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Abstract. This paper deals with motion capture of kinematic chains
(e.g. human skeletons) from monocular image sequences taken by uncal-
ibrated cameras. We present a method based on projecting an observa-
tion onto a kinematic chain space (KCS). An optimization of the nuclear
norm is proposed that implicitly enforces structural properties of the
kinematic chain. Unlike other approaches our method is not relying on
training data or previously determined constraints such as particular
body lengths. The proposed algorithm is able to reconstruct scenes with
little or no camera motion and previously unseen motions. It is not only
applicable to human skeletons but also to other kinematic chains for
instance animals or industrial robots. We achieve state-of-the-art results
on different benchmark databases and real world scenes.

1 Introduction

Monocular human motion capture is an important and large part of recent
research. Its applications range from surveillance, animation, robotics to med-
ical research. While there exists a large number of commercial motion capture
systems, monocular 3D reconstruction of human motion plays an important role
where complex hardware arrangements are not feasible or too costly.

Recent approaches to the non-rigid structure from motion problem [1–4]
achieve good results for laboratory settings. They are designed to work with
tracked 2D points from arbitrary 3D point clouds. To resolve the duality of
camera and point motion they require sufficient camera motion in the observed
sequence. On the other hand, in many applications (e.g. human motion capture,
animal tracking or robotics) properties of the tracked objects are known. Exploit-
ing known structural properties for non-rigid structure from motion problems is
rarely considered e.g. by using example based modeling as in [5] or constancy
of bone lengths in [6]. Recently, linear subspace training approaches have been
proposed [6–11]. They can efficiently represent human motion, even for 3D recon-
struction from single images. However, they require extensive training on known
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Fig. 1. Mapping from a 3D point representation to the kinematic chain space. The
vectors in the KCS equal to directional vectors in the 3D point representation. The
sphere shows the trajectories of left and right lower arm in KCS. Since both bones have
the same length their trajectories lie on the same sphere.

motions which restricts them to reconstructions of the same motion category.
Further, training based approaches cannot recover individual subtleties in the
motion (e.g. limping instead of walking) sufficiently well.

This paper closes the gap between non-rigid structure from motion and
subspace-based human modeling. Similar to other approaches which depend on
the work of Bregler et al. [12], we decompose an observation matrix in three
matrices corresponding to camera motion, transformation and basis shapes.
Unlike other works that find a transformation which enforces properties of the
camera matrices, we develop an algorithm that optimizes the transformation
with respect to structural properties of the observed object. This reduces the
amount of camera motion necessary for a good reconstruction. We experimen-
tally found that even sequences without camera motion can be reconstructed.
Unlike other works in the field of human modeling we propose to first project
the observations in a kinematic chain space (KCS) before optimizing a repro-
jection error with respect to our kinematic model. Figure 1 shows the mapping
between the KCS and the representation based on 2D or 3D feature points. It is
done by multiplication with matrices which implicitly encode a kinematic chain
(cf. Sect. 3.1). This representation enables us to derive a nuclear norm optimiza-
tion problem which can be solved efficiently. Imposing a low rank constraint
on a Gram matrix has shown to improve 3D reconstructions [3]. However, the
method of [3] is only based on constraining the camera motion. Therefore, it
requires sufficient camera motion. The KCS allows to use a geometric constraint
which is based on the topology of the underlying kinematic chain. Thus, the
required amount of camera motion is much lower.

We evaluate our method on different standard databases (CMU MoCap [13],
KTH [14], HumanEva [15], Human3.6M [16]) as well as on our own databases
qualitatively and quantitatively. The proposed algorithm achieves state-of-the-
art results and can handle problems like motion transfers and unseen motion.
Due to the noise robustness of our method we can apply a CNN-based joint
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labeling algorithm [17,18] for RGB images as input data which allows us to
directly reconstruct human poses from unlabeled videos. Although this method
is developed for human motion capture it is applicable to other kinematic chains
such as animals or industrial robots as shown in the experiments in Sect. 4.3.

Summarizing, our contributions are:

– We propose a method for 3D reconstruction of kinematic chains from monoc-
ular image sequences.

