
Training Compact Deep Learning
Models for Video Classification

Using Circulant Matrices

Alexandre Araujo1,2(B), Benjamin Negrevergne1(B), Yann Chevaleyre1(B),
and Jamal Atif1(B)

1 PSL, Université Paris-Dauphine, LAMSADE, CNRS, UMR 7243, Paris, France
alexandre.araujo@dauphine.eu, benjamin.negrevergne@dauphine.fr,

{yann.chevaleyre,jamal.atif}@lamsade.dauphine.fr
2 Wavestone, Paris, France

Abstract. In real world scenarios, model accuracy is hardly the only fac-
tor to consider. Large models consume more memory and are computa-
tionally more intensive, which make them difficult to train and to deploy,
especially on mobile devices. In this paper, we build on recent results at the
crossroads of Linear Algebra and Deep Learning which demonstrate how
imposing a structure on large weight matrices can be used to reduce the
size of the model. Building on these results, we propose very compact mod-
els for video classification based on state-of-the-art network architectures
such as Deep Bag-of-Frames, NetVLAD and NetFisherVectors. We then
conduct thorough experiments using the large YouTube-8M video classi-
fication dataset. As we will show, the circulant DBoF embedding achieves
an excellent trade-off between size and accuracy.

Keywords: Deep learning · Computer vision · Structured matrices
Circulant matrices

1 Introduction

The top-3 most accurate approaches proposed during the first YouTube-8M 1

video classification challenge were all ensembles models. The ensembles typi-
cally combined models based on a variety of deep learning architectures such as
NetVLAD, Deep Bag-of-Frames (DBoF), NetFisherVectors (NetFV) and Long-
Short Term Memory (LSTM), leading a large aggregation of models (25 distinct
models have been used by the first contestant [24], 74 by the second [33] and
57 by the third [20]). Ensembles are accurate, but they are not ideal: their size
make them difficult to maintain and deploy, especially on mobile devices.

A common approach to compress large models into smaller ones is to use
model distillation [13]. Model distillation is a two steps training procedure: first,
a large model (or an ensemble model) is trained to be as accurate as possi-
ble. Then, a second compact model is trained to approximate the first one,
1 https://www.kaggle.com/c/youtube8m.

c© Springer Nature Switzerland AG 2019
L. Leal-Taixé and S. Roth (Eds.): ECCV 2018 Workshops, LNCS 11132, pp. 271–286, 2019.
https://doi.org/10.1007/978-3-030-11018-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11018-5_25&domain=pdf
https://www.kaggle.com/c/youtube8m
https://doi.org/10.1007/978-3-030-11018-5_25


272 A. Araujo et al.

while satisfying the given size constraints. The success of model distillation and
other model compression techniques begs an important question: is it possible
to devise models that are compact by nature while exhibiting the same general-
ization properties as large ones?

In linear algebra, it is common to exploit structural properties of matrices
to reduce the memory footprint of an algorithm. Cheng et al. [6] have used this
principle in the context of deep neural networks to design compact network archi-
tectures by imposing a structure on weight matrices of fully connected layers.
They were able to replace large, unstructured weight matrices with structured
circulant matrices without significantly impacting the accuracy. And because a
n-by-n circulant matrix is fully determined by a vector of dimension n, they were
able to train a neural network using only a fraction of the memory required to
train the original network.

Inspired by this result, we designed several compact neural network archi-
tectures for video classification based on standard video architectures such as
NetVLAD, DBoF, NetFV and we evaluated them on the large YouTube-8M
dataset. However, instead of adopting the structure used by [6] (initially pro-
posed by [32]), we decomposed weight matrices into products of diagonal and
circulant matrices (as in [29]). In contrast with [32] which has been proved to
approximate distance preserving projections, this structure can approximate any
transformation (at the cost of a larger number of weights). As we will show, this
approach exhibit good results on the video classification task at hand.

In this paper, we bring the following contributions:

– We define a compact architecture for video classification based on circulant
matrices. As a side contribution, we also propose a new pooling technique
which improves the Deep Bag-of-Frames embedding.

– We conduct thorough experimentations to identify the layers that are less
impacted by the use of circulant matrices and we fine-tune our architectures
to achieve the best trade-off between size and accuracy.

– We combine several architectures into a single model to achieve new
model trained-end-to-end that can benefit from architectural diversity (as in
ensembles).

