sampling methods. In each subfigure, darker colors indicate higher impacts. Different
from the others, the proposed desubpixel provides an uniform neural impact. (Color
figure online)

arbitrary integer downsampling provided that the spatial dimension of the input
is desirable for channel rearrangement. Incorporating subpixel with desubpixel,
the FEQE can be applied for various image-to-image mapping tasks such as
image generation, segmentation, style transfer, and image quality enhancement.
In this paper, the proposed method is applied for image super-resolution and
enhancement.

3.2 Loss Functions

Given a low-quality image ILQ, a network attempts to predict an enhanced image
that is as similar as possible to the desired high-quality image IHQ. Mathemati-
cally, the network G parameterized by θ is trained to minimize the loss between
Gθ(ILQ) and IHQ as follows:

θ = arg min
θ

L (
Gθ(ILQ), IHQ

)
. (2)

The final loss function composes of mean-squared error (MSE) loss LM and a
VGG loss LV with trade-off parameters of αM and αV , respectively:

L = αMLM + αV LV . (3)

The MSE loss is the most common objective function in enhancing the fidelity
of the reconstructed images:

LM =
∑

i

∥
∥
∥IHQ

i − G(ILQ
i )

∥
∥
∥
2

2
. (4)

Meanwhile, the VGG loss aims to produce images with high perceptual quality:

LV =
∑

i

∥
∥
∥φ(IHQ

i ) − φ(G(ILQ
i ))

∥
∥
∥
2

2
. (5)

where φ denotes the feature maps obtained from the forth convolutional layer
before the fifth max-pooling layer of a pre-trained 19-layer VGG network [41].
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4 Experiments

4.1 Single Image Super-Resolution

Datasets. The proposed FEQE is trained using DIV2K [42] dataset which
composes of 800 high-quality images (2K resolution). For testing, four stan-
dards benchmark datasets are used, including: Set5 [16], Set14 [15], B100 [43],
Urban100 [44].

Table 1. Comparison in PSNR and SSIM of the proposed method with different set-
tings of channels C and residual blocks N . Bold indicates better results.

Setting PSNR SSIM

C16 N20 28.75 0.9652

C32 N5 28.70 0.9650

Evaluation Metrics. The image super-resolution performance is measured
on Y (luminance) channel in YCbCr space. Following existing super-resolution
studies, the conventional peak-signal-noise-ratio (PSNR) and structural similar-
ity (SSIM) index are used in the experiments. However, these metrics do not
always objectively reflect image quality. Additionally, a recently-proposed per-
ceptual metric is considered [45]:

Perceptual index =
(10 − NRQM) + NIQE

2
, (6)

where NRQM and NIQE are the quality metrics proposed by Ma et al. [46] and
Mittal et al. [47], respectively. The lower perceptual indexes (PI) indicate better
perceptual quality.

Training Details. The images are normalized to a mean of 0 and a standard
deviation of 127.5. At training time, to enhance computational efficiency, the
images are further cropped into patches of size 196 × 196. It is noted that the
proposed network is fully convolutional; thus, it can take arbitrary size input at
test time.

The final network for image super-resolution task has 20 residual blocks. We
train the network using Adam optimizer [48] with setting β1 = 0.9, β2 = 0.999,
and ε = 10−8. Batch size is set to 8. We pre-train the network with MSE loss
and a downsampling factor of 2, before training with the full loss function and a
downsampling factor of 4. The numbers of iterations for pre-training and training
phases are set to 5× 105. In the default FEQE setting, the trade-off parameters
are set to αM = 1 and αV = 10−4. Besides, in the setting referred to as FEQE-P
such that PSNR is maximized, the trade-off parameters are changed to αM = 1
and αV = 0.

Our models are implemented using Tensorflow [49] deep learning framework.
The experiments are run on a single Titan X GPU, and it takes about 5 hours
for the networks to converge.
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Ablation Study. The effectiveness of the FEQE is demonstrated using an
ablation analysis. In the first part, we measure the performance of FEQE with
different downsampling methods, including convolution with stride 2, 2× 2 max
pooling, bicubic interpolation, and the proposed desubpixel. For the fair compar-
ison in computational complexity, a kernel size of 1×1 is used in the convolution
method. The remaining parts of the network and training hyper-parameters are
kept unchanged. Figure 6 illustrates the comparison results in terms of PSNR
and SSIM. The convolution method performs the worst, followed by the bicubic
and pooling methods. The proposed desubpixel achieves the best performance
in both PSNR and SSIM.

In the second part of the ablation study, the performance with different
network settings is presented. Table 1 shows that with the same number of

PSNR comparison SSIM comparison

Fig. 6. Comparison in PSNR and SSIM of the proposed FEQE with different down-
sampling methods.

