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Abstract. Clustering with incomplete views is a challenge in multi-
view clustering. In this paper, we provide a novel and simple method
to address this issue. Specially, the proposed method simultaneously
exploits the local information of each view and the complementary infor-
mation among views to learn the common latent representation for all
samples, which can greatly improve the compactness and discriminability
of the obtained representation. Compared with the conventional graph
embedding methods, the proposed method does not introduce any extra
regularization term and corresponding penalty parameter to preserve the
local structure of data, and thus does not increase the burden of extra
parameter selection. By imposing the orthogonal constraint on the basis
matrix of each view, the proposed method is able to handle the out-
of-sample. Moreover, the proposed method can be viewed as a unified
framework for multi-view learning since it can handle both incomplete
and complete multi-view clustering and classification tasks. Extensive
experiments conducted on several multi-view datasets prove that the
proposed method can significantly improve the clustering performance.
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1 Introduction

Multi-view clustering has been achieved great development and has been suc-
cessfully applied in many applications, such as image retrieval [9], webpage clas-
sification [1,25], and speech recognition [12]. Recently, many methods have been
proposed, such as multi-view k -means clustering [2], multi-view spectral clus-
tering via bipartite graph [10], and co-regularized multi-view spectral clustering
[8], etc. Compared with the single-view clustering, multi-view clustering can
exploit the complementary information among multiple views, and thus has the
potential to achieve a better performance [29].
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L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11132, pp. 593–608, 2019.
https://doi.org/10.1007/978-3-030-11018-5_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11018-5_47&domain=pdf
https://doi.org/10.1007/978-3-030-11018-5_47


594 J. Wen et al.

For the conventional multi-view clustering, they commonly require that the
available samples should have all of the views. However, it always happens that
some views are missing for parts of samples in real world applications [18]. For
example, the data obtained by the blood test and images scanned by the mag-
netic resonance can be regarded as two necessary views for diagnosing the dis-
ease. However, it is often the case that we only have the results of one view for
some individuals since they would like to take only one of the two tests. In this
case, the conventional methods fail. In this paper, we refer to the clustering task
with incomplete views as incomplete multi-view clustering (IMC).

For IMC, a few methods have been proposed, which can be commonly cate-
gorized into two groups. The one group is based on completing the incomplete
views. For example, Trivedi et al. proposed a kernel CCA based method, which
tries to recover the kernel matrix of the incomplete view and then learns two pro-
jections for the two views, respectively [18]. However, it requires at least one com-
plete view for reference. In other words, it is not applicable to the case that all
views are incomplete. To address this issue, Gao et al. proposed a two-step app-
roach, which first fills in the missing views with the corresponding average of all
samples, and then learns the common representation for the two views based on
the spectral graph theory [5]. The shortcoming of this approach is that it intro-
duces some useless even noisy information to the data. For data with small incom-
plete percentages, this approach may be effective. However, for the data with large
incomplete percentages, this approach is harmful to find the common representa-
tion since these useless information may dominate the representation learning [17].
The other group focuses on directly learning the common latent subspace or rep-
resentation for all views, in which the most representative works are the partial
multi-view clustering (PVC) [30], multi-incomplete-view clustering (MIC) [17],
and incomplete multi-modality grouping (IMG) [28]. Based on the non-negative
matrix factorization (NMF), PVC directly learns a common latent representation
for two views by simply regularizing different views of the same sample to have
the same representation [30]. MIC jointly learns the latent representation of each
view and the consensus representation by utilizing the weighted NMF algorithm,
in which the missing views are constrained with the small weight even 0 during
learning [17]. IMG can be viewed as an extension of PVC, which further embeds
an adaptively learned graph on the latent representation [28].