– We train all our models on the Youtube-8M dataset with the 1 GB model size
constraint imposed by the 2nd YouTube-8M Video Understanding Challenge2,
and compares the different models in terms of size vs. accuracy ratio. Our
experiments demonstrate that the best trade-off between size and accuracy
is obtained using circulant DBoF embedding layer.

2 Related Works

Classification of unlabeled videos streams is one of the challenging tasks for
machine learning algorithms. Research in this field has been stimulated by the
recent release of several large annotated video datasets such as Sports-1M [19],
FCVID [17] or the YouTube-8M [2] dataset.
2 https://www.kaggle.com/c/youtube8m-2018.

https://www.kaggle.com/c/youtube8m-2018


Training Compact Deep Learning Models for Video Classification 273

The naive approach to achieve video classification is to perform frame-by-
frame image recognition, and to average the results before the classification step.
However, it has been shown in [2,24] that better results can be obtained by build-
ing features across different frames and several deep learning architectures have
been designed to learn embeddings for sets of frames (and not single frames). For
example Deep Bag-of-Frames (DBoF) [2], NetVLAD [3] or architectures based
on Fisher Vectors [27].

The DBoF embedding layer, proposed in [2] processes videos in two steps.
First, a learned transformation projects all the frames together into a high dimen-
sional space. Then, a max (or average) pooling operation aggregates all the
embedded frames into a single discriminative vector representation of the video.
The NetVLAD [3] embedding layer is built on VLAD [16], a technique that aggre-
gates a large number of local frame descriptors into a compact representation
using a codebook of visual words. In NetVlad, the codebook is directly learned
end-to-end during training. Finally, NetFisherVector (NetFV) is inspired by [27]
and uses first and second-order statistics as video descriptors also gathered in a
codebook. The technique can benefit from deep learning by using a deep neural
network to learn the codebook [24].

All the architectures mentioned above can be used to build video features in
the sense of features that span across several frames, but they are not designed to
exploit the sequential nature of videos and capture motion. In order to learn truly
spatio-temporal features and account for motion in videos, several researchers
have looked into recurrent neural networks (e.g. LSTM [20,36]) and 3D convo-
lutions [19] (in space and time). However, these approaches do not outperform
non-sequential models, and the single best model proposed in [24] (winner of the
first YouTube-8M competition) is based on NetVLAD [3].

The 2nd YouTube-8M Video Understanding Challenge includes a constraint
on the model size and many competitors have been looking into building efficient
memory models with high accuracy. There are two kinds of techniques to reduce
the memory required for training and/or inference in neural networks. The first
kind aims at compressing an existing neural network into a smaller one, (thus it
only impacts the size of the model at inference time). The second one aims at
constructing models that are compact by design.

To compress an existing network several researchers have investigated tech-
niques to prune parameters that are redundant (e.g. [9,12,21]). Redundant
parameters can be omitted from the model without significantly changing the
accuracy. It is also possible to use sparsity regularizers during training, to be
able to compress the model after the training using efficient sparse matrix rep-
resentations (e.g. [7,9,22]). Building on the observation that weight matrices
are often redundant, another line of research has proposed to use matrix fac-
torization [10,15,35] in order to decompose large weight matrices into factors of
smaller matrices before inference.

An important idea in model compression, proposed by Buciluǎ et al. ([4]), is
based on the observation that the model used for training is not required to be
the same as the one used for inference. First, a large complex model is trained



274 A. Araujo et al.

using all the available data and resources to be as accurate as possible, then
a smaller and more compact model is trained to approximate the first model.
The technique which was later specialized for deep learning models by [13] (a.k.a.
model distillation) is often used to compress large ensemble models into compact
single deep learning models.

Instead of compressing the model after the training step, one can try to design
models that are compact by nature (without compromising the generalization
properties of the network). The benefit of this approach is that it reduces mem-
ory usage required during both training and inference. As a consequence, users
can train models that are virtually larger using less time and less computing
resources. They also save the trouble of training two models instead of one as
it is done with distillation. These techniques generally work by constraining the
weight representation, either at the level of individual weights (e.g. using floating
variable with limited precision [11], quantization [8,23,28]) or at the level of the
whole matrix, (e.g. using weight hashing techniques [5]) which can achieve better
compression ratio. However in practice, hashing techniques are difficult to use
because of their irregular memory access patterns which make them inadequate
for GPU-execution.

