
Building A Size Constrained Predictive
Models for Video Classification

Miha Skalic1(B) and David Austin2

1 University Pompeu Fabra, Barcelona, Spain
miha.skalic@upf.edu

2 Intel Corporation, Chandler, AZ, USA

Abstract. Herein we present the solution to the 2nd YouTube-8M video
understanding challenge which placed 1st. Competition participants were
tasked with building a size constrained video labeling model with a model
size of less than 1 GB. Our final solution consists of several submodels
belonging to Fisher vectors, NetVlad, Deep Bag of Frames and Recurrent
neural networks model families. To make the classifier efficient under size
constraints we introduced model distillation, partial weights quantization
and training with exponential moving average.

Keywords: Deep learning · Multi-label classification
Video processing

1 Introduction

Accelerated by the increase of internet bandwidth, storage space and usage of
mobile devices, generation and consumption of video data is on the rise. Paired
with recent advances in deep learning [1], specifically image [2] and audio [3]
processing the combination opens up new opportunities for better understand-
ing of video content which can then be leveraged for online advertising, video
retrieval, video surveillance, etc.

However, usage of deep learning for video processing can be computationally
expensive if the model learning starts from raw video and audio [4]. To tackle
these limitations YouTube-8M Dataset [5] was generated. In the dataset, samples
are represented as a sequence of vectors where each vector, is an embedded
representation of a frame and an audio snippet.

Similarly, best performing classifiers are usually computationally expensive
meta-predictors that combine several end-to-end classifiers. Meta-predictors or
also called ensembles were the best performing models in the first YouTube-8M
Video Understanding Challenge1 [6–10]. Since the ensembles are computationally
expensive, in this second iteration of YouTube-8M challenge2 the participants
were asked to build a single Tensorflow [11] model of size less than 1 GB.

M. Skalic and D. Austin—Authors contributed equally to this work.
1 https://www.kaggle.com/c/youtube8m
2 https://www.kaggle.com/c/youtube8m-2018

c© Springer Nature Switzerland AG 2019
L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11132, pp. 297–305, 2019.
https://doi.org/10.1007/978-3-030-11018-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11018-5_27&domain=pdf
https://www.kaggle.com/c/youtube8m
https://www.kaggle.com/c/youtube8m-2018
https://doi.org/10.1007/978-3-030-11018-5_27


298 M. Skalic and D. Austin

1.1 Data

This work is based on the second iteration of YouTube-8M Dataset [5]. Over
6 million samples were split into 3 partitions: training, validation and test set,
following approximately 70%, 20%, 10% split. The videos are labeled with 3862
unique tags with an average of 3 tags per video. The dataset does not provide
raw videos, instead each frame representation consists of 1024 image and 128
audio features. The image features are extracted from the last ReLU activated
layer prior to classification later of the Inception-v3 network [12]. The extracted
features are reduced in size using PCA dimensionality reduction and finally
quantized for reduced storage cost. Frames are sampled every second and up to
360 frames are included for each video.

1.2 Evaluation

Model predictions were evaluated based on Global Average precision (GAP)
score:

GAP =
N∑

i=1

p(i)Δr(i), (1)

where N is the number of final predictions, p(i) is the precision, and r(i) is the
recall. In the evaluation N = 20 × (number of videos) was used.

2 Related Work

2.1 Model Architectures

As the dataset is given as a sequence of vectors corresponding to frames, the
main goal of a successful model is to efficiently aggregate the frames. To this
end one can use recurrent neural networks, such as long short-term memory
(LSTM) [13] or gated recurrent unit (GRU) [14]. Recurrent neural networks can
capture the video in temporal fashion, however previous work [15,16] indicates
that methods that capture distribution of features and not necessarily temporal
ordering can have on a par performance. This group of models includes bag-of-
visual-words [15,17], Vector of Locally aggregated Descriptors (VLAD) [18] or
Fisher Vector (FV) [19] encoding.

One shortcoming of VLAD and FV methods is that they are not differentiable
and thus cannot be trained with backpropagation as part of neural networks.
NetVLAD [20] has been proposed as a alternative to VLAD that uses differ-
entiable soft assignments of descriptors to clusters. Similarly, Miech et al. [6].
extended this idea to FV resulting in an approach named FVnet.