– An objective function based on structural properties of kinematic chains is
derived that not only imposes a low-rank assumption on the shape basis but
also has a physical interpretation.

– We propose using a nuclear norm optimization in a kinematic chain space.
– In contrast to other works our method is not limited to previously learned

motion patterns and does not use strong anthropometric constraints such
a-priorly determined bone lengths.

2 Related Work

The idea of decomposing a set of 2D points tracked over a sequence into matri-
ces whose entries are identified with the parameters of shape and motion was
first proposed by Tomasi and Kanade [19]. A generalization of this algorithm
to deforming shapes was proposed by Bregler et al. [12]. They assume that
the observation matrix can be factorized into two matrices representing cam-
era motion and multiple basis shapes. After an initial decomposition is found
by singular value decomposition (SVD) of the observation matrix they com-
pute a transformation matrix by enforcing camera constraints. Xiao et al. [20]
showed that the basis shapes of [12] are ambiguous. They solved this ambiguity
by employing basis constraints on them. As shown by Akther et al. [1] these
basis constraints are still not sufficient to resolve the ambiguity. Therefore, they
proposed to use an object independent trajectory basis. Torresani et al. [21–23]
proposed to use different priors on the transformation matrix such as additional
rank constraints and Gaussian priors. Gotardo and Martinez [24] built on the
idea of [1] by applying the DCT representation to enforce a smooth 3D shape
trajectory. Parallel to this work they proposed a solution that uses the kernel
trick to also model nonlinear deformations [25] which cannot be represented by
a linear combination of basis shapes. Hamsici et al. [2] also assume a smooth
shape trajectory and apply the kernel trick to learn a mapping between the 3D
shape and the 2D input data. Park et al. [26] introduced activity-independent
spatial and temporal constraints. Inspired by [1] and [26] Valmadre et al. [27]
proposed a dynamic programming approach combined with temporal filtering.
Dai et al. [3] minimize the trace norm of the transformation matrix to impose
a sparsity constraint. Different to [3] Lee et al. [28] define additional constraints
on motion parameters to avoid the sparsity constraint. Since all these methods
assume to work for arbitrary non-rigid 3D objects, none of them utilizes knowl-
edge about the underlying kinematic structure. Rehan et al. [4] were the first
to define a temporary rigidity of reconstructed structures by factorizing a small
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number of consecutive frames. Thereby, they can reconstruct kinematic chains if
the object does not deform much. Due to their sliding window assumption, the
method is even more restricted to scenes with sufficient camera motion.

Several works consider the special case of 3D reconstruction of human motion
from monocular images. A common approach is to previously learn base poses
of the same motion category. These are then linearly combined for the estima-
tion of 3D poses. To avoid implausible poses, most authors utilize properties of
human skeletons to constrain a reprojection error based optimization problem.
However, anthropometric priors such as the sum of squared bone lengths [7],
known limb proportions [8], known skeleton parameters [5], previously trained
joint angle constraints [9] or strong physical constraints [29] all suffer from the
fact that parameters have to be known a-priorly. Zhou et al. [10] propose a con-
vex relaxation of the commonly used reprojection error formulation to avoid the
alternating optimization of camera and object pose. While many approaches try
to reconstruct human poses from a single image [30–35] using anthropometric
priors, such constraints have rarely been used for 3D reconstruction from image
sequences. Wandt et al. [6] constrain the temporal change of bone length with-
out using a predefined skeleton. Zhou et al. [36] combined a deep neural network
that estimates 2D landmarks with 3D reconstruction of the human pose. A dif-
ferent approach is to include sensors as additional information source [37–39].
Other works use a trained mesh model for instance SMPL [40] and project it to
the image plane [41,42]. The restriction to a trained subset of possible human
motions is the major downside of these approaches.

In this paper we combine NR-SfM and human pose modeling without requir-
ing previously learned motions. By using a representation that implicitly models
the kinematic chain of a human skeleton our algorithm is capable to reconstruct
unknown motion from labeled image sequences.

