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Abstract. This paper introduces a deep learning based approach for
vision based single target tracking. We address this problem by proposing
a network architecture which takes the input video frames and directly
computes the tracking score for any candidate target location by estimat-
ing the probability distributions of the positive and negative examples.
An online fine-tuning step is carried out at every frame to learn the
appearance of the target. The tracker has been tested on the standard
tracking benchmark and the results indicate that the proposed solution
achieves state-of-the-art tracking results.

1 Introduction

Visual target tracking is a fundamental task in computer vision and vision based
analysis. In general, single target tracking algorithms consider a bounding box
around the object in the first frame and automatically track the trajectory of
the object over the subsequent frames. Readers may refer to [13] and [12] for
a review of the state-of-the-art in object tracking and a detailed analysis and
comparison of representative methods.

In this paper, we propose a new deep learning based tracking architecture
(Fig. 1 shows the overall architecture of the proposed tracking system) that can
effectively track a target given a single observation. The main contribution of
this paper is a unified deep network architecture for object tracking in which the
probability distributions of the observations are learnt and the target is identified
using a set of weak classifiers (Bayesian classifiers) which are considered as one
of the hidden layers. In addition, we fine-tune the CNN tracking system to
adaptively learn the appearance of the target in successive frames. Experimental
results indicate the effectiveness of the proposed tracking system.

2 Proposed Approach

This section presents the algorithmic description and the network architecture
for the proposed tracking system. The system consists of a two stage training
process, an offline fine-tuning procedure and an online target specific fine-tuning
step.
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Fig. 1. Overview of our approach: given one frame, we sample three batches: positive
batch, negative batch, and prediction batch. In the forward procedure, given CNN
parameters, we use the positive batch and negative batch to re-estimate Gaussian
parameters. Then we search in the prediction batch for the new location with maximum
score. In the backward procedure, given Gaussian parameters, we compute gradients
with respect to feature nodes and update CNN parameters.

Offline Fine-Tuning. The fine-tuning of the pre-trained network is carried
out through two phases: obj-general as phase 1 and obj-specific as phase 2. The
first step is carried out by taking a pre-trained CNN which is already trained for
large-scale image classification tasks, and then is fine-tuned for the generic object
detection task which is referred to as objectness [1]. In order to learn generic fea-
tures for objects and be able to distinguish objects from the background, we sam-
pled 100k auxiliary image patches from the ImageNet 2014 detection dataset1.
For each annotated bounding box, we randomly generate negative examples
from the images in such a way that they have low intersection of union with the
annotated bounding box. During this phase, all CNN layers are fine-tuned. The
fine-tuned CNN can now be considered as a generic feature descriptor of objects,
but it still cannot be used for tracking because it cannot discriminate a specific
target from other objects in the scene. In other words, this network is equally
activated for any object in the scene.

Another phase of fine-tuning is conducted given the bounding box around the
target in the first frame. In order to generate a sufficient number of samples to
fine-tune the network, we randomly sample bounding boxes around the original
one. Those bounding boxes have to have a very high overlap ratio with the
original bounding box. For the negative bounding boxes we sampled bounding
boxes whose centers are far from the original one. During this phase, only fully
connected layers are fine-tuned.

Online Target Specific Fine-Tuning. When a new frame comes, our model
would take the features from the network and compute scores for all candidate
bounding boxes as described below. Given a single bounding box representing
the target of interest in the current frame of a video sequence (which can be
initialized by either running an object detector or using manual labeling), first

1 http://image-net.org/challenges/LSVRC/2014/.

http://image-net.org/challenges/LSVRC/2014/


Deep Learning of Appearance Models for Online Object Tracking 683

we use a sampling scheme to sample some positive patches around it and some
negative patches whose centers are far from positive ones. Then, the probability
density functions of the positive and negative examples are computed using (1).
This process is repeated when a new frame comes.

Similar to [2,14], we assume that the distributions of the positive and negative
examples’ features can be represented by Gaussian distributions. Therefore, the
posterior probability of the positive examples P (x|pos) is:

Gpos = P (x|pos)

=
N∏

i=1

1√
2πσposi

e
− (xi−μposi

)2

2σ2
posi (1)

where μposi
and σposi

are the mean and variance of the Gaussian distribution
of the ith attribute of the positive feature vector, xi, respectively. Similarly, we
can get distribution Gneg for negative examples.