This work also includes Deep Bag of Frames (DBoF) network variants origi-
nally proposed in [5] and inspired by the success of various classic bag of words
representations for video classification.



Building A Size Constrained Predictive Models for Video Classification 299

2.2 Previous Solutions

As this works is based on second iteration of YouTube-8M dataset and challenge
we drew inspirations from the first challenge. The first year winner [6] in addition
to using NetVLAD and FVnet introduced context gating that allows for cap-
turing of dependencies between features as well as capturing prior structure of
the output space. The second placed solution [7] proposed a solution they called
chaining to capture label interactions, used boosting and more importantly for
this work introduced the concept of model distillation [21]. Other competitors
[8,9] used various, but mostly recurrent neural network based, aggregation tech-
niques. Our solution also includes in model weight averaging through exponential
moving average [22] similar as has been done in [10].

3 Methods for Improved Performance

3.1 Model Distillation

Model distillation [21] is a method for model compression. Initially a bigger
teacher network or multiple networks are trained and then a smaller student
network is trained to replicate labels predicted by teacher networks(s). Typically,
student networks perform better if they are trained to reproduce teacher values
than if they were trained on labels directly. Here we applied so called soft-
label distillation, similar to [7], where we optimize for a combination of ground
truth and predicted labels, minimizing the combination sum of two binary cross
entropies:

L (y, ŷ, ŷt) = λ
1
l

l∑

i=1

−yi log (ŷi) + (1 − yi) log (1 − ŷi)

+ (1 − λ)
1
l

l∑

i=1

−ŷt,i log (ŷi) + (1 − yt,i) log (1 − ŷi) ,

(2)

where y, ŷt and ŷ are vectors of ground truth labels, teacher network prediction
and student network predictions, respectively. Factor λ determines how much
weight is put on minimizing student predicted labels divergence from ground
truth labels versus teacher predicted values. In our experiments we have set
λ = 0.5. Lowering λ to 0.4 or raising to 0.6 did not improve performance.

3.2 Partial Weights Quantization

Previously it has been shown that generally bigger models with larger clusters
and hidden layers perform better. For example NetVlad and Fisher vector solu-
tions from Miech et al. [6] were one of the best performing. However, they were
individually bigger than 1 GB, making them inadequate for the task at hand.
On the other hand, model quantization [23] can significantly reduce the model
size at the cost of reduced performance. To minimize drop of accuracy we used



300 M. Skalic and D. Austin

partial weights quantization, where only variables with more than 17, 000 ele-
ments were quantized. In practice this means that fully-connected layer weights
were quantized, while batch normalization factors were not.

We used 8 bits quantization for large variables and left default float32
values for variables with less than 17, 000 elements. At inference time the 8 bit
variables were cast back to float32 values based on stored centroid value. The
256 centroid values were assigned based on min-max uniform quantization.

4 Experiments

4.1 Training Details

Models were trained according to the structure in Fig. 1. The dataset used
for training consisted of the prepared training set for the competition, plus all
but 800 randomly selected tfrecord files from the validation set. The result-
ing dataset used was a training set of 4, 769, 202 training samples and 232, 072
validation samples. We observed a very consistent offset of 0.002 GAP between
local validation and the public leaderboard score from the test set which made
our validation set large enough to avoid overfitting. Our implementation relied
on the Tensorflow based starter code published by the competition sponsors for
training, validation, and inference3.

Fig. 1. Overview of our solution.

Each of the four families of models was first trained using hard targets as
labels, and the difference between the models was the result of batch size, clus-
ter, and number of hidden layers. Each model was trained using the Adam

3 https://github.com/google/youtube-8m

https://github.com/google/youtube-8m


Building A Size Constrained Predictive Models for Video Classification 301

algorithm with a batch size between 80–256 frames. We did not notice a differ-
ence in training time or accuracy between single and multi-GPU training so we
limited training to single GPU. For the non-RNN models we sampled 300 frames
with replacement during training. Each model combination was evaluated for its
ensemble score relative to other model combinations in the same family in order
to select the models which would proceed to a distillation round of training. The
result of the ensemble selection was a sample of models that had high, mid, and
low number of clusters and hidden layers. Batch size did not have a meaningful
effect on model performance.