3 Estimating Camera and Shape

The i-th joint of a kinematic chain is defined by a vector xi ∈ R
3 containing the

x, y, z-coordinates of the location of this joint. By concatenating j joint vectors
we build a matrix representing the pose X of the kinematic chain

X = (x1,x2, · · · ,xj). (1)

The pose Xk in frame k can be projected into the image plane by

X ′
k = PkXk, (2)

where Pk is the projection matrix corresponding to a weak perspective cam-
era. For a sequence of f frames, the pose matrices are stacked such that
W = (X ′

1,X
′
2, . . . ,X

′
f )T and X̂ = (X1,X2, . . . ,Xf )T . This implies

W = PX̂, (3)

where P is a block diagonal matrix containing the camera matrices P1,...,f for
the corresponding frame. After an initial camera estimation we subtract a matrix
X0 from the measurement matrix by
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Ŵ = W − PX̂0, (4)

where X̂0 is obtained by stacking X0 multiple times to obtain the same size as
W . Here, we take X0 to be a mean pose. We will provide experimental evidence
that the algorithm proposed in the following is insensitive w.r.t. the choice of
X0 as long as it represents a reasonable configuration of the kinematic chain. In
all the experiments dealing with kinematic chains of humans, we take X0 to be
the average of all poses in the CMU data set.

Following the approach of Bregler et al. [12] we decompose Ŵ by Singular
Value Decomposition to obtain a rank-3K pose basis Q ∈ R

3K×j . While [12] and
similar works then optimize a transformation matrix with respect to orthogo-
nality constraints of camera matrices, we optimize the transformation matrix
with respect to constraints based on a physical interpretation of the underlying
structure. With A as transformation matrix for the pose basis we may write

W = P (X̂0 + AQ). (5)

In the following sections we will present how poses can be projected into the kine-
matic chain space (Sect. 3.1) and how we derive an optimization problem from
it (Sect. 3.2). Combined with the camera estimation (Sect. 3.3) an alternating
algorithm is presented in Sect. 3.4.

3.1 Kinematic Chain Space

To define a bone bk, a vector between the r-th and t-th joint is computed by

bk = pr − pt = Xc, (6)

where
c = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)T , (7)

with 1 at position r and −1 at position t. The vector bk has the same direction
and length as the corresponding bone. Similarly to Eq. (1), a matrix B ∈ R

3×b

can be defined containing all b bones

B = (b1, b2, . . . , bb). (8)

The matrix B is calculated by

B = XC, (9)

where C ∈ R
j×b is built by concatenating multiple vectors c. Analogously to C,

a matrix D ∈ R
b×j can be defined that maps B back to X:

X = BD. (10)

D is constructed similar to C. Each column adds vectors in B to reconstruct
the corresponding point coordinates. Note that C and D are a direct result
of the underlying kinematic chain. Therefore, the matrices C and D perform
the mapping from point representation into the kinematic chain space and vice
versa.



36 B. Wandt et al.

3.2 Trace Norm Constraint

One of the main properties of human skeletons is the fact that bone lengths do
not change over time.

Let

Ψ = BTB =

⎛
⎜⎜⎜⎝

l21 · · ·
· l22 · ·
· · . . . ·
· · · l2b

⎞
⎟⎟⎟⎠ . (11)

be a matrix with the squared bone lengths on its diagonal. From B ∈ R
3×b

follows rank(B) = 3. Thus, Ψ has rank 3. Note that if Ψ is computed for every
frame we can define a stronger constraint on Ψ . Namely, as bone lengths do not
change for the same person the diagonal of Ψ remains constant.

Proposition 1. The nuclear norm of B is invariant for any bone configuration
of the same person.

Proof. The trace of Ψ equals the sum of squared bone lengths (Eq. (11))

trace(Ψ) =
b∑

i=1

l2i . (12)

From the assumption that bone lengths of humans are invariant during a cap-
tured image sequence the trace of Ψ is constant. The same argument holds for
trace(

√
Ψ ). Therefore, we have

‖B‖∗ = trace(
√

Ψ) = const. (13)

Since this constancy constraint is non-convex we will relax it to derive an easy
to solve optimization problem. Using Eq. (9) we project Eq. (5) into the KCS
which gives

WC = P (X̂0C + AQC) (14)

The unknown is the transformation matrix A. For better readability we define
B0 = X0C and S = QC.