Although some methods have been proposed to address the IMC problem,
several problems still exist which limit their performances. For example, these
methods all ignore the geometric structure of data. This indicates that the intrin-
sic geometric structure of data may be destroyed in the representation space,
which may lead to a bad performance. The second shortcoming of these meth-
ods, especially MIC and IMG, is that there are many penalty parameters (more
than three) to be set. These tunable parameters directly influence the clustering
performance and limit its real applications because it is still an open prob-
lem to adaptively select the optimal parameter for different datasets. The third
shortcoming is that these methods all cannot handle the out-of-sample problem.
In this paper, we propose a novel and simple IMC method, named incomplete
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multi-view clustering via graph regularized matrix factorization (IMC GRMF),
to solve the above problems and improve the performance. Similar to PVC, the
matrix factorization technique is exploited to learn the common latent repre-
sentation, in which the representation corresponding to those samples with all
views are regularized to be consistent. In addition, a nearest neighbor graph is
neatly imposed on the reconstruction errors of the matrix factorization to exploit
the local geometric structure of data, which enables the method to learn a more
compact and discriminative representation for clustering. Compared with the
other methods, our approach does not introduce any extra regularization term
and corresponding penalty parameter to preserve the locality structure of data.
Extensive experimental results prove the effectiveness of the proposed method
for incomplete multi-view clustering.

2 Notations and Related Work

2.1 Notations

Let X(k) = [X(k)T
c ; X̄(k)T ]T ∈ R(nc+nk)×mk be the kth view of data, where

each sample in the corresponding view is represented by a row vector with mk

features, nc is the number of paired samples (i.e., there are no missing views for
these samples). x

(k)
i denotes the features of the kth view of the ith sample. We

refer to the kth view as V i (k). X̄(k) ∈ Rnk×mk represents that nk samples only
contain the features of V i (k) while the features of the other views are missing.

The total samples of the data is n = nc +
v∑

k=1

nk. For a matrix A ∈ Rm×n, its lF

norm and l1 norm are defined as ‖A‖F =

√
n∑

j=1

m∑

i=1

a2
i,j and ‖A‖1 =

n∑

j=1

m∑

i=1

|ai,j |,
respectively, where ai,j denotes the ith row and jth column element of matrix A
[14,23]. Tr (·) is the trace operation. We use AT to denote the transposition of
matrix A [15]. I is the identity matrix. A ≥ 0 means that all elements of matrix
A are not less than zero.

2.2 Partial Multi-View Clustering (PVC)

For data with two incomplete views, PVC seeks to learn a common latent sub-
space for both two views, where different views of the same sample should have
the same representation [14]. The learning model of PVC is formulated as follows:

min
Pc,P̄ (1),P̄ (2),U(1),U(2)

∥
∥
∥
∥

[
X

(1)
c

X̄(1)

]

−
[

Pc

P̄ (1)

]

U (1)

∥
∥
∥
∥

2

F

+ λ

∥
∥
∥
∥

[
Pc

P̄ (1)

]∥
∥
∥
∥
1

+
∥
∥
∥
∥

[
X

(2)
c

X̄(2)

]

−
[

Pc

P̄ (2)

]

U (2)

∥
∥
∥
∥

2

F

+ λ

∥
∥
∥
∥

[
Pc

P̄ (2)

]∥
∥
∥
∥
1

s.t. U (1) ≥ 0, U (2) ≥ 0, Pc ≥ 0, P̄ (1) ≥ 0, P̄ (2) ≥ 0,

(1)
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where λ is the penalty parameter. U (1) ∈ RK×m1 and U (2) ∈ RK×m2 are the
latent space basis matrices for the two views, Pc ∈ Rnc×K , P̄ (1) ∈ Rn1×K , and
P̄ (2) ∈ Rn2×K are the latent representations of the original data, K is the feature
dimension in the latent space.

For PVC, the new representation corresponding to all samples can be

expressed as P =

⎡

⎣
Pc

P̄ (1)

P̄ (2)

⎤

⎦ ∈ Rn×K . Then the conventional k -means can be

performed on it to obtain the final clustering result.

3 The Proposed Method

For multi-view data, learning a common latent representation for all views is
one of the most favorite approaches in the field of multi-view clustering. How-
ever, how to learn a compact and discriminative common representation for the
incomplete multi-view data is a challenge task. In this section, a novel multi-view
clustering framework shown in Fig. 1 is provided to address this issue, in which
the local information of each view and the complementary information across
different views are jointly integrated.

