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Abstract. In this paper, we introduce a method to compress interme-
diate feature maps of deep neural networks (DNNs) to decrease memory
storage and bandwidth requirements during inference. Unlike previous
works, the proposed method is based on converting fixed-point activa-
tions into vectors over the smallest GF(2) finite field followed by nonlin-
ear dimensionality reduction (NDR) layers embedded into a DNN. Such
an end-to-end learned representation finds more compact feature maps by
exploiting quantization redundancies within the fixed-point activations
along the channel or spatial dimensions. We apply the proposed net-
work architectures derived from modified SqueezeNet and MobileNetV2
to the tasks of ImageNet classification and PASCAL VOC object detec-
tion. Compared to prior approaches, the conducted experiments show a
factor of 2 decrease in memory requirements with minor degradation in
accuracy while adding only bitwise computations.

Keywords: Feature map compression · Dimensionality reduction
Network quantization · Memory-efficient inference

1 Introduction

Recent achievements of deep neural networks (DNNs) make them an attractive
choice in many computer vision applications including image classification [7]
and object detection [10]. The memory and computations required for DNNs
can be excessive for low-power deployments. In this paper, we explore the task
of minimizing the memory footprint of DNN feature maps during inference and,
more specifically, finding a network architecture that uses minimal storage with-
out introducing a considerable amount of additional computations or on-the-fly
heuristic encoding-decoding schemes. In general, the task of feature map com-
pression is tightly connected to input sparsity. The input sparsity can determine
several different usage scenarios. This may lead to substantial decrease in mem-
ory requirements and overall inference complexity. First, pen sketches are spa-
tially sparse and can be processed efficiently by recently introduced submanifold
sparse CNNs [5]. Second, surveillance cameras with mostly static input contain
temporal sparsity that can be addressed by Sigma-Delta networks [16]. A more
general scenario presumes a dense input e.g. video frames from a high-resolution
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camera mounted on a moving autonomous car. In this work, we address the
latter scenario and concentrate on feature map compression in order to mini-
mize memory footprint and bandwidth during DNN inference which might be
prohibitive for high-resolution cameras.

We propose a method to convert intermediate fixed-point feature map acti-
vations into vectors over the smallest finite field called the Galois field of two
elements (GF(2)) or, simply, binary vectors followed by compression convolu-
tional layers using a nonlinear dimensionality reduction (NDR) technique embed-
ded into DNN architecture. The compressed feature maps can then be pro-
jected back to a higher cardinality representation over a fixed-point (integer)
field using decompression convolutional layers. A layer fusion method allows to
keep only the compressed feature maps for inference while adding only com-
putationally inexpensive bitwise operations. Compression and decompression
layers over GF(2) can be repeated within the proposed network architecture
and trained in an end-to-end fashion. In brief, the proposed method resem-
bles autoencoder-type [8] structures embedded into a base network that work
over GF(2). Binary conversion and compression-decompression layers are imple-
mented in the Caffe [13] framework and are publicly available1.

The rest of the paper is organized as follows. Section 2 reviews related
work. Section 3 gives notation for convolutional layers, describes conventional
fusion and NDR methods, and explains the proposed method including details
about network training and the derived architectures from SqueezeNet [12] and
MobileNetV2 [20]. Section 4 presents experimental results on ImageNet classifica-
tion and PASCAL VOC object detection using SSD [14], memory requirements,
and obtained compression rates.

2 Related Work

Feature Map Compression Using Quantization. Unlike weight compres-
sion, surprisingly few papers consider feature map compression. This can most
likely be explained by the fact that feature maps have to be compressed for
every network input as opposed to offline weight compression. Previous feature
map compression methods are primarily developed around the idea of represen-
tation approximation using a certain quantization scheme: fixed-point quantiza-
tion [3,6], binary quantization [11,18,21,22], and power-of-two quantization [15].
The base floating-point network is converted to the approximate quantized rep-
resentation and, then, the quantized network is retrained to restore accuracy.
Such methods are inherently limited in finding more compact representations
since the base architecture remains unchanged. For example, the dynamic fixed-
point scheme typically requires around 8-bits of resolution to achieve baseline
accuracy for state-of-the-art network architectures. At the same time, binary net-
works experience significant accuracy drops for large-scale datasets or compact
(not over-parametrized) network architectures. Instead, our method can be con-
sidered in a narrow sense as a learned quantization using binary representation.
1 https://github.com/gudovskiy/fmap compression.

