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Abstract. This paper presents an automatic network adaptation
method that finds a ConvNet structure well-suited to a given target
task, e.g. image classification, for efficiency as well as accuracy in trans-
fer learning. We call the concept target-aware transfer learning. Given
only small-scale labeled data, and starting from an ImageNet pre-trained
network, we exploit a scheme of removing its potential redundancy for
the target task through iterative operations of filter-wise pruning and
network optimization. The basic motivation is that compact networks
are on one hand more efficient and should also be more tolerant, being
less complex, against the risk of overfitting which would hinder the gen-
eralization of learned representations in the context of transfer learning.
Further, unlike existing methods involving network simplification, we
also let the scheme identify redundant portions across the entire net-
work, which automatically results in a network structure adapted to the
task at hand. We achieve this with a few novel ideas: (i) cumulative
sum of activation statistics for each layer, and (ii) a priority evaluation
of pruning across multiple layers. Experimental results by the method
on five datasets (Flower102, CUB200-2011, Dog120, MIT67, and Stan-
ford40) show favorable accuracies over the related state-of-the-art tech-
niques while enhancing the computational and storage efficiency of the
transferred model.

Keywords: Target-aware · Network Adaptation · Model compaction
Transfer learning

1 Introduction

The methodology of constructing feature representations has been recently
advanced from a well-known hand-crafted manner to a learning-based one. Con-
ventional hand-crafted features are typically designed by leveraging the domain
knowledge of human experts [1,4,21]. The learning based approaches often gener-
ate discriminative image representations using large-scale labeled datasets, such
as ImageNet [6], Places [38], MS COCO [18], and CelebA [19], with deep and
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Fig. 1. A schematic of network adaptation proposed in this paper. An off-the-shelf
(OTS) model is iteratively structured during the process of transfer learning where in
each iteration, less significant filters in terms of activation statistics are discarded while
the rest of the filters are reused in the next iteration.

complex convolutional neural networks (ConvNets). Thanks to the generic trans-
ferability, these learned deep representations from the ConvNets can also be uti-
lized for other unseen tasks by means of transfer learning [3,7,27,35,36]: one
way is to directly use the pre-trained ConvNet to map images to the learned
feature space with or without selecting more discriminative features [37]; a more
common practice, however, is to transfer a large off-the-shelf (OTS) model to a
target task by mildly tuning the ConvNet parameters to make it more specific
to a new target task [3,19,35] (Fig. 1).

Despite the successful applications of ConvNets along the scenario of transfer
learning, a basic question with respect to the model structure is still unaddressed:
a question about whether the off-the-shelf network is sufficiently complex or more
than ample to model the target task. That is, most of the existing approaches
to ConvNet transfer learning take a predefined network architecture as given
and optimize the parameters therein, without seeking for a better suited net-
work structure even though the given task can be much simpler and therefore
requiring a less complex model. Indeed, it has been shown that a model built
for a source task could be less activated on target tasks [23]. This suggests
that ConvNets can be made more compact to derive discriminative feature rep-
resentations more efficiently in transfer learning scenarios. Moreover, learning
representations by reusing a model designed for a very large-scale problem (such
as ImageNet classification [6]) for smaller target tasks would risk models to get
overfitted to the target domain. Tailoring a network suitable for a target task
helps to enhance regularization when learning the target task representations.

As a natural progression for the transferred model to be more effectively
adapted to target task, which we call target-aware transfer learning, an intuitive
next step is to automatically remove possible redundancy from the transferred
off-the-shelf model. Besides an obvious benefit in improving computational effi-
ciency, one could expect increased accuracy on a target task if it were possible to
find a less complex model that is better structured to target data. Thus, in this
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paper, we propose an automatic network adaptation method for target-aware
transfer learning. To this end, we exploit cumulative sum of activation statistics
for each ConvNet layer to determine the priority of filters to prune across the
network while fine-tuning the parameters in an iterative pipeline.