Another way of constraining the weight representation is to impose a struc-
ture on weight matrices (e.g. using circulant matrices [6,30], Vandermonde [30]
or Fastfood transforms [34]). In this domain, [6] have proposed to replace two
fully connected layers of AlexNet by circulant and diagonal matrices where the
circulant matrix is learned by a gradient based optimization algorithm and the
diagonal matrix entries are sampled at random in {−1, 1}. The size of the model
is reduced by a factor of 10 without loss in accuracy3. Most of the time the result-
ing algorithms are easy to execute on GPU-devices.

3 Preliminaries on Circulant Matrices

In this paper, we use circulant matrices to build compact deep neural networks.
A n-by-n circulant matrix C is a matrix where each row is a cyclic right shift of
the previous one as illustrated below.

C = circ(c) =

⎡
⎢⎢⎢⎢⎢⎣

c0 cn−1 cn−2 . . . c1
c1 c0 cn−1 c2
c2 c1 c0 c3
...

. . .
...

cn−1 cn−2 cn−3 c0

⎤
⎥⎥⎥⎥⎥⎦

Because the circulant matrix C ∈ R
n×n is fully determined by the vector c ∈ R

n,
the matrix C can be compactly represented in memory using only n real values
instead of n2.

3 In network such as AlexNet, the last 3 fully connected layers use 58M out of the
62M total trainable parameters (>90% of the total number of parameters).



Training Compact Deep Learning Models for Video Classification 275

An additional benefit of circulant matrices, is that they are computationally
efficient, especially on GPU devices. Multiplying a circulant matrix C by a vec-
tor x is equivalent to a circular convolution between c and x (denoted c � x).
Furthermore, the circular convolution can be computed in the Fourier domain
as follows.

Cx = c � x = F−1 (F(c) × F(x))

where F is the Fourier transform. Because this operation can be simplified to a
simple element wise vector multiplication, the matrix multiplication Cx can be
computed in O(n log n) instead of O(n2).

Among the many applications of circulant matrices, matrix decomposition is
one of the interest. In particular, Schmid et al. have shown in [26,29], that any
complex matrix A ∈ C

n×n can be decomposed into the product of diagonal and
circulant matrices, as follows:

A = D(1)C(1)D(2)C(2) . . . DmCm =
m∏
i=1

D(i)C(i) (1)

Later in [14], Huhtanen and Perämäki have demonstrated that choosing m =
n is sufficient to decompose any complex matrix A ∈ C

n×n. By [29], the result
in Eq. 1 also holds for a real matrix A ∈ R

n×n, but the proof yields a much
bigger value of m. However, the construction of [29] is far from optimal and it is
likely that most real matrices can be decomposed into a reasonable number of
factors. The authors of [25], made this conjecture, and they have leveraged the
decomposition described in Eq. 1 in order to implement compact fully connected
layers.

4 Compact Video Classification Architecture Using
Circulant Matrices

Building on the decomposition presented in the previous section and the previous
results obtained in [25], we now introduce a compact neural network architecture
for video classification where dense matrices have been replaced by products of
circulant and diagonal matrices.

4.1 Base Model

We demonstrate the benefit of circulant matrices using a base model which has
been proposed by [24]. This architecture can be decomposed into three blocks
of layers, as illustrated in Fig. 1. The first block of layers, composed of the Deep
Bag-of-Frames embedding, is meant to process audio and video frames indepen-
dently. The DBoF layer computes two embeddings: one for the audio and one
for the video. In the next paragraph, we will only focus on describing the video
embedding. (The audio embedding is computed in a very similar way.)



276 A. Araujo et al.

Embedding Dim Reduction Classification

Video

Audio

FC

FC

concat MoE
Context
Gating

Fig. 1. This figure shows the architecture used for the experiences. The network sam-
ples at random video and audio frames from the input. The sample goes through an
embedding layer and is reduced with a Fully Connected layer. The results are then
concatenated and classified with a Mixture-of-Experts and Context Gating layer.

We represent a video V as a set of m frames {v1, . . . , vm} where each frame
vi ∈ R

k is a vector of visual features extracted from the frame image. In the con-
text of the YouTube-8M competition, each vi is a vector of 1024 visual features
extracted using the last fully connected layer of an Inception network trained on
ImageNet. The DBoF embedding layer then embed a video V into a vector v′

drawn from a p dimensional vector space as follows.

v′ = max {Wvi | vi ∈ V }
where W is a matrix in R

p×k (learned) and max is the element-wise maximum
operator. We typically choose p > k, (e.g. p = 8192). Note that because this
formulation is based on set, it can process videos of different lengths (i.e., a
different value of m).