Table 2. Comparison in PSNR/SSIM/PI of the proposed FEQE with other image
super-resolution methods. Bold indicates the best results.

Method Set5 Set14 B100 Urban100

Bicubic 28.42/0.8096/7.32 26.08/0.7047/6.97 25.96/0.6691/6.94 23.14/0.6587/6.88

SRCNN 30.47/0.8610/6.79 27.57/0.7528/6.03 26.89/0.7108/6.04 24.51/0.7232/5.94

VDSR 31.53/0.8840/6.45 28.42/0.7830/5.77 27.29/0.7262/5.70 25.18/0.7534/5.54

FEQE-P (ours) 31.53/0.8824/6.03 28.21/0.7714/5.77 27.32/0.7273/5.79 25.32/0.7583/5.57

FEQE (ours) 31.32/0.8754/5.94 28.09/0.7660/5.40 27.23/0.7229/5.64 25.26/0.7547/5.50

Table 3. Comparison in computational complexity of the proposed FEQE with other
image super-resolution methods. Bold indicates the best results.

Method # parameters # FLOPs Time (s)

SRCNN 69× 103 128 × 109 0.04

VDSR 668 × 103 1231 × 109 0.16

FEQE (ours) 96 × 103 11× 109 0.01
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Image 302008
from B100

Ground truth
PSNR/SSIM

Bicubic
27.31/0.8982

SRCNN [1]
30.54/0.9329

VDSR [21]
32.13/0.9462

FEQE-P
32.86/0.9472

FEQE
32.59/0.9435

Image img 059
from Urban100

Ground truth
PSNR/SSIM

Bicubic
20.45/0.6581

SRCNN [1]
20.93/0.6971

VDSR [21]
21.20/0.7264

FEQE-P
21.55/0.7366

FEQE
21.51/0.6687

Image img 074
from Urban100

Ground truth
PSNR/SSIM

Bicubic
22.16/0.5617

SRCNN [1]
22.73/0.6193

VDSR [21]
23.09/0.6476

FEQE-P
23.30/0.6707

FEQE
23.26/0.6687

Fig. 7. Qualitative comparison of FEQE with other image super resolution methods.
RED indicates the best results. (Color figure online)
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parameters, the deep network with a small number of convolution channels per-
forms much better than the shallow one.

Comparison with State-of-the-art SISR Methods. The proposed FEQE
is compared with recent state-of-the-art SISR methods including SRCNN [1]
and VDSR [21], which are conducive for mobile devices. The PSNR, SSIM, and
PI results of referred methods are obtained from source codes provided by the
authors. For fair processing-time comparison, we implement and measure all
the network architectures using the same hardware and Tensorflow deep learn-
ing framework. Table 2 summaries the results of the considered methods over 4
benchmark datasets. The proposed FEQE-P archives better overall PSNR and
SSIM meanwhile FEQE outperforms the others in terms of perceptual qual-
ity. Here, the computational complexities and running time of the considered
methods are reported in Table 3. The processing time is averaged over 100 HD-
resolution (1280×720p) images. The proposed FEQE is the fastest since most of
the computation is performed in the low-resolution feature space. In particular,
FEQE is 16 times faster than VDSR while achieving better quantitative perfor-
mance. The proposed FEQE is also visually compared to the others. As shown in
Fig. 7, the proposed methods provides more plausible visualization with sharper
edges and textures.

4.2 Image Enhancement

Training Details. We demonstrate that the proposed FEQE is also conducive
for image enhancement. In this task, the DPED dataset [2] is used for training
and testing. The low- and high-quality images are taken from a iphone 3GS and
Canon 70D DSLR, respectively. The provided training images are in patches of
100×100. The considered quality metrics are PSNR and SSIM on RGB channels.
The instance normalization layers are injected into the residual blocks, and the
number of the residual blocks is changed to 14. The other training procedures
are similar to those of the super-resolution task.

Effectiveness of Instance Normalization. In image enhancement, the con-
trasts usually vary among low- to high-quality mappings, which should be
addressed using Instance Normalization layers. Figure 8 show that without
Instance Normalization, the predicted image exhibits unpleasing visualization for
the unwanted color spillages. When the contrasts are normalized the enhanced
image is much more plausible looking and no color spillages are observed.

Comparison with State-of-the-art Methods. The proposed FEQE is com-
pared with recent state-of-the-art methods including SRCNN [1], VDSR [21],
and DPED [2]. Although SRCNN and VDSR are originally SISR methods, they
are related to end-to-end image-to-image mapping, which is relevant for image
enhancement. We re-implemented SRCNN and VDSR and train the network
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Image 77 - Input FEQE w/o IN FEQE w/ IN Ground truth

Fig. 8. Visual comparison of FEQE with and without instance normalization.