Training of each model consisted of a two step process: first training by the
method described thus far, and then secondly by performing an exponential
decay average of the weights stored in checkpoint files. Averaging of weights was
performed by decreasing the learning rate of a model by a factor of five, and
then training the model while storing a shadow copy of the weights that was
used for moving averaging.

4.2 Results

The results of averaging weights are summarized in Table 1. For DBoF and
RNN architectures the gains from averaging were significant and included for
each model, but for bigger models: FVNet and NetVLAD, the gains were either
negative or negligible and therefore not used.

Table 1. Weights averaging results

Model family GAP change post weight averaging

RNN 0.00339

FVNet −0.00186

DBoF 0.00216

NetVLAD 0.00072

After training was performed we performed partial weights quantization as
detailed in Sect. 3.2 in order to reduce model size without compromising accu-
racy. Table 2 shows the impact of the quantization scheme on a FVNet based
architecture during validation inference of 232, 073 samples. For a negligible
impact on overall GAP score we were able to reduce model size by a factor
of 0.75 while incurring a 6.5% inference time penalty. The reason for the longer
inference time with the quantized model is due to the implementation of casting
quantized variables back to float32 during inference.

Once the initial round of training for each model family was complete, the
best combination of three models for a given family were selected to ensemble by
equal weighting and the predictions of those models were used to generate soft
targets for a distillation dataset. Our implementation resulted in a new training



302 M. Skalic and D. Austin

Table 2. Quantization performance for post distillation FVNet model.

GAP time (s) Model size (MB)

0.87236 476.96 467.5

0.87237 507.79 117

Table 3. Distillation performance gain

Model Post Distillation No Distillation Average Gain Family Avg Gain

RNN1 0.87058 0.85859 0.01199 0.01290

RNN2 0.8703 0.85657 0.01373

RNN3 0.86705 0.85408 0.01297

FVNet1 0.87803 0.87031 0.00772 0.00772

DBoF1 0.87202 0.86819 0.00383 0.00409

DBoF2 0.87391 0.86945 0.00446

DboF3 0.87262 0.86864 0.00398

NetVLAD1 0.87789 0.8721 0.00579 0.00675

NetVLAD2 0.87842 0.87083 0.00759

NetVLAD3 0.87806 0.87237 0.00569

NetVLAD4 0.87833 0.87096 0.00737

NetVLAD5 0.87884 0.87163 0.00721

NetVLAD6 0.8784 0.87156 0.00684

dataset for each family containing the new combination of hard and soft targets
as described in Sect. 3.1.

After the distillation dataset was created for each family, we retrained the
same model architectures as in the first level of training (pre-distillation). The
gains as a result of distillation are summarized in Table 3. The net gain for
a given architecture family ranged from 0.00409 for DBoF up to 0.01290 for
RNN’s. The net gain for a specific given architecture within a given family was
consistent and ranged between 0.001–0.002.

Because overall GAP score post distillation was highest for the NetVLAD
architecture, we chose to perform a second level distillation which was accom-
plished by ensembling with equal weight the six models from the first level of
NetVLAD distillation, and then performing another round of distillation using
the same procedure as in the first round.

Results from the second round of distillation were statistically matched to
the first round of distillation results, indicating that the ability of each model
to learn from it’s teacher had been saturated. However we observed that the
diversity of the second level distillation models were increased relative to the
other models in the final overall ensemble and for this reason we chose to keep
the second level distillation results. The smallest NetVLAD architectures that
could retain the GAP score from the first level distillation were chosen.



Building A Size Constrained Predictive Models for Video Classification 303

Thirteen out of fifteen models trained using distillation were performed by
using a distillation dataset created from within the same family of architecture.
For example, DboF’s distillation models were created as a result of combining
models from three DBoF teacher models. For 2 of our 15 models, we trained
a model using a distillation set trained from another family. Our rationale for
training most models within the same architectural family is that it would be
more likely for the student models to learn from the same architectural teachers
that generated them. The two models that were trained from another family
had nearly identical gains in GAP score to models trained from within the same
family. We chose to keep these two models in the final ensemble for purely
empirical reasons as measured by the overall ensemble scores.

For all models we made sure that all frames were sampled during inferencing.
This resulted in an average GAP improvement of 0.001–0.0014 GAP for most
models vs using a random subset for sampling.