Proposition 2. The nuclear norm of the transformation matrix A for each
frame has to be greater than some scalar c, which is constant for each frame.

Proof. Let B = B1 + B0 be a decomposition of B into the initial bone config-
uration B0 and a difference to the observed pose B1. It follows that

‖B‖∗ = ‖B1 + B0‖∗ = c1, (15)

where c1 is a constant. The triangle inequality for matrix norms gives

‖B1‖∗ + ‖B0‖∗ ≥ ‖B1 + B0‖∗ = c1. (16)
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Since B0 is known, it follows

‖B1‖∗ ≥ c1 − ‖B0‖∗ = c, (17)

where c is constant. B1 can be represented in the shape basis S (cf. Sect. 3) by
multiplying it with the transformation matrix A

B1 = AS. (18)

Since the shape base matrix S is a unitary matrix the nuclear norm of B1 equals

‖B1‖∗ = ‖A‖∗. (19)

By Eq. (17) follows that
‖A‖∗ ≥ c. (20)

Proposition 2 also holds for a sequence of frames. Let Â be a matrix built by
stacking A for each frame and B̂0 be defined similarly, we relax Eq. (20) and
obtain the final formulation for our optimization problem

min
Â

‖Â‖∗

s.t. ‖WC − P (ÂS + B̂0)‖F = 0.
(21)

Equation (21) does not only define a low rank assumption on the transformation
matrix. By the derivation above, we showed that the nuclear norm is reasonable
because it has a concise physical interpretation. More intuitively, the minimiza-
tion of the nuclear norm will give solutions close to a mean configuration B0 of
the bones in terms of rotation of the bones. The constraint in Eq. (21) which
represents the reprojection error prevents the optimization from converging to
the trivial solution ‖A‖∗ = 0. This allows for a reconstruction of arbitrary poses
and skeletons.

Moreover, Eq. (21) is a well studied problem which can be efficiently solved by
common optimization methods such as Singular Value Thresholding (SVT) [43].

3.3 Camera

The objective function in Eq. (21) can also be optimized for the camera matrix
P . Since P is a block diagonal matrix, Eq. (21) can be solved block-wise for each
frame. With X ′

i and Pi corresponding to the observation and camera at frame
i the optimization problem can be written as

min
Pi

‖X ′
iC − Pi(AS + B0)‖F . (22)

Considering the entries in

Pi =
(
p11 p12 p13
p21 p22 p23

)
(23)
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we can enforce a weak perspective camera by the constraints

p211 + p212 + p213 − (p221 + p222 + p223) = 0 (24)

and
p11p21 + p12p22 + p13p23 = 0. (25)

3.4 Algorithm

In the previous sections we derived an optimization problem that can be solved
for the camera matrix P and transformation matrix A respectively. As both are
unknown we propose Algorithm 1 which alternatingly solves for both matrices.
Initialization is done by setting all entries in the transformation matrix A to
zero. Additionally, an initial bone configuration B0 is required. It has to roughly
model a human skeleton but does not need to be the mean of the sequence.

Algorithm 1. Factorization algorithm for kinematic chains
% Input:
B0 ← initial bone configuration
C ← kinematic chain matrix
W ← observation
f ← number of frames
A ← 0

while no convergence do
for t = 1 → f do

optimize ‖XtC − Pt(AS + B0)‖F

insert Pt in P
end for
perform SVT on

min ‖Â‖∗ s.t. ‖W C − P (ÂS + B̂0)‖F = 0
end while

% Output:
P : camera matrices
(ÂS + B̂0)D: 3D poses

4 Experiments

For the evaluation of our algorithm different benchmark data sets (CMU
MoCap [13], HumanEva [15], KTH [14], Human3.6M [16]) were used. As mea-
sure for the quality of the 3D reconstructions we calculate the Mean Per Joint
Position Error (MPJPE) [16] which is defined by
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Fig. 2. Reconstruction of the highly articulated directions sequence from the
Human3.6M data set subject 1.

e =
1
j

j∑
i=1

‖xi − x̂i‖, (26)

where xi and x̂i correspond to the ground truth and estimated positions of the
i-th joint respectively. By rigidly aligning the 3D reconstruction to the ground
truth we obtain the 3D positioning error (3DPE) as introduced by [44]. To
compare sequences of different lengths the mean of the 3DPE over all frames is
used. In the following it is referred to as 3D error.