Fig. 1. The description of IMC GRMF. In this work, we suppose that there are only
nc samples (paired samples) have features of all views.

3.1 Learning Model of the Proposed Method

In past years, exploiting the locality geometric structure of data has been proved
an effective approach for representation learning, which not only can improve the
discriminability and compactness of the learned representation, but also avoids
overfitting [3,13,16,20,22,26,27]. For example, in [13,16], a nearest neighbor
graph is introduced to constrain the new representation or basis for incomplete
multi-view clustering. Although the purpose is realized, the complexity is also
increased because they commonly introduce at least one tunable penalty param-
eter to the model. Since some basic models already have two or more tuned
parameters, introducing any extra tuned parameter to the model will greatly
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increase the burden in parameter selection. So the conventional graph embed-
ding approaches are not a good choice to guide the representation learning. In
this section, we propose a novel and simple approach to solve this challenge, in
which the local information of each view are embedded into the learning model
based on the following Lemma [21].

Lemma 1: For three samples {x1, x2, x3} ∈ Rm, suppose x1 and x2 are the
nearest neighbor to each other, x3 is not the nearest neighbor to samples x1

and x2. If there is a complete dictionary U ∈ Rk×m that satisfies xi = piU
(i = {1, 2, 3}), where pi ∈ Rk can be viewed as the reconstruction coefficient.
Then we have the following conclusion: the reconstructed sample p2U (p1U)
is also the nearest neighbor to the original sample x1 (x2) and is still not the
nearest neighbor to sample x3.

The proof to Lemma 1 is very simple and thus we omit it here. From Lemma 1,
we know that the reconstruction operation does not destroy the local geometric
structure of the original data. Inspired by this motivation, we design the fol-
lowing objective function to exploit the local information of data for common
representation learning:

min
P (k),U(k)

v∑

k=1

nc+nk∑

j=1

nc+nk∑

i=1

∥
∥
∥x

(k)
i − p

(k)
j U (k)

∥
∥
∥
2

2
w

(k)
i,j +λ2

v∑

k=1

∥
∥P (k)

∥
∥
1

s.t.U (k)U (k)T = I,

(2)

where λ2 is a penalty parameter. p
(k)
j is the new representation of the jth sample

in the kth view. w
(k)
i,j is a binary value which is simply pre-defined as follows:

w
(k)
i,j =

{
1, if x

(k)
i ∈ Φ

(
x
(k)
j

)
or x

(k)
j ∈ Φ

(
x
(k)
i

)

0, otherwise,
(3)

where Φ
(
x
(k)
j

)
denotes the sample set of nearest neighbors to sample x

(k)
j .

By introducing the binary weight to regularize the data reconstruction, the
locality structure of the original data in each view can be well preserved. Mean-
while, from (2), we can find that the proposed method does not introduce any
extra regularization term and corresponding tuned parameter to preserve such
locality property, which greatly reduces the complexity of penalty parameter
selection in comparison with the other graph regularized IMC methods, such
as DCNMF [13] and GPMVC [16] which all commonly introduce at least an
extra tuned penalty parameter to preserve such locality property. For the paired
samples across different views, their new representation should be consensus. To
this end, we further add a regularization term based on the paired information
of different views as follows:

min
P (k),P c,U(k)

v∑

k=1

nc+nk∑

j=1

nc+nk∑

i=1

∥
∥
∥x

(k)
i − p

(k)
j U (k)

∥
∥
∥
2

2
w

(k)
i,j

+λ1

v∑

k=1

∥
∥G(k)P (k) − P c

∥
∥2

F
+ λ2

v∑

k=1

∥
∥P (k)

∥
∥
1

s.t.U (k)U (k)T = I,

(4)
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where λ1 is a penalty parameter. P c ∈ Rc×K is the common latent represen-
tation for the paired samples of different views. G(k) ∈ Rnc×(nc+nk) can be
viewed as an index matrix used to remove the unpaired representation P̄ (k)

from P (k) =
[

P
(k)
c

P̄ (k)

]

. Since the first nc samples of each view are regarded as the

paired samples, matrix G(k) can be simply defined as follows:

G
(k)
i,j =

{
1, if i = j
0, otherwise.