A second block of layers reduces the dimensionality each embedding layer
(audio and video), and merges the result into a single vector with using a simple
concatenation operation. We chose to reduce the dimensionality of each embed-
ding layer separately before the concatenation operation to avoid the concatena-
tion of two high dimensional vectors.

Finally, the classification block uses a combination of Mixtures-of-Experts
(MoE) and Context Gating to calculate the final probabilities. The Mixtures-of-
Experts layer introduced in [18] and proposed for video classification in [2] are
used to predict each label independently. It consists of a gating and experts net-
works which are concurrently learned. The gating network learns which experts
to use for each label and the experts layers learn how to classify each label.
The context gating operation was introduced in [24] and captures dependen-
cies among features and re-weight probabilities based on the correlation of the
labels. For example, it can capture the correlation of the labels ski and snow and
re-adjust the probabilities accordingly.

Table 1 shows the shapes of the layers as well as the shapes of the weight
matrices.



Training Compact Deep Learning Models for Video Classification 277

Table 1. This table shows the architecture of our base model with a DBoF Embedding
and 150 frames sampled from the input. For more clarity, weights from batch normal-
ization layers have been ignored. The −1 in the activation shapes corresponds to the
batch size. The size of the MoE layers corresponds to the number of mixtures used.

Layer Layer size Activation shape Weight matrix shape #Weights

Video DBoF 8192 (−1, 150, 1024) (1024, 8192) 8 388 608

Audio DBoF 4096 (−1, 150, 128) (128, 4096) 524 288

Video FC 512 (−1, 8192) (8192, 512) 4 194 304

Audio FC 512 (−1, 4096) (4096, 512) 2 097 152

Concat - (−1, 1024) - -

MoE gating 3 (−1, 1024) (1024, 19310) 19 773 440

MoE experts 2 (−1, 1024) (1024, 15448) 15 818 752

Context gating - (−1, 3862) (3862, 3862) 14 915 044

4.2 Robust Deep Bag-of-Frames Pooling Method

We propose a technique to extract more performance from the base model
with DBoF embedding. The maximum pooling is sensitive to outliers and noise
whereas the average pooling is more robust. We propose a method which con-
sists in taking several samples of frames, applying the upsampling followed by
the maximum pooling to these samples, and then averaging over all samples.
More formally, assume a video contains m frames v1, . . . , vm ∈ R

1024. We first
draw n random samples S1 . . . Sn of size k from the set {v1, . . . , vm}. The output
of the robust-DBoF layer is:

1
n

n∑
i=1

max {v × W : v ∈ Si}

Depending on n and k, this pooling method is a tradeoff between the max pooling
and the average pooling. Thus, it is more robust to noise, as will be shown in
the experiments section.

4.3 Compact Representation of the Base Model

In order to train this model in a compact form we build upon the work of [6] and
use a more general framework presented by Eq. 1. The fully connected layers are
then represented as follows:

h(x) = φ

([
m∏
i=1

D(i)C(i)

]
x + b

)



278 A. Araujo et al.

where the parameters of each matrix D(i) and C(i) are trained using a gradient
based optimization algorithm, and m defines the number of factors. Increasing
the value of m increases the number of trainable parameters and therefore the
modeling capabilities of the layer. In our experiments, we chose the number
of factors m empirically to achieve the best trade-off between model size and
accuracy.

To measure the impact of the size of the model and its accuracy, we represent
layers in their compact form independently. Given that circulant and diagonal
matrices are square, we use concatenation and slicing to achieve the desired
dimension. As such, with m = 1, the weight matrix (1024, 8192) of the video
embedding is represented by a concatenation of 8 DC matrices and the weight
matrix of size (8192, 512) is represented by a single DC matrix with shape (8192,
8192) and the resulting output is sliced at the 512 dimension. We denote layers in
their classic form as “Dense” and layers represented with circulant and diagonal
factors as “Compact”.