Then the tracking score S(x) given an observation x is computed as:

S(xi) = log

(
n∏

i=1

P (xi|pos)
P (xi|neg)

)
= log(Gpos(xi)) − log(Gneg(xi)) (2)

The candidate bounding box which has the highest tracking score is then
taken to be the new true location of the target:

x∗ = arg max
xi∈X

S(xi) (3)

Once the true target bounding box is determined in the following frame, the
whole model shall be fine-tuned again in order to adapt itself to the new target
appearance. We consider updating Gaussian parameters first, and then updating
the network weights.

Fig. 2. Ablation study Fig. 3. Comparision with state-of-the-arts

3 Experiments

In order to evaluate the performance of our deep learning based tracker, we have
carried out extensive experiments using the CVPR13 “Visual Tracker Bench-
mark” dataset [12]. We follow the “Visual Tracker Benchmark” protocol intro-
duced in [12] in order to compare the tracking accuracy to the state-of-the-art
approaches.
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In our experiments, Opencv2 and Caffe3 libraries are used for the CNN-
based tracking system. The CNN is fine-tuned for 100k iterations for objectness
and the maximum number of iterations for the specific target fine-tuning in
the first frame is set to be equal to 500. During online tracking, the CNN is
backpropagated 1 iteration per frame. The aspect ratio is fixed as the same as
the initialization given in the first frame of each sequence. The learning rate
for Gaussian parameters is set to 0.95. The current prototype of the proposed
algorithm runs at approximately 1 fps on a PC with an Intel i7-4790 CPU and
a Nvidia Titan X GPU.

Ablation Study. For ablation study, we have conducted multiple experiments
with three pairs of baselines. The first pair of baseline, which we refer to it as
the “pre-trained” is to take the pre-trained model [7] as the feature extractor
(without fine-tuning for objectness and target appearance) and use the same
tracker as GDT to track every target in each sequence. By “no bp” we mean
that during tracking process only Gaussian parameters are updated and CNNs
are not fine-tuned. The second pair of baselines, which we call them the “obj-
general”, is to take the CNN model we trained for objectness as the feature
extractor. To show the importance of fine-tuning for objectness, we add third
pair of baselines, which we refer to as the “no obj-general”. For this baseline,
we remove the objectness step and CNNs are fine-tuned directly from the pre-
trained model. All results listed in this section adopt same tracker, the only
difference is the CNN models that are used. We summarize comparisons with all
baselines in Fig. 2. From Fig. 2, it is clear that each step of our algorithm boosts
the tracking results.

Comparison with State-of-the-art. Our tracking results are quantitatively
compared with the eight state state-of-the-art tracking algorithms with the
same initial location of the target. These algorithms are tracking-by-detection
(TLD) [6], context tracker (CXT) [3], Struck [4], kernelized correlation filters
(KCF) [5], structured output deep learning tracker (SO-DLT) [11], fully convo-
lutional network based tracker (FCNT) [10], hierarchical convolutional features
for visual tracking (HCFT) [8], and hedged deep tracking (HDT) [9]. The first
four algorithms are among the best trackers in the literature which use hand-
crafted features, and the last four are among best approaches for CNN-based
tracking. GDT represents our proposed approach.

Figure 3 shows the success and precision plots for the whole 50 videos in the
dataset. Overall, the proposed tracking algorithm performs favorably against the
other state-of-the-art algorithms on all tested sequences. It outperforms all of
the state-of-the-art approaches given success plot and produces favourable results
compared to other deep learning-based trackers given precision plot, specifically
for low location error threshold values. We show some visualizations of detection
results of all approaches in Fig. 4.
2 http://opencv.org.
3 http://caffe.berkeleyvision.org.
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Fig. 4. Visualizations of all tracking algorithms on challenging sequences. Ground
Truth: red, GDT(ours): yellow, FCNT: gray, HDT: dark green, HCFT: blue, SO-DLT:
green, KCF: black, Struck: orange, TLD: magenta, CXT: cyan. (Color figure online)

4 Conclusion

We proposed a novel tracking algorithm in this paper. The CNN for tracking is
trained in a simple but very effective way and the CNN provides good features
for object tracking. First stage fine-tuning using auxiliary data largely alleviates
the problem of a lack of labelled training instances. A second stage of fine-
tuning, though used only with a few hundred instances and trained for tens
of iterations, greatly boosts the performance of the tracker. On top of CNN
features, a classifier is learnt. The experimental results show that our deep,
appearance model learning tracker produces results comparable to state-of-the-
art approaches and can generate accurate tracking results.
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