https://github.com/gudovskiy/fmap_compression
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Embedded NDR and Linear Layers. Another interesting approach is
implicitly proposed by Iandola et al. [12]. Although the authors emphasized
weight compression rather than feature map compression, they introduced NDR-
type layers into network architecture that allowed to decrease not only the num-
ber of weights but also feature map sizes by a factor of 8, if one keeps only the
outputs of so-called squeeze layers. The latter is possible because such network
architecture does not introduce any additional convolution recomputations since
squeeze layer computations with a 1 × 1 kernel can be fused with the preceding
expand layers.

Recently, a similar method was proposed for MobileNet architecture [20] with
embedded bottleneck compression layers, which are, unlike SqueezeNet, linear.
Authors view the task of compression aside from the rest of the network and
argue that linear layers are more suitable for compression because no information
is lost. While a small accuracy gain achieved for such layers compared to NDR
layers in floating-point according to their experiments, we believe that it is due to
a larger set of numbers (R vs. R≥0 for NDR with rectified linear unit (ReLU)).
This is justified by our experiments using quantized models with limited set
of available values. We consider the linear compression approach as a subset
of nonlinear. Our work goes beyond previous approaches [12,20] by extending
compression layers to work over GF(2) to find a more compact feature map
representation.

Hardware Accelerator Architectures. Horowitz [9] estimated that off-chip
DRAM access requires approximately 100× more power than local on-chip cache
access. Therefore, currently proposed DNN accelerator architectures propose var-
ious schemes to decrease memory footprint and bandwidth. One obvious solution
is to keep only a subset of intermediate feature maps at the expense of recomput-
ing convolutions [1]. The presented fusion approach seems to be oversimplified
but effective due to high memory access cost. Our approach is complementary
to this work but proposes to keep only compressed feature maps with minimum
additional computations.

Another recent work [17] exploits weight and feature map sparsity using a
more efficient encoding for zeros. While this approach targets similar goals, it
requires having high sparsity, which is often unavailable in the first and the
largest feature maps. In addition, a special control and encoding-decoding logic
decrease the benefits of this approach. In our work, compressed feature maps
are stored in a dense form without the need of special control and enconding-
decoding logic.

3 Feature Map Compression Methods

3.1 Model and Notation

The input feature map of lth convolutional layer in commonly used DNNs can be
represented by a tensor Xl−1 ∈ R

Ć×H×W , where Ć, H and W are the number
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of input channels, the height and the width, respectively. The input Xl−1 is
convolved with a weight tensor Wl ∈ R

C×Ć×Hf×Wf , where C is the number
of output channels, Hf and Wf are the height and the width of filter kernel,
respectively. A bias vector b ∈ R

C is added to the result of convolution operation.
Once all C channels are computed, an element-wise nonlinear function is applied
to the result of the convolution operations. Then, the cth channel of the output
tensor Xl ∈ R

C×H×W can be computed as

Xl
c = g

(
Wl

c ∗ Xl−1 + bc

)
, (1)

where ∗ denotes convolution and g() is some nonlinear function. In this paper,
we assume g() is the most commonly used ReLU defined as g(x) = max (0, x)
such that all activations are non-negative.

Fig. 1. The unified model of conventional methods: fusion allows to keep only bottleneck
feature maps and quantization compresses each activation.