(5)

For model (4), P = [P cT , P̄ (1)T , . . . , P̄ (v)T ]T can be viewed as the new rep-
resentations for all samples. After obtaining the new representations, we use
k -means algorithm to partition those samples into their respective groups. Sev-
eral good properties of the proposed model (4) are summarized as follows.

Remark 1: The proposed method is not only a clustering algorithm, but also an
unsupervised classification algorithm because it can handle the out-of-sample. In
essence, for any sample x

(k)
i in the kth view, its new representation is obtained by

the matrix factorization x
(k)
i = p

(k)
i U (k), which is equivalent to x

(k)
i U (k)T = p

(k)
i

since U (k)U (k)T = I. Therefore, when the basis matrix U (k) is obtained, we
can first achieve the discriminative representation for any new coming sample
y(k) by projecting it onto the basis matrix as p

(k)
y = y(k)U (k)T , and then use the

conventional unsupervised classification methods like k -nearest neighbor classify
to predict its label.

Remark 2: The proposed model (4) is a unified multi-view learning framework,
which can be applied to the incomplete and complete cases by defining different
index matrices G(k).

Remark 3: The proposed method simultaneously exploits the local information
of each view and the complementary information across different views, which
is beneficial to learn a more compact and discriminative representation for clus-
tering, and thus has the potential to perform better. Moreover, embedding the
local information into the model can avoid the overfitting in handing the new
sample.

Remark 4: Most importantly, we do not introduce any extra regularization
term to preserve the local geometric structure of data. In other words, compared
with the conventional graph embedding methods, the proposed method does not
increase the burden of parameter tuning.

Remark 5: The proposed method has the potential to recover the missing
views. Specifically, for a sample with only the kth view x(k), when its new rep-
resentation px(k) is obtained via the proposed method, we can recover its fth
missing view via x(f) = px(k)U (f).
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3.2 Solution to IMC GRMF

For the first term of (4), we can rewrite it into the following equivalent formula

v∑

k=1

nc+nk∑

j=1

nc+nk∑

i=1

∥
∥
∥x

(k)
i − p

(k)
j U (k)

∥
∥
∥
2

2
w

(k)
i,j

=
v∑

k=1

(
Tr

(
X(k)T D(k)X(k)

)
+ Tr

(
U (k)T P (k)T D(k)P (k)U (k)

)

−2Tr
(
X(k)T W (k)P (k)U (k)

)
)

, (6)

where D(k) is a diagonal matrix with each diagonal element D
(k)
i,i =

nc+nk∑

j=1

W
(k)
i,j .

Considering that the first term of (6) is constant and condition U (k)U (k)T = I,
we can simplify (4) as follows according to (6):

L
(
P (k), P c, U (k)

)
= λ1

v∑

k=1

∥
∥
∥G(k)P (k) − P c

∥
∥
∥
2

F
+ λ2

v∑

k=1

∥
∥
∥P (k)

∥
∥
∥
1

+
v∑

k=1

(
Tr

(
P (k)T D(k)P (k)

)
− 2Tr

(
X(k)T W (k)P (k)U (k)

))
.

(7)

Then all variables can be calculated alternatively as follows.

Step 1: Calculate U (k). The basis matrix U (k) for each view can be calculated
by optimizing the following problem:

min
U(k)U(k)T=I

−2Tr
(
X(k)T W (k)P (k)U (k)

)
. (8)

Then we can obtain the optimum value of U (k) as [19,31]:

U (k) = J (k)B(k)T , (9)

where J (k) and B(k) are the right and left singular matrices of (X(k)T W (k)P (k)),
i.e., X(k)T W (k)P (k) = B(k)Σ(k)J (k)T .