Although there are approaches to simplifying ConvNets in general [16] or
learning a sparse network structure [2,33,39], to the best of our knowledge this
is the first work that addresses an automatic network adaptation for transfer
learning. The work presented in this paper is close to [25] in that they deploy
a framework consisting of iterative filter pruning and fine-tuning, and [25] also
provides a comparative study on criteria for network pruning. As a development
orthogonal to those criteria, our method has a functionality to modify and adapt
the network structure according to the target task while also avoiding a greedy
search to select parts of the network to be removed. The contributions of this
paper are summarized as follows:

– We propose a target-aware feature learning framework, Network Adaptation,
which efficiently generates useful image representations.

– The Network Adaptation automatically tailors an off-the-shelf network (the
weights and architecture) to the target task data at hand, so that the learned
representations are more favorable and more efficient on the target tasks than
the ones from simply fine-tuned off-the-shelf models.

– The results highlight that the generalization of the features gets enhanced
through the model compaction by our Network Adaptation for transferring
given models to new target tasks.

In Sect. 2, we introduce recent related work. The Network Adaptation method
is described in detail in Sect. 3. Comparative experimental results are demon-
strated in Sects. 4.2 and 4.3 with ablation studies of different pruning strategies
in Sect. 4.4. Section 5 concludes the paper.

2 Related Work

Transfer learning with deep ConvNets addresses a question of how to exploit
a trained network for the sake of another task that has some commonality (to
some unknown extent) to the source problem which the model has been trained
on. For instance, one may use an ImageNet trained model and further train it
to classify a subset of ImageNet classes, or even perform a rather different task
[13] which has less abundant data. The goal of transfer learning is to construct
feature representations for a target task.

A commonly adopted way of transferring a ConvNet is to fine-tune a source
task model for a target task. A small learning rate is often used to optimize the
target-task orientated objective function so that the learned representations still
preserve the generalization learned from the data in the source domain. Feature
selection could also be performed before fine-tuning, as different levels of features
have different utility for the target task [7,27,36]. One can see feature selection
in this context as a plain data-dependent network compaction approach since
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some high-level layers may be skipped in a transferred network. In our work,
network compaction is considered and applied on all across the network based
on the activation statistics.

Although ConvNets transfer learning has demonstrated higher performance
than the conventional approaches in solving many computer vision problems
[3], the enormous computational cost and memory footprint for using ConvNets
have hindered applications in some practical scenarios. To alleviate demanding
hardware requirements, attentions have been paid to network compaction [9,12,
22,23,25]. Most of the existing compaction methods consider pruning models
through coding [9], sparsity [10,33], matrix decomposition [23], or norm of filter
weights [16].

Although it is known that small-scale target data often provides a poor sam-
pling of the target domain, which causes overfitting with complex models, it is
still very seldom that network compaction is explicitly employed to counteract
overfitting to further help transfer learning. Very recently, Pavlo et al. [25] pro-
posed an iterative pruning method to optimize a fine-tuned networks for a target
task. In every iteration, all the filters in the network are evaluated and one filter
is pruned at a time based on saliency. The iterative loop needs to be carried out
until a reasonable trade-off between accuracy and efficiency is reached. In our
method, it is sufficient to perform the network adaptation for much fewer iter-
ations and it prunes many insignificant filters along the network in every single
iteration.

On another aspect, to improve regularization for fine-tuning, it has been
found that optimizing multiple helpful objectives leads to better model effec-
tiveness compared to plain fine-tuning which only utilizes a cross-entropy loss
[8,17]. One can attempt to reduce the domain variance through certain metrics
(i.e. perform domain adaptation) as in [20,31]. It is also viable to perform multi-
task learning explicitly. In [8], a data selection approach was developed to select
(source-domain) data similar in low-level features to perform multi-task learning.
Rather than relying on the availability of foreign data as in the aforementioned
work, in [17], the predictions of target domain images given by the source model
were recorded before training. They were used later as replacements of extra
training data. Then, the current predictions were compared to the recorded ones
to compose an additional objective in the loss function. In this way, the network
was able to be optimized on the target tasks, but at the same time be able to
“remember” how to perform well on the source task. In this work, our approach
also achieved better regularization without dependence on the availability of any
extra data other than the target task at hand.

3 Target-Aware Network Adaptation

As the intermediate representations along the network are likely to be redundant
(over-completed) for a target task, it is reasonable to question if an off-the-shelf
architecture is unnecessarily over-structured when being transferred to a target
task. By rethinking this commonly adopted fine-tuning procedure, in this section,
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we propose a network adaptation method to prune and structure an off-the-shelf
network for a given target task in Sect. 3.1.