Table 4. Quantitative comparison of the proposed FEQE with other image enhance-
ment methods. Bold indicates the best results.

Method PSNR SSIM Time

SRCNN 19.77 0.8823 0.04

VDSR 20.11 0.8837 0.16

DPED 20.00 0.9192 0.20

FEQE (ours) 20.42 0.9181 0.02

Image 101 - Input SRCNN [1] VDSR [21]

DPED [2] FEQE (ours) Ground truth

Fig. 9. Qualitative comparison of FEQE with other image enhancement methods
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with our loss function. The experimental results of DPED method are repro-
duced from publicly available source codes provided by the authors. Table 4
shows that the proposed FEQE not only achieves better performance in terms
of PSNR but also is the fastest method. The qualitative results are illustrated in
Fig. 9. Here, SRCNN and VDSR expose limitations in enhancing image quality
for unpleasing color spillages. Our proposed FEQE are competitive with DPED
and exhibits significant improvement in terms of brightness and vivid colors
compare to the other methods.

4.3 PIRM 2018 Challenge

The Perceptual Image Restoration and Manipulation(PIRM) 2018 challenge
aims to produce images that are visually appealing to human observers. The
authors participated in the Perceptual Image Enhancement on Smartphones
challenge which requires light, fast, and efficient solutions. The challenge com-
poses of two conventional computer vision tasks: image super-resolution and
image enhancement. The evaluation metric is based on PSNR, multi-scale SSIM,
and processing time of the solution (in subscript s) and the baseline (in subscript
b) as follows:

Score = α(PSNRs − PSNRb) + β(SSIMs − SSIMb) + γ min
(

4,
Timeb

Times

)
. (7)

Here, α, β and γ are the trade-off parameters. There are three evaluation scores
corresponding to three combinations of trade-off parameters. Score A is giving
preference to the solution with the highest fidelity (PSNR), score B is aimed at
the solution providing the best visual results (SSIM), and score C is targeted at
the best balance between the speed and quantitative performance. The details
are provided in [50]. Table 5 summaries the challenge results for the image super-
resolution tasks. The proposed method wins the first place for achieving the best
overall score.

Table 5. Comparison of the proposed FEQE with other top-ranking methods in the
PIRM 2018 super-resolution challenge on mobile devices. Bold indicates the best scores.

Method PSNR
(dB)

SSIM CPU
(ms)

GPU
(ms)

Razer
Phone (ms)

Score A Score B Score C

FEQE (ours) 28.21 0.9636 701 48 936 13.21 15.15 14.14

Method 1 28.14 0.963 343 34 812 12.86 14.83 13.87

Method 2 28.19 0.9633 773 112 1101 13.08 15.02 14.04

Method 3 28.13 0.9636 767 70 1198 12.88 15.05 13.97

Method 4 28.13 0.9632 654 56 1414 12.84 14.92 13.91

In the image enhancement task, we used super-resolution-based loss function
and instance normalization without applying heavily-optimized techniques for
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image enhancement. Although our method exposed some limitations in quali-
tative results compared to the competitors, our quantitative results is in top-
ranking teams and FEQE is the fastest network measured on smartphones.

4.4 Limitation

Since the proposed FEQE is designed under the resource constrain of mobile
devices, its limitation on challenging samples is inevitable. The limitation is visu-
ally presented in Fig. 10. In image super-resolution, FEQE introduces antifacts
for difficulties of distinguishing cross or vertical line patterns in bicubic input.
In image enhancement, since the input is in poor light condition, FEQE fails to
enhance vivid colors.

img 092 from Urban100 Bicubic FEQE Ground truth

Image 67 - Input FEQE Ground truth

Fig. 10. Limitation of FEQE in challenging examples of image super-resolution (first
row) and image enhancement (second row)

5 Conclusion

A Fast and Efficient image Quality Enhancement referred to as FEQE for image
super-resolution and enhancement on mobile devices is introduced. To acceler-
ate the inference time, the proposed FEQE performs most of the computational
operations in a low-resolution space. The low-resolution features are obtained
by the proposed desubpixel which provides an effective way to downsample
the high-resolution images. In desubpixel, the spatial features are systemati-
cally rearranged into channels, keeping the feature values intact, hence provid-
ing sufficient information for the following convolutional layers. To improve the
fidelity of the reconstruction, convolutional architecture is designed to be deep
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with small channel-depth. Experimental results on standard benchmark datasets
show significant achievements in terms of image quality and running time of the
proposed FEQE over recent state-of-the-art image super-resolution and enhance-
ment methods.
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