Additional to this quantitative evaluation we perform reconstructions of dif-
ferent kinematic chains in Sect. 4.3 and on unlabeled image sequences in Sect. 4.4.
All animated meshes in this section are created using SMPL [40]. The SMPL
model is fitted to the reconstructed skeleton and is used solely for visualization.

4.1 Evaluation on Benchmark Databases

To qualitatively show the drawbacks of learning-based approaches we recon-
structed a sequence of a limping person. We use the method of [6] trained on
walking patterns to reconstruct the 3D scene. Although the motions are very

Fig. 3. Reconstruction of a running motion from the CMU database subject 35/17.
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Fig. 4. Knee angle of reconstructions of a limping motion. The learning-based
method [6] struggles to reconstruct minor differences from the motion patterns used
for training whereas our learning-free approach recovers the knee angle in more detail.

similar, the algorithm of [6] is not able to reconstruct the subtle motions of the
limping leg. Figure 4 shows the knee angle of the respective leg. The learning-
based method reconstructs a periodic walking motion and cannot recover the
unknown asymmetric motion which makes it unusable for gait analysis applica-
tions. The proposed algorithm is able to recover the motion in more detail.

We compare our method with the unsupervised works [1,2] and the learning-
based approach of [6]. The codes of [1] and [2] are freely available. Although
there are slightly newer works, these two approaches show the inherent prob-
lem of these unsupervised methods (as also shown in [4]). We are not aware of
any works that are able to reconstruct scenes with very limited or no camera
motion without a model of the underlying structure. Rehan et al. [4] assume a
local rigidity that allows for defining a kinematic chain model. This reduced the
amount of necessary camera motion to 2 degrees per frame. However, due to
their assumption that the observed object is approximately rigid in a small time
window they are limited to a constantly moving camera.

For each sequence we created 20 random camera paths with little or no cam-
era motion and compared our 3D reconstruction results with the other methods.
Table 1 shows the 3D error in mm for different sequences and data sets. For
the entry walk35 we calculated the mean overall 3D errors of all 23 walking
sequences from subject 35 in the CMU database. The columns jump and limp
show the 3D error of a single jumping and limping sequence. KTH means the
football sequence of the KTH data set [14] and HE the walking sequence of
the HumanEva data set [15]. The last four columns are average errors over all
subjects performing the respective motions of the Human3.6M data set [16].
Note that the highly articulated motions from Human3.6M data set vary a lot
in the same category and therefore are hard to learn by approaches like [6]. All
these sequences are captured with little or no camera motion. The unsupervised
methods of [1] and [2] require more camera motion and completely fail in these
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scenarios. The learning-based approach of [6] reconstructs plausible poses for all
sequences. They even achieve a better result for the walking motions. However,
motions with larger variations between persons and sequences (e.g. jumping and
limping) are harder to reconstruct from the learned pose basis. Although the
results look like plausible human motions, they lack the ability to reconstruct
subtle motion variations. In contrast, the proposed method is able to recon-
struct these variations and achieves a better result. Some of our reconstructions
are shown in Figs. 2 and 3 for sequences of the Human3.6M and CMU data set,
respectively.