3.1 Network Adaptation

The details of our network adaptation procedure are described in Algorithm 1.
First, it takes an off-the-shelf network as a starting point and performs fine-
tuning on the target task. After that, in Step 1, it first collects activation statis-
tics and prunes the trained network. Specifically, in Step 1(a), the average inten-
sity of the activation maps is calculated on every layer after feeding in the entire
training set.

Algorithm 1. Iterative Network Adaptation process.
Source: (1) An off-the-shelf network, (2) Labeled data in target domain.

1 Step 0: Fine-tuning the off-the-shelf network on the target task.

2 for iteration i do
3 Break from the loop when i reaches a certain value.

4 Step 1: Prune filters in the network optimized in the previous step
according to the activation statistics for the training data:
(a) On each layer, identify less significant filters in terms of cumulative sum

of average activations;
(b) Among all the network layers, prioritize the need for pruning identified

filters by the global priority.

Step 2: Fine-tune the pruned network on the target task, with the same
objective function as in Step 0.

Let us assume a convolutional layer which has an output activation tensor A,
with a size of H × W × K (where K represents the number of output channels,
and H and W stand for the height and width of feature maps, respectively). The
channel-wise activation, a(k)(k = 1, ...,K), is simply calculated as:

a(k) =
1

W × H

W∑

w=1

H∑

h=1

A
(k)
w,h. (1)

After feeding N training images, a(k) is averaged over N instances:

ā = {āk}K1 , āk =
N∑

n=1

(a(k)n )/N. (2)

The channel-wise mean activation is then normalized by its L1 norm:

â =
ā

‖ā‖1 . (3)
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Then, we compute the cumulative sum of descendingly sorted normalized mean
activation â, which is denoted by

c = cumsum(â′) | â′ = sort(â). (4)

Figure 2 illustrates the curve c. Based on the cumulative sum, the filters corre-
sponding to a cumulative sum value higher than a threshold r can be identified,
i.e.,

h = arg min
k

| ck − r |, (5)

m′
p = {m′

k}K1 , m′
k =

{
1, k ≤ h

0, k > h
, (6)

mp = sort−1(m′
p), (7)

where ck is an individual element in c and mp is a binary vector that indicates
the indexes of potential filters to keep on a certain layer. The ratio between h
and K is illustrated in Fig. 2 as the vertical broken line. The filters corresponding
to the right side of that line are considered for pruning.

Fig. 2. Cumulative sum of activations: an example from FC6 layer of the VGG-16
network based on the Flower102 dataset. The horizontal red broken line indicates the
cumulative threshold ratio r, which is 85% in this case. Filters corresponding to the
right side of the vertical broken line are considered for pruning. The slope of the brown
line represents the priority in Eq. 8.

Next, in Step 1 (b), in order to further encourage the nature of data-
dependent network adaptation, we additionally develop a way to calculate the
priority. It helps us to decide whether to perform pruning or not to potential
filters on a certain layer. The priority s for layer l is:

s(l) =
1 − r

1 − h(l)/K(l)
(8)
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Finally, the filters are pruned on the layers that have a priority lower than
the mean of priority of all layers guided by mp; pruning is therefore dynamically
performed on the layers that are globally less important. The pruned network
is thereafter optimized in Step 2 and the network adaptation is performed iter-
atively. The network adaptation can be terminated after a number of iterations
when the validation accuracy starts to drop or the model size falls below a certain
ratio.

4 Experiments

In this section, we first describe the datasets we used for the experiments and
the details of how we trained the networks in Sect. 4.1. We then demonstrate
the improvement brought about by our method in both accuracy and efficiency
by comparing to the recent work addressing transfer learning and network com-
paction in an identical or a similar context in Sect. 4.2. Sections 4.3 and 4.4
reveal how the Network Adaptation impacts the network structure and com-
putational efficiency. In addition, we also performed an ablation study which
demonstrates the significance of activation-based network adaptation versus ran-
dom filter pruning methods in Sect. 4.5.