3.2 Conventional Methods

We formally describe previously proposed methods briefly reviewed in Sect. 2
using the unified model illustrated in Fig. 1. To simplify notation, biases are not
shown. Consider a network built using multiple convolutional layers and pro-
cessed according to (1). Similar to Alwani et al. [1], calculation of N sequen-
tial layers can be fused together without storing intermediate feature maps
Xl−N+1, . . . ,Xl−1. For example, fusion can be done in a channel-wise fashion
using memory buffers which are much smaller than the whole feature map. Then,
feature map Xl ∈ R can be quantized into X̂

l ∈ Q using a nonlinear quantiza-
tion function q() where Q is a finite field over integers. The quantization step
may introduce a drop in accuracy due to imperfect approximation. The network
can be further finetuned to restore some of the original accuracy [3,6]. The net-
work architecture is not changed after quantization and feature maps can be
compressed only up to a certain suboptimal bitwidth resolution.

The next step implicitly introduced by SqueezeNet [12] is to perform NDR
using an additional convolutional layer. A mapping X̂

l ∈ QC×H×W → Ŷ
l ∈
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QC̃×H×W can be performed using projection weights Pl ∈ R
C̃×C×Hf×Wf , where

the output channel dimension C̃ < C. Then, only the compressed bottleneck
feature map Ŷ

l
needs to be stored in the memory buffer. During the inverse steps,

the compressed feature map can be projected back onto the higher-dimensional
tensor X̂

l+1 ∈ Q using weights Rl ∈ R
C×C̃×Hf×Wf and, lastly, converted back

to Xl+1 ∈ R using an inverse quantization function q−1(). In the case of a fully
quantized network, the inverse quantization can be omitted.

In practice, the number of bits for the feature map quantization step depends
on the dataset, network architecture and desired accuracy. For example, over-
parameterized architectures like AlexNet may require only 1 or 2 bits for small-
scale datasets (CIFAR-10, MNIST, SVHN), but experience significant accuracy
drops for large-scale datasets like ImageNet. In particular, the modified AlexNet
(with the first and last layers kept in full-precision) top-1 accuracy is degraded
by 12.4% and 6.8% for 1-bit XNOR-Net [18] and 2-bit DoReFa-Net [22], respec-
tively. At the same time, efficient network architectures e.g. [12] using NDR
layers require 6–8 bits for the fixed-point quantization scheme on ImageNet and
fail to work with lower precision activations. In this paper, we follow the path to
select an efficient base network architecture and then introduce additional com-
pression layers to obtain smaller feature maps as opposed to initially selecting
an over-parametrized network architecture for quantization.

3.3 Proposed Method

Representation over GF(2). Consider a scalar x from Xl ∈ R. A conventional
feature map quantization step can be represented as a scalar-to-scalar mapping
or a nonlinear function x̂ = q(x) such that

x ∈ R
1×1 q()−−→ x̂ ∈ Q1×1 : min‖x − x̂‖2, (2)

where x̂ is the quantized scalar, Q is the GF(2B) finite field for fixed-point
representation and B is the number of bits.

We can introduce a new x̂ representation by a linear binarization function
b() defined by

x̂ ∈ Q1×1 b()−−→ x̃ ∈ BB×1 : x̃ = b ⊗ x̂, (3)

where ⊗ is a bitwise AND operation, vector b = [20, 21, . . . , 2B−1]T and B is
GF(2) finite field.

An inverse linear function b−1() can be written as

x̃ ∈ BB×1 b−1()−−−→ x̂ ∈ Q1×1 : x̂ = bT x̃ = bTb ⊗ x̂ = (2B − 1) ⊗ x̂. (4)

Equations (3)–(4) show that a scalar over a higher cardinality finite field can
be linearly converted to and from a vector over a finite field with two ele-
ments. Based on these derivations, we propose a feature map compression
method shown in Fig. 2. Similar to [3], we quantize activations to obtain X̂

l
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Fig. 2. Scheme of the proposed method: binarization is added and compression happens
in GF(2) followed by inverse operations.

and, then, apply transformation (3). The resulting feature map can be rep-
resented as X̃

l ∈ BB×C×H×W . For implementation convenience, a new bit
dimension can be concatenated along channel dimension resulting in the feature
map X̃

l ∈ BBC×H×W . Next, a single convolutional layer using weights Pl or a
sequence of layers with Pl

i weights can be applied to obtain a compressed repre-
sentation over GF(2). Using the fusion technique, only the compressed feature
maps Ỹ

l ∈ B need to be stored in memory during inference. Non-compressed fea-
ture maps can be processed using small buffers e.g. in a sequential channel-wise
fashion. Lastly, the inverse function b−1() from (4) using convolutional layers Rl

i

and inverse of quantization q−1() undo the compression and quantization steps.