4.4 Leveraging Architectural Diversity

In order to benefit from architectural diversity, we also devise a single model
architecture that combines different types of embedding layers. As we can see in
Fig. 2, video and audio frames are processed by several embedding layers before
being reduced by a series of compact fully connected layers. The output of the
compact fc layers are then averaged, concatenated and fed into the final clas-
sification block. Figure 7 shows the result of different models given the number
of parameters. The use of circulant matrices make us able to fit this model in
gpu memory. For example, the diversity model with a NetVLAD embedding
(cluster size of 256) and NetFV embedding (cluster size of 128) has 160 millions
parameters (600 Mo) in the compact version and 728M (2.7 Go) in the dense
version.

Video

DBoF

NetVLAD

NetFV

FC

FC

FC

Audio

DBoF

NetVLAD

NetFV

FC

FC

FC

average

average

concat MoE
Context
Gating

Embedding Dim Reduction Classification

Fig. 2. This figure shows an evolution of the first architecture from Fig. 1 with several
embeddings. This architecture is made to leverage the diversity of an Ensemble in a
single model.



Training Compact Deep Learning Models for Video Classification 279

5 Experiments

In this section, we first evaluate the pooling technique proposed in Sect. 4.2.
Then, we conduct experiments to evaluate the accuracy of our compact mod-
els. In particular, we investigate which layer benefits the most from a circulant
representation and show that the decomposition presented in Sect. 3 performs
better than the approach from [6] for the video classification problem. Finally,
we compare all our models on a two dimensional size vs. accuracy scale in order
to evaluate the trade-off between size and accuracy of each one of our models.

5.1 Experimental Setup

Dataset. All the experiments of this paper have been done in the context of the
2nd YouTube-8M Video Understanding Challenge with the YouTube-8M dataset.
We trained our models with the training set and 70% of the validation set which
correspond to a total of 4 822 555 examples. We used the data augmentation
technique proposed by [31] to virtually double the number of inputs. The method
consists in splitting the videos into two equal parts. This approach is motivated
by the observation that a human could easily label the video by watching either
the beginning or the ending of the video.

All the code used in this experimental section is available online.4

Hyper-parameters. All our experiments are developed with TensorFlow
Framework [1]. We trained our models with the CrossEntropy loss and used
Adam optimizer with a 0.0002 learning rate and a 0.8 exponential decay every
4 million examples. All fully connected layers are composed of 512 units. DBoF,
NetVLAD and NetFV are respectively 8192, 64 and 64 of cluster size for video
frames and 4096, 32, 32 for audio frames. We used 4 mixtures for the MoE Layer.
We used all 150 frames available and robust max pooling introduced in 4.2 for
the DBoF embedding. In order to stabilize and accelerate the training, we used
batch normalization before each non linear activation and gradient clipping.

Evaluation Metric. We used the GAP (Global Average Precision), as used in
the 2nd YouTube-8M Video Understanding Challenge, to compare our experi-
ments. The GAP metric is defined as follows:

GAP =
P∑
i=1

p(i)Δr(i)

where N is the number of final predictions, p(i) the precision, and r(i) the recall.
We limit our evaluation to 20 predictions for each video.

Hardware. All experiments have been realized on a cluster of 12 nodes. Each
node has 160 POWER8 processor, 128 Go of RAM and 4 Nividia Titan P100.

4 https://github.com/araujoalexandre/youtube8m-circulant.

https://github.com/araujoalexandre/youtube8m-circulant


280 A. Araujo et al.

5.2 Robust Deep Bag-of-Frames Pooling Method

We evaluate the performance of our Robust DBoF embedding. In accordance
with the work from [2], we find that average pooling performs better than
maximum pooling. Figure 3 shows that the proposed robust maximum pooling
method outperforms both maximum and average pooling.

0 1 2 3 4 5 6
0.82

0.83

0.84

0.85

0.86

0.87

0.88

Epochs

V
al
id
at
io
n
G
A
P

Comparison of polling methods used with DBoF embedding

Robust DBoF
DBoF w/max pooling
DboF w/average pooling

Fig. 3. This graphic shows the impact of robust DBoF (i.e. red line) with n = 10 and
k = 15 on the Deep Bag-of-Frames embedding compared to max and average pooling.
(Color figure online)