Step 2: Calculate P (k). Fixing the other variables, variable P (k) can be calcu-
lated by minimizing the following problem:

min
P (k)

λ1

∥
∥
∥G(k)P (k) − P c

∥
∥
∥
2

F
+ λ2

∥
∥
∥P (k)

∥
∥
∥
1

+Tr
(
P (k)T D(k)P (k)

)
− 2Tr

(
X(k)T W (k)P (k)U (k)

)
.

(10)

Define A(k) = U (k)X(k)T W (k) + λ1P
cT G(k), M (k) = D(k) + λ1G

(k)T G(k).
Obviously, M (k) is still a diagonal matrix with all diagonal elements M

(k)
i,i > 0.

Thus, (10) can be rewritten into the following equivalent problem:

min
P (k)

∥
∥
∥
∥
∥

(
M (k)

) 1
2
P (k) −

(

A(k)
(
M (k)

)− 1
2
)T

∥
∥
∥
∥
∥

2

F

+ λ2

∥
∥
∥P (k)

∥
∥
∥
1
. (11)
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Define C(k) = (A(k)
(
M (k)

)− 1
2 )T , problem (11) can be rewritten as follows

min
P (k)

nc+nk∑

i=1

M
(k)
i,i

∥
∥
∥
∥P

(k)
i,: − C

(k)
i,:

/√

M
(k)
i,i

∥
∥
∥
∥

2

2

+ λ2

∥
∥
∥P

(k)
i,:

∥
∥
∥
1
. (12)

where P
(k)
i,: and C

(k)
i,: denote the ith row vector of matrices P (k) and C(k), respec-

tively. For problem (12), its solution can be computed independently to each row
by the conventional shrinkage operation as follows [19]:

P
(k)
i,: = Θ

λ2

/
2M

(k)
i,i

(

C
(k)
i,:

/√

M
(k)
i,i

)

, (13)

where Θ denotes the shrinkage operator.

Step 3: Calculate P c. Fixing the other variables, the common latent represen-
tation P c can be calculated by solving the following minimization problem:

min
P c

v∑

k=1

∥
∥
∥G(k)P (k) − P c

∥
∥
∥
2

F
. (14)

Problem (14) has the following closed form solution:

P c =
v∑

k=1

G(k)P (k)/v. (15)

Algorithm 1 summarizes the computing procedures of IMC GRMF.

Algorithm 1. IMC GRMF (solving problem (4))
Input: Multi-view X(k), index matrix G(k), k ∈ [1, v], parameters λ1, λ2.
Initialization: Initialize P (k) and U (k) with random values, construct the nearest

neighbor graph W (k), P c =
v∑

k=1

G(k)P (k)

/

v.

while not converged do
for k from 1 to v

Update U (k) using (9).
Update P (k) using (13).

end
Update P c using (15).

end while
Output: P c, P (k), U (k)
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3.3 Computational Complexity and Convergence Property

For Algorithm 1, it is obvious that the biggest computational cost is the singular
value decomposition (SVD) in Step 1. Note that the computational complexities
of matrix multiplication and addition are ignored since their computational costs
are far less than SVD. Thus, we only take into account the computational com-
plexity of Step 1. Generally, the computational complexity of SVD is O(mn2) for
a m×n matrix [11]. Therefore, the computational complexity of Step 1 is about
O

(
vmK2

)
. v is the number of views, K is the reduced dimension or the num-

ber of clusters. Therefore, the computation complexity of the proposed method
listed in Algorithm 1 is about O

(
τvmK2

)
, where τ is the iteration number.

From the above presentations, it is obvious to see that the proposed optimiza-
tion problem (7) is convex with respect to variables P (k), P c, U (k), respectively.
Then we have the following Theorem 1.

Theorem 1: The objective function value of problem (4) is monotonically
decreasing during the iteration.

Proof. Suppose Υ
(
P

(k)
t , P c

t , U
(k)
t

)
denotes the objective function value at the

tth iteration. Since all sub-problems with respect to variables P (k), P c, U (k) are
convex and have the closed form solution, the following inequations are satisfied:

Υ
(
P

(k)
t , P c

t , U
(k)
t

)
≥ Υ

(
P

(k)
t , P c

t , U
(k)
t+1

)

≥ Υ
(
P

(k)
t+1, P

c
t , U

(k)
t+1

)
≥ Υ

(
P

(k)
t+1, P

c
t+1, U

(k)
t+1

)
.