Fig. 3. Forward and backward passes during inference and backpropagation.

Learning over GF(2). The graph model shown in Fig. 3 explains details about
the inference (forward pass) and backpropagation (backward pass) phases of the
newly introduced functions. The inference pass represents (3)–(4) as explained
above. The backpropagation pass may seem non-obvious at first glance. One
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difficulty related to the quantized network is that the quantization function
itself is not differentiable. Many studies e.g. [3] show that a mini-batch-averaged
floating-point gradient practically works well assuming a quantized forward pass.
The new functions b() and b−1() can be represented as gates that make hard
decisions similar to ReLU. The gradient of b−1() can then be calculated using
results of Bengio et al. [2] as

∇̂ ∈ R
1×1 b−1()−−−→ ∇̃ ∈ R

B×1 : ∇̃ = 1x̃>0∇. (5)

Lastly, the gradient of b() is just a scaled sum of the gradient vector calculated
by

∇̃ ∈ R
B×1 b()−−→ ∇̂ ∈ R

1×1 : ∇̂ = 1T ∇̃ = 1T1x̃>0∇ = ‖x̃‖0∇, (6)

where ‖x̃‖0 is a gradient scaling factor that represents the number of nonzero
elements in x̃ . Practically, the scaling factor can be calculated based on statis-
tical information only once and used as a static hyperparameter for gradient
normalization.

Since the purpose of the network is to learn and keep only the smallest Ỹ
l
, the

choice of Pl and Rl initialization is important. Therefore, we can initialize these
weight tensors by an identity function that maps the non-compressed feature
map to a truncated compressed feature map and vice versa. That provides a good
starting point for training. At the same time, other initializations are possible
e.g. noise sampled from some distribution studied by [2] can be added as well.

Fig. 4. SqueezeNet architecture example: fire module is extended by the proposed
method.

Network Architecture. A base network architecture can be selected among
existing networks with the embedded bottleneck layers e.g. SqueezeNet [12] or
MobileNetV2 [20]. We explain how a base network architecture can be modified
according to Sect. 3.3 using SqueezeNet example.
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The latter network architecture consists of a sequence of fire modules where
each module contains two concatenated expand layers and a squeeze layer illus-
trated in Fig. 4. The squeeze layers perform NDR over the field of real or, in
case of the quantized model, integer numbers. Specifically, the size of the con-
catenated expand 1×1 and expand 3×3 layers is compressed by a factor of 8
along channel dimension by squeeze 1×1 layer. Activations of only the latter
one can be stored during inference using the fusion method. According to the
analysis presented in Gysel et al. [6], activations quantized to 8-bit integers do
not experience significant accuracy drop.

The quantized squeeze layer feature map can be converted to its binary rep-
resentation following Fig. 2. Then, the additional compression rate is defined by
selecting parameters of Pl

i. In the simplest case, only a single NDR layer needs
to be introduced with the weights Pl. In general, a number of NDR layers can be
added with 1× 1, 3× 3 and other kernels with or without pooling at the expense
of increased computational cost. For example, 1× 1 kernels allow to learn opti-
mal quantization and to compensate redundancies along channel dimension only.
But 3× 3 kernels can address spatial redundancies and, while being implemented
with stride 2 using convolutional-deconvolutional layers, decrease feature map
size along spatial dimensions.

MobileNetV2 architecture can be modified using the proposed method with
few remarks. First, its bottleneck layers compress feature maps by a 1× 1 kernel
with variable compression factor from 2 to 6 unlike fixed factor in SqueezeNet.
Second, linear compression layers either have to be turned into NDR layers
by adding ReLUs or implementation of compression-decompression layers needs
to support negative integers. In practice, the former approach might be less
cumbersome.