5.3 Impact of Circulant Matrices on Different Layers

This series of experiments aims at understanding the effect on compactness over
different layers. Table 2 shows the result in terms of number of weights, size of
the model (MB) and GAP. We also compute the compression ratio with respect
to the dense model. The compact fully connected layer achieves a compression
rate of 9.5 while having a very similar performance, whereas the compact DBoF
and MoE achieve a higher compression rate at the expense of accuracy. Figure 4
shows that the model with a compact FC converges faster than the dense model.
The model with a compact DBoF shows a big variance over the validation GAP
which can be associated with a difficulty to train. The model with a compact
MoE is more stable but at the expense of its performance. Another series of
experiments investigates the effect of adding factors of the compact matrix DC
(i.e. the parameters m specified in Sect. 4.3). Table 3 shows that there is no gain
in accuracy even if the number of weights increases. It also shows that adding
factors has an important effect on the speed of training. On the basis of this
result, i.e. given the performance and compression ratio, we can consider that
representing the fully connected layer of the base model in a compact fashion
can be a good trade-off.



Training Compact Deep Learning Models for Video Classification 281

Table 2. This table shows the effect of the compactness of different layers. In these
experiments, for speeding-up the training phase, we did not use the audio features and
exploited only the video information.

Baseline model #Weights Size (MB) Compress. Rate (%) GAP@20 Diff.

Dense model 45 359 764 173 - 0.846 -

Compact DBoF 36 987 540 141 18.4 0.838 −0.008

Compact FC 41 181 844 157 9.2 0.845 −0.001

Compact MoE 12 668 504 48 72.0 0.805 −0.041

0 1 2 3 4 5 6 7
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

Epochs

V
al
id
at
io
n
G
A
P

Comparison of the effect of compactness over
different layers with the base model

Dense Model Model with compact DBoF
Model with compact FC Model with compact MoE

Fig. 4. Validation GAP according to the number of epochs for different compact
models.

Table 3. This table shows the evolution of the number of parameters and the accuracy
according to the number of factors. Despite the addition of degrees of freedom for the
weight matrix of the fully connected layer, the model does not improve in performance.
The column #Examples/sec shows the evolution of images per sec processed during
the training of the model with a compact FC according to the number of factors.

#Factors #Examples/sec #Parameters in FC layer Compress. Rate of FC layer (%) GAP@20

1 1 052 12 288 99.8 0.861

3 858 73 728 98.8 0.861

6 568 147 456 97.6 0.859

Dense FC 1 007 6 291 456 - 0.861

5.4 Comparison with Related Works

Circulant matrices have been used in neural networks in [6]. They proposed to
replace fully connected layers by a circulant and diagonal matrices where the
circulant matrix is learned by a gradient based optimization algorithm and the
diagonal matrix is random with values in {−1, 1}. We compare our more general



282 A. Araujo et al.

0 1 2 3 4 5 6 7 8 9 10
0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

Epochs

V
al
id
at
io
n
G
A
P

GAP given the pooling method used with DBoF embedding

Compact FC w/general approach
Compact FC w/CD and D ∈ {−1, 1}

Fig. 5. This figure shows the GAP difference between the CD approach proposed in [6]
and the more generalized DC approach from Sect. 4.3. Instead of having D ∈ {−1,+1}
fixed, the generalized approach allows D to be learned.

framework with their approach. Figure 5 shows the validation GAP according to
the number of epochs of the base model with a compact fully connected layer
implemented with both approach.

5.5 Compact Baseline Model with Different Embeddings

To compare the performance and the compression ratio we can expect, we con-
sider different settings where the compact fully connected layer is used together
with different embeddings. Figure 6 and Table 4 show the performance of the
base model with DBoF, NetVLAD and NetFV embeddings with a Dense and
Compact fully connected layer. Notice that we can get a bigger compression rate
with NetVLAD and NetFV due to the fact that the output of the embedding is
in a higher dimensional space which implies a larger weight matrix for the fully
connected layer. Although the compression rate is higher, it is at the expense of
the accuracy.

0 1 2 3 4 5 6 7 8 9 10
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

Epochs

V
al
id
at
io
n
G
A
P

DBoF

Compact
Dense

0 1 2 3 4 5 6 7 8 9 10

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

Epochs

V
al
id
at
io
n
G
A
P

NetVLAD

Compact
Dense

0 1 2 3 4 5 6 7 8 9 10
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

Epochs

V
al
id
at
io
n
G
A
P

NetFV

Compact
Dense

Fig. 6. The figures above show the validation GAP of compact and Dense fully con-
nected layer with different embeddings according to the number of epochs.