4.3 Ensembling

In order to achieve the best overall ensemble, we used our validation hold out set
to try various combinations of weighting factors between the models. We used
random search to test weighting factors, and noticed a range of 0.00050 in GAP
score that could be achieved between the best combination found by random
search versus taking a flat or weighted average of models.

Final model sizes and weighted contributions of each model are reported in
Table 4.

Table 4. Final ensemble matrix

Model family Model size (MB) % of overall
model size

Weight fraction in
final ensemble

RNN1 54 5.13% 0.0063

RNN2 19 1.81% 0.0442

RNN3 19 1.81% 0.1244

FVNet1 369 35.08% 0.202

DBoF1 59 5.61% 0.0956

DBoF2 37 3.52% 0.1088

DBoF3 33 3.14% 0.0951

NetVLAD1 242 23.00% 0.1685

NetVLAD2 220 20.91% 0.1551

5 Conclusions

We have addressed the problem of large-scale video tagging under model size
constrains. Models from four different families were used and for all them we



304 M. Skalic and D. Austin

have shown that they benefit from distillation in addition to classical ensembling
and in model weights averaging. Additionally it was demonstrated that partial
weight quantization is an efficient method to reduce model size down to almost
a quarter the original size without significant drop in performance. Code used in
this challenge, as well as full models architectures and learning parameters, are
available at http://github.com/miha-skalic/youtube8mchallange, released under
Apache License 2.0.

References

1. LeCun, Y.A., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521, 436–444 (2015)
2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-

volutional neural networks. In: Advances in Neural Information Processing Systems
(2012)

3. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: Icassp, pp. 6645–6649 (2013)

4. Ng, J.Y.H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
Toderici, G.: Beyond short snippets: deep networks for video classification. In:
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (2015)

5. Abu-El-Haija, S., et al.: YouTube-8m: A large-scale video classification benchmark.
CoRR abs/1609.08675 (2016)

6. Miech, A., Laptev, I., Sivic, J.: Learnable pooling with context gating for video
classification. CoRR abs/1706.06905 (2017)

7. Wang, H., Zhang, T., Wu, J.: The monkeytyping solution to the Youtube-8m video
understanding challenge. CoRR abs/1706.05150 (2017)

8. Li, F., et al.: Temporal modeling approaches for large-scale youtube-8m video
understanding. CoRR abs/1707.04555 (2017)

9. Chen, S., Wang, X., Tang, Y., Chen, X., Wu, Z., Jiang, Y.: Aggregating frame-level
features for large-scale video classification. CoRR abs/1707.00803 (2017)

10. Skalic, M., Pekalski, M., Pan, X.E.: Deep learning methods for efficient large scale
video labeling. CoRR abs/1706.04572 (2017)

11. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous sys-
tems (2015). Software available from http://tensorflow.org

12. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

14. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using RNN encoder-decoder for statistical machine
translation. CoRR abs/1406.1078 (2014)

15. Laptev, I., Marsza�lek, M., Schmid, C., Rozenfeld, B.: Learning realistic human
actions from movies. In: 26th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR (2008)

16. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 3551–3558
(2013)

http://github.com/miha-skalic/youtube8mchallange
http://tensorflow.org


Building A Size Constrained Predictive Models for Video Classification 305

17. Wang, H., Ullah, M.M., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local
spatio-temporal features for action recognition. In: BMVC 2009 – British Machine
Vision Conference (2009)

18. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into
a compact image representation. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 3304–3311 (2010)

19. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image catego-
rization. In: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 1–8 (2007)

20. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN archi-
tecture for weakly supervised place recognition. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 5297–5307 (2018)

21. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NIPS Deep Learning and Representation Learning Workshop (2015)

22. Ruppert, D.: Efficient estimations from a slowly convergent robbins-monro process.
Technical report,CornellUniversityOperationsResearch and IndustrialEngineering
(2018)

23. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR abs/1510.00149
(2015)


	Building A Size Constrained Predictive Models for Video Classification
	1 Introduction
	1.1 Data
	1.2 Evaluation

	2 Related Work
	2.1 Model Architectures
	2.2 Previous Solutions

	3 Methods for Improved Performance
	3.1 Model Distillation
	3.2 Partial Weights Quantization

	4 Experiments
	4.1 Training Details
	4.2 Results
	4.3 Ensembling

	5 Conclusions
	References