4 Experiments

4.1 ImageNet Classification

We implemented the new binarization layers from Sect. 3 as well as quantization
layers using modified [6] code in the Caffe [13] framework. The latter code is mod-
ified to accurately support binary quantization during inference and training.
SqueezeNetV1.1 and MobilenetV2 are selected as a base floating-point network
architectures, and their pretrained weights were downloaded from the publicly
available sources2,3.

SqueezeNet Architecture. We compress the fire2/squeeze and fire3/squeeze
layers which consume 80% of total network memory footprint when fusion is
applied due to high spatial dimensions. The input to the network has a resolution
of 227× 227, and the weights are all floating-point.

2 https://github.com/DeepScale/SqueezeNet.
3 https://github.com/shicai/MobileNet-Caffe.

https://github.com/DeepScale/SqueezeNet
https://github.com/shicai/MobileNet-Caffe
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Table 1. SqueezeNet ImageNet accuracy: A - fire2,3/squeeze feature maps and
W - weights.

Model W size, MB A size, KB Top-1 accuracy, % Top-5 accuracy, %

fp32 4.7 392.0 58.4 81.0

Quantized

uint8 4.7 98.0 58.6(58.3) 81.1(81.0)

uint6 4.7 73.5 57.8(55.5) 80.7(78.7)

uint4 4.7 49.0 54.9(18.0) 78.3(34.2)

Proposed: b() → 1 × 1 → 1 × 1 → b−1()

uint6 5.0 73.5 58.8 81.3

uint4 4.9 49.0 57.3 80.0

Proposed: b() → 3 × 3/2 → 3 × 3 ∗ 2 → b−1()

uint8 7.6 24.5 54.1 77.4

uint6 6.9 18.4 53.8 77.2

The quantized and compressed models are retrained for 100,000 iterations
with a mini-batch size of 1024 on the ImageNet [19] (ILSVRC2012) training
dataset, and SGD solver with a step-policy learning rate starting from 1e-3
divided by 10 every 20,000 iterations. Although this large mini-batch size was
used by the original model, it helps the quantized and compressed models to
estimate gradients as well. The compressed models were derived and retrained
iteratively from the 8-bit quantized model. Table 1 reports top-1 and top-5 infer-
ence accuracies of 50,000 images from ImageNet validation dataset.

According to Table 1, the retrained quantized models experience −0.2%, 0.6%
and 3.5% top-1 accuracy drops for 8-bit, 6-bit and 4-bit quantization, respec-
tively. For comparison, the quantized models without retraining are shown in
parentheses. The proposed compression method using 1 × 1 kernels allows us
to restore corresponding top-1 accuracy by 1.0% and 2.4% for 6-bit and 4-bit
versions at the expense of a small increase in the number of weights and bit-
wise convolutions. Moreover, we evaluated a model with a convolutional layer
followed by a deconvolutional layer both with a 3 × 3 stride 2 kernel at the
expense of a 47% increase in weight size for 6-bit activations. That allowed us to
decrease feature maps in spatial dimensions by exploiting local spatial quantiza-
tion redundancies. Then, the feature map size is further reduced by a factor of 4,
while top-1 accuracy dropped by 4.3% and 4.6% for 8-bit and 6-bit activations,
respectively. A comprehensive comparison for fully quantized models with the
state-of-the-art binary and ternary networks is given below.

MobileNetV2 Architecture. We compress the conv2 1/linear feature map
which is nearly 3× larger than any other bottleneck layer feature map. The
same training hyperparameters are used as in previous experiment setup with
few differences. The number of iterations is 50,000 with proportional change in
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Table 2. MobileNetV2 ImageNet accuracy: A - conv2 1/linear feature maps and
W - weights.