4.1 Experimental Setup

In order to provide comprehensive results, our method is comparatively evaluated
on five datasets: the Flower102 [26], the CUB200-2011 [32], the Dog120 [14],
the MIT67 [28], and the Stanford40 [34], which represent classification tasks in
different scenarios. These datasets are among the most common benchmarks
employed by the recent transfer learning related work.

Flower102 has 8189 images of 102 flower classes. The training set and the
validation set both have ten images respectively for each class. The other images
form the test set. In our experiments, we faithfully followed the training and
test protocol, i.e. training only employs the 1020 images from the training set
without any mixture with the validation instances. Dog120 dataset contains
120 dog classes where each of the dog class has 100 training images and the
test set contains 8580 images. CUB200-2011 (denoted by “CUB200” in the
following) dataset has 6000 training images and 5700 test images of 200 bird
species. MIT67 has 80 training images and 20 test images per indoor scene
class. Stanford40 dataset contains images of human actions of 40 classes, each
of which contains 180 to 300 images. On the Dog120, CUB200, MIT67, and
Stanford40, 10% training images were separated to form the validation set for
model training.

To augment the training images, we employed random jittering and subtle scal-
ing and rotation perturbations to the training images. We resized images of all
involved datasets to 250 × 250 and the aspect ratio of the images was retained by
applying zero padding all the time. During test time, we averaged over the net-
work responses from the target-task classifiers over ten crops which were sampled
from the corners and the centers of originals and the flipped counterparts.
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There are a few well-known off-the-shelf networks that can be used in this
study such as the AlexNet [15], the InceptionNet [30], the ResNet [11], and
the VGGNet [29]. We choose the VGG-16 architecture in our experiments as it
is a well studied and widely utilized structure for different kinds of computer
vision problems. More importantly, it facilitates comparisons to be as fair as
possible since the VGG-16 performs neutrally comparing to the “main-stream”
architectures. The off-the-shelf VGG-16 model used in our experiments was pre-
trained on the ImageNet [6] and is publicly accessible [24].

For training networks, we used a batch size of 32 with a conservative learning
rate of 10−4, which was helpful to achieve stable convergence, on all the datasets.
The learning rate was dropped by a factor of 10 once the validation loss stopped
decreasing. On most of the datasets, the learning rate was reduced to 10−5 within
20 epochs. The model training was terminated when the validation loss stopped
decreasing. The model snapshots which performed best on the validation sets
during the training were used for performance evaluation on the corresponding
test sets. We set weight decay to 0.0005 and Dropout ratio to 0.5.

4.2 Comparative Performance Evaluations

Our experiments in this section focus on comparing our Network Adapta-
tion approach with the standard fine-tuning on the selected target tasks. One
straightforward way to apply the Network Adaptation to an off-the-shelf archi-
tecture is to perform filter-wise pruning along the entire network, i.e. pruning
filters from Conv1 1 until FC7 in the VGG-16 architecture. Considering the
“blessing of dimensionality” [5], however, another rational choice is to apply the
Network Adaptation excluding the FC7 layer. In this case, the dimensionality
of the high-level feature is maintained, which could be helpful to ensure the
discrimination power, although at a cost of marginal computational overhead.
In the following experiments, we evaluate both options by running independent
Network Adaptation processes from the same fine-tuned starting point (i.e. from
an identical model at “Step 0” in Algorithm 1 on each dataset).

Specifically, in our experiments, we first performed fine-tuning on each
dataset and then performed Network Adaptation iteratively. At each iteration,
we used the best performing model on the validation set for performance eval-
uations. It was then used as the starting model standpoint for the next step.
For the Network Adaptation, it is easy to see that the validation accuracy could
fluctuate in the first few iterations and decrease eventually. With this regard, we
ran 20 Network Adaptation iterations and selected the best performing model
(on the validation sets) for the performance evaluation and compared them to
the corresponding fine-tuning baselines.