Table 1. 3D error in mm for different sequences and data sets. The column walk35
shows the mean 3D error of all sequences containing walking motion from subject 35
in the CMU database. jump refers to the jumping motion of subject 13/11 of the
CMU database and limp to the limping motion of subject 91/16. KTH means the
football sequence of the KTH data set [14]. The column HE shows the 3D error for
the HumanEva walking sequence [15]. The last four columns are average errors over
all subjects performing the respective motions of the Human3.6M data set [16].

walk35 jump limp KTH HE 3.6M walk 3.6M dir. 3.6M pose 3.6M photo

[1] 228.68 210.14 99.37 108.91 106.92 86.76 130.43 121.33 145.44

[2] 264.75 186.70 112.92 114.03 102.99 66.70 121.40 120.56 136.30

[6] 11.22 45.49 64.46 68.88 58.62 71.54 110.36 135.87 124.52

Ours 18.94 36.50 19.24 53.10 44.36 74.44 80.83 109.28 101.76

4.2 Convergence

We alternatingly optimize the camera matrices (Eq. (21)) and transformation
matrix (Eq. (22)). Since convergence of the algorithm cannot be guaranteed we
show it by experiment. Figure 5 shows the convergence of the reprojection error
in pixel for a sequence from the CMU MoCap database. However, the repro-
jection error only shows the convergence of the proposed algorithm but cannot
prove that the 3D reconstructions will improve every iteration. We additionally
estimated the convergence of the 3D error in Fig. 5. In most cases our algorithm
converges to a good minimum in less than 3 iterations. Further iterations do
not improve the visual quality and only deform the 3D reconstruction less than
1 mm. The 3D error remains constant during camera estimation which causes
the steps in the error plot.

Figure 6 shows the computation time over the number of frames for three
different sequences. The computation time mostly depends on the number frames
and less on the observed motion. We use unoptimized Matlab code on a desktop
PC for all computations.
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data set using unoptimized Matlab code. It mostly depends on the number of frames
and less on the observed motion.

4.3 Other Kinematic Chains

Although our method was developed for the reconstruction of human motion,
it generalizes to all kinematic chains that do not include translational joints. In
this section we show reconstructions of other kinematic chains such as people
holding objects, animals and industrial robots.

In situations where people hold objects with both hands the kinematic chain
of the body can be extended by another rigid connection between the two hands.
Figure 7 shows the reconstruction of the sword fighting sequence of the CMU data
set. By simply adding another column to the kinematic chain space matrix C
(cf. Sect. 3.1) the distance between the two hands is enforced to remain constant.
The exact distance does not need to be known, however.
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Fig. 7. Reconstruction of the sword play sequence of the CMU database. The kinematic
chain is extended such that the hands are rigidly connected.

Fig. 8. Reconstruction of a sequence of an industrial robot moving along a path. The
reconstruction is shown as an augmented overlay over the images.

Fig. 9. Reconstruction of a horse riding sequence. Although we use a very rough model
for the skeleton of the horse we obtain plausible reconstructions. The complete recon-
struction including more views can be seen in the supplemental video.

Figure 8 shows a robot used for precision milling and the reconstructed 3D
model as overlay. The proposed method is able to correctly reconstruct the robots
motion. In Fig. 9 we reconstructed a more complex motion of a horse during show
jumping. We used a simplified model of the bone structure of a horse. Also in
reality the shoulder joint is not completely rigid. Despite these limitations the
algorithm achieves plausible results.
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4.4 Image Sequences

The proposed method is designed to reconstruct a 3D object from labeled feature
points. In the former sections this was done by setting and tracking them semi-
interactively. In this section we will show that our method is also able to use the
noisy output of a human joint detector. We use deeperCut [17,18] to estimate
the joints in the outdoor run and jump sequence from [45]. Figure 10 shows the
joints estimated by deeperCut and our 3D reconstruction. As can be seen in
Fig. 10 we achieve plausible 3D reconstructions even with automatically labeled
noisy input data.

Fig. 10. Reconstruction of a running and jumping sequence from [45] automatically
labeled by deeperCut [17,18].

5 Conclusion

We developed a method for the 3D reconstruction of kinematic chains from
monocular image sequences. By projecting into the kinematic chain space a con-
straint is derived that is based on the assumption that bone lengths are constant.
This results in the formulation of an easy to solve nuclear norm optimization
problem. It allows for reconstruction of scenes with little camera motion where
other non-rigid structure from motion methods fail. Our method does not rely on
previous training or predefined body measures such as known limb lengths. The
proposed algorithm generalizes to the reconstruction of other kinematic chains
and achieves state-of-the-art results on benchmark data sets.
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