Model W size, MB A size, KB Top-1 accuracy, % Top-5 accuracy, %

fp32 13.5 784.0 71.2 90.2

Quantized

int9 13.5 220.5 71.5(71.2) 89.9(90.2)

int7 13.5 171.5 71.5(68.5) 89.8(88.4)

int5 13.5 122.5 70.9(7.3) 89.4(17.8)

Modified: ReLU nonlinearity added

uint8 13.5 196.0 71.6 90.0

Proposed: b() → 1 × 1 → 1 × 1 → b−1()

uint6 13.7 147.0 70.9 89.4

uint4 13.6 98.0 69.5 88.5

Proposed: b() → 2 × 2/2 → 2 × 2 ∗ 2 → b−1()

uint8 14.2 49.0 66.6 86.9

uint6 14.0 36.8 66.7 86.9

learning rate policy. Second, we add a ReLU layer after conv2 1/linear to be
compatible with the current implementation of the compression method. Hence,
the conv2 1/linear feature map contains signed integers in the original model and
unsigned integers in the modified one. Lastly, we found that batch normalization
layers cause some instability to training process. Therefore, normalization and
scaling parameters are fixed and merged into weights and biases of convolutional
layers. Then, the modified model was retrained from the original one.

According to Table 2, the original (without ReLU) quantized models after
retraining experience −0.3%, −0.3% and 0.3% top-1 accuracy drops for 9-
bit, 7-bit and 5-bit quantization, respectively. For comparison, the quantized
models without retraining are shown in parentheses. Surprisingly, quantized
MobileNetV2 is resilient to smaller bitwidths with only 0.6% degradation for
5-bit model compared to 9-bit one. The modified (with ReLU nonlinearity) 8-bit
model outperforms all the original quantized model by 0.1%, even the one with
more bits, unlike results reported by [20] for floating-point models. Hence, the
conclusions about advantages of linear compression layers could be reconsidered
in finite (integer) field. Accuracies of the proposed models using 1×1 kernels are
on par with the conventional quantization approaches. Most likely, lack of batch
normalization layers does not allow to increase accuracy which should be inves-
tigated. The proposed models with a convolutional-deconvolutional layers and
2 × 2 stride 2 kernel compress feature maps by another factor of 2 with around
4.5% accuracy degradation and 5% increase in weight size. A comparison in the
object detection section further compares 2 × 2 and 3 × 3 stride 2 kernels and
concludes that the former one is preferable due to accuracy and size.
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Table 3. ImageNet accuracy: W - weights, A - feature maps, F - fusion, Q - quantiza-
tion, C - compression.

Model Base network W, bits W size, MB A, bits A size, KB Top-1 Acc., % Top-5 Acc., %

AlexNet - 32 232 32 3053.7 56.6 79.8

AlexNet - 32 232 6 572.6 55.8 79.2

XNOR-Net AlexNet 1a 22.6 1 344.4b 44.2 69.2

XNOR-Net ResNet-18 1a 3.34 1 1033.0b 51.2 73.2

DoReFa-Net AlexNet 1a 22.6 1 95.4 43.6 -

DoReFa-Net AlexNet 1a 22.6 2 190.9 49.8 -

DoReFa-Net AlexNet 1a 22.6 4 381.7 53.0 -

Tang’17 AlexNet 1c 7.43 2 190.9 46.6 71.1

Tang’17 NIN-Net 1c 1.23 2 498.6 51.4 75.6

The proposed models

SqueezeNet - 32 4.7 32 12165.4 58.4 81.0

F+Q SqueezeNet 8 1.2 8 189.9 58.3 80.8

F+Q+C(1× 1) SqueezeNet 8 1.2 6(8)d 165.4 58.3(58.8)e 81.0(81.3)e

F+Q+C(1× 1) SqueezeNet 8 1.2 4(8)d 140.9 56.6(57.3)e 79.7(80.0)e

F+Q+C(3× 3s2) SqueezeNet 8 1.9 8(8)d 116.4 53.5(54.1)e 76.7(77.4)e

F+Q+C(3× 3s2) SqueezeNet 8 1.7 6(8)d 110.3 53.0(53.8)e 76.8(77.2)e

a Weights are not binarized for the first and the last layer.
b Activation size estimates are based on 8-bit assumption since it is not clear from [18] whether the

activations were binarized or not for the first and the last layer.
c Weights are not binarized for the first layer.
d Number of bits for the compressed fire2,3/squeeze layers and, in parentheses, for the rest of layers.
e For comparison, accuracy in parentheses represents result for the corresponding model in Table 1.