(16)

This inequation illustrates that the objective function value of problem (4)
is monotonically decreasing during the iteration. Thus we complete the proof.

Meanwhile, we can find that problem (4) is lower bounded because it at least
satisfies the condition Υ

(
P

(k)
t , P c

t , U
(k)
t

)
≥ 0, thus Theorem 1 guarantees that

the proposed method will finally converge to the local optimal solution after a
few iterations.

4 Experiments and Analysis

4.1 Experimental Settings

Dataset: (1) Handwritten digit dataset [2]: The used handwritten digit is
composed of 2000 samples from 10 digits, i.e., 0–9. Each sample is represented
by two views, in which the one is represented by a feature vector with 240
features obtained by the average of pixels in 2 × 3 windows, and the other one
is represented by the Fourier coefficient vector with 76 features. (2) BUAA-
visnir face dataset (BUAA) [7]: Following the experimental settings in [28],
we evaluate different methods on the first 10 persons with 90 visual images
and 90 near infrared images. Each image was pre-resized to a 10 × 10 matrix
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and then transformed into the vector. (3) Cornell dataset [1,6]: This dataset
contains 195 webpages collected from the Cornell University. Webpages in the
dataset are partitioned into five classes and each webpage is represented by two
views, i.e., the content view and citation view. (4) Caltech101 dataset [4]:
The original Caltech101 dataset contains 8677 images from 101 objects. In the
experiments, a subset named Caltech7 [10], which is composed of 1474 images
from 7 classes, is used to compare different methods. The popular two types of
features, i.e., GIST and LBP, are extracted from each image as the two views.
The above used datasets are briefly summarized in Table 1.

Evaluation: Three well-known matrices, i.e., clustering accuracy (ACC), nor-
malized mutual information (NMI), and purity are chosen to evaluate the per-
formance of different methods [2]. For the above datasets, we randomly select
the percentage of 10, 30, 50, 70, and 90 samples as the paired samples with all
views, and treat the remaining samples as incomplete samples, in which half of
samples only have one of the views. All methods are repeatedly performed 5
times and their average values (%) are reported for comparison.

Compared Methods: Following the experimental settings in [17,28], we com-
pare the proposed method with the following baselines. (1) BSV (Best Single
View): BSV first fills in the missing views with the average of samples in the
corresponding view, and then performs k -means on each view separately. Finally,
the best clustering result of the two views is reported. (2) Concat: It first fills
in all missing views with the average of samples of the corresponding view, and
then concatenates all views of each sample into one feature vector, followed by
performing k -means to obtain the clustering result. (3) PVC [30]. PVC uses
the non-negative matrix factorization technique to learn a common latent rep-
resentation for incomplete multi-view clustering. (4) IMG [28]: IMG extends
the PVC by embedding the adaptively learned Laplacian graph. (5) Double con-
strained NMF (DCNMF) [13]: DCNMF is an extension of PVC, which further
introduces a Laplacian graph regularizer into PVC. (6) Graph regularized partial
multi-view clustering (GPMVC) [16]: GPMVC can be viewed as an improved
method to DCNMF, which exploits a scale normalization technique in the con-
sensus representation learning term. The code of the proposed method is available
at: http://www.yongxu.org/lunwen.html.

Table 1. Description of the used benchmark datasets.

Database Class No. No. of view No. of samples Feature No. of Vi(1)/Vi(2)

Handwritten digit 10 2 2000 240/76

BUAA 10 2 90 100/100

Cornell 5 2 195 195/1703

Caltech7 7 2 1474 512/928

http://www.yongxu.org/lunwen.html
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4.2 Experimental Results and Analyses

The clustering results of different methods on the above four datasets are enu-
merated in Tables 2, 3, 4, 5 and Fig. 2. It is obvious to see that the proposed
method can significantly improve the ACC, NMI, and purity. In particular, the
proposed method archives nearly 8% higher than those of the related methods
in terms of the ACC on the BUAA dataset. The good performance strongly
validates the effectiveness of the proposed method in handling the IMC tasks.
Besides, we can obtain the following observations from the experimental results.