Table 1 shows how the Network Adaptation performs over the standard fine-
tuning. First, it can be seen that by keeping the dimensionality of FC7 (NwA w/o
FC), it outperforms the standard fine-tuning except on Flower102 and Dog120
dataset. When the dimensionality of the FC7 layer is reduced, Network Adap-
tation outperforms the standard fine-tuning on all the datasets by an error rate
reduction of 3.72% on CUB200, 0.52% on Dog120, 1.20% on Flower102, 3.50%
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Table 1. Comparing the test accuracy of fine-tuning with Network Adaptation (NwA)
of different design options. The test accuracy of Network Adaptation given here was
determined by the best validation accuracy on the corresponding dataset. The Network
Adaptation iteration (shortened to “Iter.”) number when the best validation accuracy
occurred is listed in the parenthesis after test accuracy. Threshold ratio r was set to 2%.

Fine-tune NwA w/FC7 NwA w/o FC7

CUB200 75.84% 76.74% (@Iter. 1) 77.49% (@Iter. 2)

Dog120 82.79% 82.88% (@Iter. 1) 82.73% (@Iter. 2)

Flower102 84.96% 85.14% (@Iter. 1) 83.51% (@Iter. 9)

MIT67 70.30% 71.34% (@Iter. 5) 71.34% (@Iter. 4)

Stanford40 76.23% 77.19% (@Iter. 5) 77.01% (@Iter. 5)

on MIT67, and 4.03% on Stanford40. Remember that such a performance gain
was achieved by using more compact networks and only the target task training
data. It suggests that how to restructure the network structure to achieve better
model effectiveness could also be taken into consideration when transferring an
off-the-shelf model to a new target task.

Second, by applying the Network Adaptation along the entire VGG-16 archi-
tecture, even better test accuracy can be achieved on almost all datasets except
CUB200. This means that restructuring the entire network not only results in
even lower computational cost but also promises better performance margin on
average. In other words, keeping the dimensionality of the high-level abstractions
may not be as important in general. In the following experiments, we perform
the Network Adaptation along the entire network unless otherwise stated.

To comprehensively evaluate the Network Adaptation, we focus on the recent
approaches which employed network compaction based methods (but brought
about accuracy gains) to address transfer learning problems. Given that reg-
ularization may be improved by building compact networks for target tasks,
a recent state-of-the-art method [17] that explicitly enhanced regularization
through multi-task learning is also compared to our approach. These approaches
may not employ exactly the same network architecture and other experimen-
tal setups (e.g. [23] used a deeper VGG-19 network) as ours, which consequently
resulted in slightly different fine-tuning baseline accuracy. To handle the discrep-
ancies, a reasonable comparative evaluation is to compare the relative accuracy
gain of these methods, as shown in Table 2.

On the effectiveness of the learned representations, it is clear that the Net-
work Adaptation contributed to superior accuracy than other methods except
for the case when it was not applied to the FC7 layer of a VGG-16 network on
Flower102. We argue that this is an obvious advantage to some existing net-
work pruning methods which have to make compromises to the performance
on target tasks. The accuracy gain, in general, is attributed to the improved
regularization (which was achieved in different ways in these methods). It can
be seen that making networks more compact is potentially a useful means to
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Table 2. Comparing the gain of the test accuracy on various datasets with the recent
related approaches. Each entry is the accuracy gain compared to the corresponding
fine-tuning baseline. Threshold ratio r set to 2% in our Network Adaptation.

CUB200 Dog120 Flower102 MIT67 Stanford40

Best of deep compression [23] 0.12% — 0.1% — 0.79%

Best of efficient inference [25] 0.5% — — — —

LwF [17] −0.6% — — 0.3% —

Ours, w/o FC7 1.65% −0.04% −1.45% 1.04% 0.78%

Ours, w/ FC7 0.9% 0.09% 0.18% 1.04% 0.96%

Note that our total compression ratio is on-par with that in [23], see Fig. 4.
The best gain on CUB200 from [25] was manually retrieved from Fig. 4 in [25].

improve regularization owing to the positive gains. Our Network Adaptation
indeed achieved better regularization than others given the more favorable per-
formance improvements. In addition, we noticed that the network compaction
process is quite efficient with the Network Adaptation approach as it does not
depend on exhaustive search as in [25]; the compaction is also more effective for
reducing the computational cost than in [23] as filters across the entire network
were simultaneously considered for pruning. The network compaction effects of
our approach are demonstrated with details in the following sections.