Comparison with Binary and Ternary State-of-the-Art. We compare
recently reported ImageNet results for low-precision networks as well as sev-
eral configurations of the proposed approach for which, unlike previous exper-
iments, all weights and activations are quantized. Most of the works use the
over-parametrized AlexNet architecture while ours is based on the SqueezeNet
architecture in this comparison. Table 3 shows accuracy results for base networks
as well as their quantized versions. Binary XNOR-Net [18] estimates based on
AlexNet as well as ResNet-18. DoReFa-Net [22] is more flexible and can adjust
the number of bits for weights and activations. Since its accuracy is limited by the
number of activation bits, we present three cases with 1-bit, 2-bit, and 4-bit acti-
vations. The most recent work [21] solves the problem of binarizing the last layer
weights, but weights of the first layer are full-precision. Overall, AlexNet-based
low-precision networks achieve 43.6%, 49.8%, 53.0% top-1 accuracy for 1-bit,
2-bit and 4-bit activations, respectively. Around 70% of the memory footprint is
defined by the first two layers of AlexNet. The fusion technique is difficult in such
architectures due to large kernel sizes (11 × 11 and 5×5 for AlexNet) which can
cause extra recomputations. Thus, activations require 95.4 KB, 190.0 KB and
381.7 KB of memory for 1-bit, 2-bit and 4-bit models, respectively. The NIN-
based network from [21] with 2-bit activations achieves 51.4% top-1 accuracy,
but its activation memory is larger than AlexNet due to late pooling layers.

The SqueezeNet-based models in Table 3 are finetuned from the correspond-
ing models in Table 1 for 40,000 iterations with a mini-batch size of 1024, and
SGD solver with a step-policy learning rate starting from 1e-4 divided by 10 every
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10,000 iterations. The model with fusion and 8-bit quantized weights and activa-
tions, while having an accuracy similar to floating-point model, outperforms the
state-of-the-art networks in terms of weight and activation memory. The pro-
posed four models from Table 1 further decrease activation memory by adding
compression-decompression layers to fire2,3 modules. This step allowed us to
shrink memory from 189.9 KB to 165.4 KB, 140.9 KB, 116.4 KB and 110.3 KB
depending on the compression configuration. More compression is possible, if the
proposed approach is applied to other squeeze layers.

4.2 PASCAL VOC Object Detection Using SSD

Accuracy Experiments. We evaluate object detection using the Pascal
VOC [4] dataset which is a more realistic application for autonomous cars where
the high-resolution cameras emphasize feature map compression benefits. The
VOC2007 test dataset contains 4,952 images and a training dataset of 16,551
images is a union of VOC2007 and VOC2012. We adopted the SSD512 model [14]
for the proposed architecture. SqueezeNet pretrained on ImageNet is used as a
feature extractor instead of the original VGG-16 network. This reduces number
of parameters and overall inference time by a factor of 4 and 3, respectively. The
original VOC images are rescaled to 512 × 512 resolution. As with ImageNet
experiments, we generated several models for comparisons: a base floating-point
model, quantized models, and compressed models. We apply quantization and
compression to the fire2/squeeze and fire3/squeeze layers which represent, if the
fusion technique is applied, more than 80% of total feature map memory due to
their large spatial dimensions. Typically, spatial dimensions decrease quadrat-
ically because of max pooling layers compared to linear growth in the depth
dimension. The compressed models are derived from the 8-bit quantized model,
and both are retrained for 10,000 iterations with a mini-batch size of 256 using
SGD solver with a step-policy learning rate starting from 1e-3 divided by 10
every 2,500 iterations.