(1) Generally, with the ratio of missing views decreases, the clustering perfor-
mances of all methods improve obviously. This proves that the complementary
information of different views is very useful in multi-view learning.

(2) In most cases, BSV and Concat perform much worse than the other
methods. This proves that filling in the missing views with the average of samples
of the corresponding view is not a useful approach.

(3) DCNMF, GPMVC and the proposed method perform better than PVC
in most cases. Compared with PVC, the other two methods and the proposed
method all exploit the local geometric structure of each view to guide the rep-
resentation learning. Thus, the experimental results prove that the local infor-
mation of each view contain very useful information, which is beneficial to learn
a more compact and discriminative representation. Meanwhile, we can find that
our method achieves better performance than DCNMF and GPMVC, which
further proves the effectiveness of the proposed novel graph regularization term.

Table 2. ACCs/NMIs (%) of different methods on the handwritten digit dataset.

Method/Rate 0.1 0.3 0.5 0.7 0.9

BSV 43.08/37.04 50.46/44.48 57.39/51.50 64.44/58.61 69.29/66.26

Concat 46.01/47.71 57.46/54.43 66.45/61.12 78.64/70.30 86.63/79.34

PVC 63.81/55.13 70.90/60.85 73.44/64.88 75.20/68.54 77.82/72.83

IMG 69.22/58.04 75.41/62.38 76.36/64.91 77.54/68.21 81.78/73.57

DCNMF 51.21/54.23 76.63/65.56 80.61/74.41 86.16/78.14 89.16/80.90

GPMVC 65.60/60.99 74.04/63.99 76.94/72.23 79.06/73.68 81.08/75.24

Ours 72.70/66.48 79.67/71.28 86.22/77.27 88.98/80.48 90.77/83.55

Table 3. ACCs/NMIs (%) of different methods on the BUAA dataset.

Method/Rate 0.1 0.3 0.5 0.7 0.9

BSV 48.33/43.10 56.96/53.03 64.26/61.78 70.81/69.91 80.16/82.56

Concat 45.62/51.22 46.61/51.95 47.46/52.43 52.34/56.51 57.58/62.66

PVC 57.41/61.35 66.46/67.07 70.01/71.97 75.92/78.70 80.73/84.22

IMG 53.95/54.72 67.39/67.53 76.14/76.74 79.36/82.83 80.78/85.90

DCNMF 58.36/61.78 67.58/68.75 72.15/72.05 76.58/79.66 82.42/86.42

GPMVC 58.98/62.12 68.75/70.25 74.28/74.33 78.28/81.63 84.24/86.78

Ours 63.82/64.64 76.72/76.04 82.76/81.35 86.20/85.77 92.62/91.20
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Table 4. ACCs/NMIs (%) of different methods on the cornell dataset.

Method/Rate 0.1 0.3 0.5 0.7 0.9

BSV 42.41/8.66 43.93/8.19 44.84/8.89 46.32/12.69 47.66/19.34

Concat 38.80/8.07 38.06/7.56 36.96/8.30 36.79/10.21 38.48/13.47

PVC 42.56/15.76 42.56/16.00 43.79/18.21 42.56/19.76 43.03/21.03

IMG 45.13/12.56 45.79/16.62 47.08/19.24 45.51/20.89 44.76/22.98

DCNMF 39.94/13.59 43.29/17.72 43.18/19.17 45.74/21.69 45.52/23.98

GPMVC 40.39/13.90 43.86/16.07 46.53/18.99 44.56/15.03 44.35/17.07

Ours 46.99/17.23 47.40/18.36 49.03/21.01 48.78/22.11 49.20/25.02

Table 5. ACCs/NMIs (%) of different methods on the Caltech7 dataset.