4.3 Evolution of Network Size During Network Adaptation

The Network Adaptation, on the one hand, can be used to improve the model
effectiveness on the target tasks, on the other hand, it also enforces target data-
driven model compaction which effectively reduces the size of ConvNets. In this
way, one can make a trade-off between the network size and the model accuracy
on the target task with our Network Adaptation.

To demonstrate how the discriminability of the learned representations varies
on the target tasks along the Network Adaptation process, we show the valida-
tion accuracy and the test accuracy along 20 Network Adaptation iterations in
Fig. 3. One can find that after fine-tuning on the target tasks (Iteration 0) the
Network Adaptation is able to boost the discrimination power of the learned
representations, which was reflected on the validation and test accuracy in the
first few iterations. It is clear that the improvement in the test accuracy is
data dependent. We can expect around or more than 1% accuracy increment
on MIT67, CUB200, and Stanford40, which have moderately large training sets.
But the improvement was less significant when training data was too sparse or
much too large. As on the Flower102, it had only 10 training images per class,
while on Dog120 each class had around 100 images for training for each class,
which was 2 to 3 times larger than other datasets. The accuracies dropped at
later iterations when the networks lost more capacity. As our threshold r was
only 2%, the test accuracies were not significantly decreased even at Iteration 20.
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Fig. 3. Validation accuracy versus test accuracy on the datasets during 20 iterations
of Network Adaptation.

The reduction of the total number of parameters and the corresponding com-
putational costs at each Network Adaptation iteration are shown in Fig. 4. First,
it can be seen that the total number of network coefficient was reduced in an
exponential trend. The network size can be halved in the first five iterations
on all the tasks even with an insignificant threshold value. The network size
got linearly reduced after Iteration 8. Second, the Network Adaptation resulted
in roughly a linear decrementing trend in the computational cost in terms of
Floating-point Operation (FLOP). For both of the decreasing curves of network
size and FLOP, a similar data-dependent character can be observed; on the tasks
with more abundant data, they shared a common tendency which was deviated
on the task with the least data.

Fig. 4. Normalized reduction of the number of network coefficients (left) and the corre-
sponding normalized reduction of FLOP (right) with a VGG-16 architecture achieved
by the Network Adaptation on different datasets.
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Fig. 5. Relative change of layer width at each Network Adaptation iteration. The
“Layers” scale, from 1 to 15, represents the learnable layers from “Conv1 1” till “FC7”
in a VGG-16 structure.

The detailed sizes of each layer width (number of filters) for the 20 Net-
work Adaptation iterations on the selected datasets are visualized in Fig. 5. It
is easy to see that a VGG-16 architecture was (re-)shaped differently by our
Network Adaptation on different tasks. An interesting phenomenon is that the
lower level filters in the vicinity of Conv2 1 layer were pruned relatively more
than other layers, but on MIT67 the pruning rate was not as large as on the
others. This suggests a large but task-specific redundancy in the lower layers
of the off-the-shelf model. The same situation can be observed on higher-level
convolutional layers. It can, therefore, be inferred that the learned high-level
image representation at the FC7 layer indeed depends on different combinations
of the convolutional features: the indoor scene classification MIT67 relies more
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on lower level features than other tasks; CUB200 and Stanford40 require more
descriptive mid-level representations; Flower102 more or less relies on higher-
level convolutional features.

4.4 Impact of Threshold Ratio

In this section, we evaluate the impact of threshold ratio (r) to the effective-
ness of Network Adaptation. Specifically, we perform ten iterations of Network
Adaptation with 2%, 5%, and 10% threshold ratios and evaluate the best mod-
els indicated by the validation sets to explore the performance of the Network
Adaptation with different setups.

As shown in Fig. 6, by employing different threshold ratios in Network Adap-
tation, a target VGG-16 model can be compacted to different extents; the higher
the rate is, the more the models get compact in general. For a single threshold
rate, however, a VGG-16 model can become compact to different levels as well.
This is due to fact that the Network Adaptation is totally a target data guided
method. E.g., for a threshold ratio of 10% at Iteration 10, more than 10% of
the coefficients were retained on the CUB200, but on the MIT67 the remaining
portion was only around 6%. MIT67 data yielded stronger pruning effect in the
Network Adaptation process.