Table 4 presents mean average precision (mAP) results for SqueezeNet-based
models as well as size of the weights and feature maps to compress. The 8-bit
quantized model with retraining drops accuracy by less than 0.04%, while 6-bit,
4-bit and 2-bit models decrease accuracy by 0.5%, 2.2% and 12.3%, respectively.
For reference, mAPs for the quantized models without retraining are shown in
parentheses. Using the proposed compression-decompression layers with a 1 × 1
kernel, mAP for the 6-bit model is increased by 0.5% and mAP for the 4-bit is
decreased by 0.5%. We conclude that compression along channel dimension is not
beneficial for SSD unlike ImageNet classification either due to low quantization
redundancy in that dimension or the choice of hyperparameters e.g. mini-batch
size. Then, we evaluate the models with spatial-dimension compression which
is intuitively appealing for high-resolution images. Empirically, we found that
a 2× 2 kernel with stride 2 performs better than a corresponding 3× 3 kernel
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Table 4. VOC2007 SSD512 accuracy: A - fire2,3/squeeze feature maps and
W - weights.

Model W size, MB A size, KB mAP, %

fp32 23.7 2048 68.12

Quantized

uint8 23.7 512 68.08(68.04)

uint6 23.7 384 67.66(67.14)

uint4 23.7 256 65.92(44.13)

uint2 23.7 128 55.86(0.0)

Proposed b() → 1 × 1 → 1 × 1 → b−1()

uint6 23.9 384 68.17

uint4 23.8 256 65.42

Proposed: b() → 3 × 3/2 → 3 × 3 ∗ 2 → b−1()

uint8 26.5 128 63.53

uint6 25.9 96 62.22

Proposed: b() → 2 × 2/2 → 2 × 2 ∗ 2 → b−1()

uint8 24.9 128 64.39

uint6 24.6 96 62.09

Table 5. SSD512 memory requirements: A - feature map, F - fusion, Q - quantization,
C - compression (2 × 2s2).

A size, KB Base, fp32 F, fp32 F+Q, uint8 F+Q, uint4 F+Q+C, uint8

input (int8) 768 768 768 768 768

conv1 16384 0 0 0 0

mpool1 4096 0 0 0 0

fire2,3/squeeze 2048 2048 512 256 128

fire2,3/expand 16384 0 0 0 0

Total 38912 2048 512 256 128

mAP, % 68.12 68.12 68.08 65.92 64.39

Compression - 19 × 76× 152 × 304×

while requiring less parameters and computations. According to Table 4, an 8-
bit model with 2× 2 kernel and downsampling-upsampling layers achieves 1%
higher mAP than a model with 3× 3 kernel and only 3.7% lower than the base
floating-point model.

Memory Requirements. Table 5 summarizes memory footprint benefits for
the evaluated SSD models. Similar to the previous section, we consider only the
largest feature maps that represent more than 80% of total activation memory.
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Assuming that the input frame is stored separately, the fusion technique allows to
compress feature maps by a factor of 19. Note that no additional recomputations
are needed. Second, conventional 8-bit and 4-bit fixed-point models decrease the
size of feature maps by a factor of 4 and 8, respectively. Third, the proposed
model with 2× 2 stride 2 kernel gains another factor of 2 compression compared
to 4-bit fixed-point model with only 1.5% degradation in mAP. This result is
similar to ImageNet experiments which showed relatively limited compression
gain along channel dimension only. At the same time, learned quantization along
combined channel and spatial dimensions pushes further compression gain. In
total, the memory footprint for this feature extractor is reduced by two orders
of magnitude.

5 Conclusions

We introduced a method to decrease memory storage and bandwidth require-
ments for DNNs. Complementary to conventional approaches that use layer
fusion and quantization, we presented an end-to-end method for learning fea-
ture map representations over GF(2) within DNNs. Such a binary representa-
tion allowed us to compress network feature maps in a higher-dimensional space
using autoencoder-inspired layers embedded into a DNN along channel and spa-
tial dimensions. These compression-decompression layers can be implemented
using conventional convolutional layers with bitwise operations. To be more pre-
cise, the proposed representation traded cardinality of the finite field with the
dimensionality of the vector space which makes possible to learn features at the
binary level. The evaluated compression strategy for inference can be adopted
for GPUs, CPUs or custom accelerators. Alternatively, existing binary networks
can be extended to achieve higher accuracy for emerging applications such as
object detection and others.
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