Method/Rate 0.1 0.3 0.5 0.7 0.9

BSV 42.66/29.04 40.97/32.11 39.83/35.13 42.92/38.83 46.99/44.16

Concat 36.83/33.82 31.74/34.44 36.36/34.56 43.38/38.15 47.08/45.44

PVC 43.46/38.99 43.96/40.26 44.46/40.17 44.76/41.60 44.34/41.94

IMG 42.05/32.38 42.36/33.29 42.23/35.05 41.17/35.96 43.23/37.64

DCNMF 40.63/33.86 44.53/38.19 45.62/41.40 48.50/41.24 50.74/44.04

GPMVC 45.57/40.05 47.19/40.96 46.99/41.83 46.99/42.61 49.10/46.02

Ours 50.88/41.01 51.15/42.74 51.40/45.69 51.79/46.78 51.88/48.28
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Fig. 2. Purity (%) of different methods on the above four datasets.
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4.3 Parameter Analysis

Figure 3 shows the ACC versus the parameters λ1 and λ2 on the handwritten
digit and BUAA datasets with 70% paired samples. It is obvious that the ACC
of the proposed method is relatively stable in some local areas, which indicates
that the proposed method is insensitive to the selection of parameters to some
extent. Moreover, we can find that when the two parameters are selected with
proper values from the candidate range of ([100, 102], [10−5, 10−1]), the proposed
method can achieve the satisfactory performance. This indicates that a relative
larger value of parameter λ1 encourages a better performance. In our work, we use
the grid searching approach to find the optimal combinations of the two parame-
ters from the two dimensional grid formed by ([100, 102], [10−5, 10−1]) [24].

Figure 4 plots the relationships of ACC and the number of nearest neighbors
of the proposed method on the handwritten digit and BUAA datasets. From
the figures, we have the following conclusions: (1) The clustering performance is
insensitive to the selection of nearest neighbor number to some extent when the
nearest neighbor number is located in the proper range, such as [8, 18] for the
handwritten digit dataset and [2, 6] for the BUAA dataset. (2) Generally, the
number of nearest neighbors should better be less than the number of sample
of each class. For example, from Fig. 3(b), we can find that when the number of
nearest neighbors is larger than the number of sample per class, i.e., N > 10,
the ACC decreases dramatically. However, in the real world applications, it is
impossible to obtain the real number of sample per class. In this work, we use
the following criterion to select the number of the nearest neighbors. Suppose
we try to partition the available multi-view data with n samples into c groups,
m = n/c. If m � 10, then we empirically select 10 as the number of nearest
neighbors, otherwise we select min(m − 4, 2) as the nearest neighbor number.

(a) Handwritten digit (b) BUAA

Fig. 3. ACC (%) versus parameters λ1 and λ2 of the proposed method on (a) hand-
written digit and (b) BUAA datasets with 70% paired samples.

4.4 Experimental Convergence Study

Figure 5 shows the objective function value and ACC at each iteration step on
the handwritten digit and BUAA datasets with 70% paired samples. From the
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(a) Handwritten digit (b) BUAA

Fig. 4. ACC (%) versus the number of nearest neighbors of our method on (a) hand-
written digit and (b) BUAA datasets with 50% and 70% paired samples.

(a) Handwritten digit (b) BUAA

Fig. 5. The objective function value and ACC (%) versus the iteration step of the
proposed method on (a) handwritten digit and (b) BUAA datasets with 70% paired
samples.

figures, it is obvious to see that the objective function value decreases dramat-
ically in the first few iteration steps (within 20 iterations). The experimental
results plotted in the two figures prove the good convergence property of our
method.

5 Conclusions

In this paper, we propose a novel framework for multi-view learning, which not
only can handle the incomplete and complete multi-view clustering, but also is
able to deal with the out-of-sample. Moreover, the proposed method has the
potential to complete the missing views for any sample. Besides, we provide a
novel approach to exploit the local information of data without introducing any
extra regularization term and penalty parameter, which does not increase the
complexity and computational burden. Extensive experimental results prove the
effectiveness of the proposed method.
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