Fig. 6. Comparing pruning effects by using different threshold ratios in Network Adap-
tation. The x-axis represents the iterations of the Network Adaptation from 1 to 10,
and the relative residual portion of network parameters and computational costs of a
VGG-16 architecture is shown in y-axis.
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Table 3. Test accuracy on the CUB200 and the MIT67 with different threshold ratios.
The Network Adaptation iteration which gave the best performing model (on validation
set) are given in parenthesis.

Threshold ratios

2% 5% 10%

CUB200 77.49% (@Iter. 2) 76.19% (@Iter. 4) 76.64% (@Iter. 1)

MIT67 71.34% (@Iter. 4) 71.49% (@Iter. 2) 69.48% (@Iter. 2)

Table 3 lists the test accuracy values on the CUB200 and the MIT67 under
three threshold ratios. It reveals a rough relation between the number of iter-
ations and the threshold ratios with respect to the best test accuracy; a mild
pruning rate may require more steps to achieve the best accuracy and vice versa.
From these results, we may infer that a threshold ratio between 5% and 10%
would be a practical choice which balances between the training speed and the
model accuracy.

4.5 Significance of Least Activation Pruning

In our Network Adaptation, we prune filters which correspond to the least acti-
vations of a given dataset. As shown in Fig. 5, it shapes the model architecture
based on the target data in a way that it removes different numbers of filters on
different layers. To highlight the importance of this pruning strategy, we evalu-
ate two alternative filter pruning methods which can be potentially used by our
Network Adaptation framework in two stages.

In the first experiment, we compared the performance discrepancy between
removing a random 10% of filters versus pruning 10% of the least activated filters
in each layer along the whole network. In both ways, the models were uniformly
pruned along the structure but these pruning strategies cannot (re-)shape the
model structure. Due to the randomness, we ran five independent experiments
for one iteration with both strategies and compared the average accuracy.

The second experiment intended to further verify that randomly pruning
filters performs less effectively than filters selected based on activation. This is
done by directly comparing random pruning versus activation based pruning in
the Network Adaptation procedure, where random pruning removes an equal
amount of filters as by the Network Adaptation in each layer in each iteration
(we also ran 20 iterations with the threshold ratio r set to 2%). The same
starting models at “Step 0” as in the previous experiments were used in these
experiments but the Network Adaptation iterations were run independently for
the comparative studies here. The results are listed in Table 4.

The results of Experiment 1 show that uniformly pruning a network per-
forms inferior to the Network Adaptation. Comparing the accuracy of the ran-
dom pruning strategy in both experiments to that of the Network Adaptation,
one can see that in general random filter pruning performs less effectively than
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Table 4. Comparing other pruning strategies to the activation based approach we used
in the Network Adaptation. “Least Act.” indicates “Least Activation”. “Random” is
short for random pruning strategies for each experiment.

Experiment 1 Experiment 2

Random 10% Least Act., 10% Random NwA

CUB200 76.02% 76.46% 75.96% (@Iter. 1) 77.03% (@Iter. 7)

MIT67 65.33% 67.60% 68.73% (@Iter. 4) 71.34% (@Iter. 5)

activation based as used in our method, i.e. activation based methods offer a
more reasonable pruning.

5 Conclusions

We proposed an iterative network adaptation approach to learn useful represen-
tations for transfer learning problems which have access to only small-scale target
data. Our approach automatically structures model architecture by pruning less
important filters, in which a data dependent method is developed to identify
less important filters. Being adapted in the proposed pipeline, the transferred
models are shown to be more computationally efficient and demonstrate at least
comparable performance to the widely used “fine-tuning” practice and even the
related state-of-the-art approaches.

In addition to the experimental results, the current development of our Net-
work Adaptation approach left us some interesting open questions. First, for
transfer learning, how to enhance regularization with limited labeled data is not
fully studied yet; we demonstrated that model compaction would be a promising
candidate, but it will be also interesting to evaluate other alternatives. Second,
for network adaptation, it is ideal to have equally favorable performance to all
target tasks but the classification accuracies by our approach slightly decreased
in some situations. This hints us that it is also helpful to consider partly expand-
ing the network architecture according to data to complement the capacity of
the transferred model.
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