Training Compact Deep Learning Models for Video Classification 283

Table 4. This table shows the impact of the compression of the fully connected layer
of the model architecture shown in Fig. 1 with Audio and Video features vector and
different types of embeddings. The variable compression rate is due to the different
width of the output of the embedding.

Method #Parameters Size (MB) Compress. Rate (%) GAP@20

DBoF

FC dense 65 795 732 251 - 0.861

FC circulant 59 528 852 227 9.56 0.861

NetVLAD

FC dense 86 333 460 330 - 0.864

FC circulant 50 821 140 194 41.1 0.851

NetFisher

FC dense 122 054 676 466 - 0.860

FC circulant 51 030 036 195 58.1 0.848

5.6 Model Size vs. Accuracy

To conclude our experimental evaluation, we compare all our models in terms of
size and accuracy. The results are presented in Fig. 7.

As we can see in this figure, the most compact models are obtained with the
circulant NetVLAD and NetFV. We can also see that the complex architectures
described in Sect. 4.4 (DBoF + NetVLAD) achieve top performance but at the
cost of a large number of weights. Finally, the best trade-off between size and
accuracy is obtained using the DBoF embedding layer and achieves a GAP of
0.861 for only 60 millions weights.

0 20 40 60 80 100 120 140 160 180 200
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

Number of weights (Millions)

V
al
id
at
io
n
G
A
P

Benchmark of compact models

NetVLAD 32, Compact FC 256, MoE 2
NetVLAD 64, Compact FC 512, MoE 4
NetFV 64, Compact FC 512, MoE 4
DBoF 8192, Compact FC 512, MoE 4
NetVLAD 256, Compact FC 1024, MoE 4
NetVLAD 128, NetFV 64, Compact FC 1024, MoE 4
NetVLAD 256, NetFV 128, Compact FC 1024, MoE 4
DBoF 8192, NetVLAD 128, Compact FC 1024, MoE 4
DBoF 16384, NetVLAD 256, Compact FC 1024, MoE 4

Fig. 7. Comparison between different models with compact fully connected layers.



284 A. Araujo et al.

6 Conclusion

In this paper, we demonstrated that circulant matrices can be a great tool to
design compact neural network architectures for video classification tasks. We
proposed a more general framework which improves the state of the art and con-
ducted a series of experiments aiming at understanding the effect of compactness
on different layers. Our experiments demonstrate that the best trade-off between
size and accuracy is obtained using circulant DBoF embedding layers. We inves-
tigated a model with multiple embeddings to leverage the performance of an
Ensemble but found it ineffective. The good performance of Ensemble models,
i.e. why aggregating different distinct models performs better that incorporating
all the diversity in a single architecture is still an open problem. Our future work
will be devoted to address this challenging question and to pursue our effort to
devise compact models achieving the same accuracy as larger one, and to study
their theoretical properties.

Acknowledgement. This work was granted access to the OpenPOWER prototype
from GENCI-IDRIS under the Preparatory Access AP010610510 made by GENCI.
We would like to thank the staff of IDRIS who was really available for the duration of
this work, Abdelmalek Lamine and Tahar Nguira, interns at Wavestone for their work
on circulant matrices. Finally, we would also like to thank Wavestone to support this
research.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/. Software available from tensorflow.org

2. Abu-El-Haija, S., et al.: YouTube-8M: a large-scale video classification benchmark.
arXiv:1609.08675 (2016). https://arxiv.org/pdf/1609.08675v1.pdf

3. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN archi-
tecture for weakly supervised place recognition. In: IEEE Conference on Computer
Vision and Pattern Recognition (2016)

4. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 535–541. ACM (2006)

5. Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neu-
ral networks with the hashing trick. In: Proceedings of the 32nd International
Conference on International Conference on Machine Learning, ICML 2015, vol.
37, pp. 2285–2294. JMLR.org (2015). http://dl.acm.org/citation.cfm?id=3045118.
3045361

6. Cheng, Y., Yu, F.X., Feris, R.S., Kumar, S., Choudhary, A., Chang, S.F.: An
exploration of parameter redundancy in deep networks with circulant projections.
In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2857–
2865, December 2015

7. Collins, M.D., Kohli, P.: Memory bounded deep convolutional networks. CoRR
abs/1412.1442 (2014)

https://www.tensorflow.org/
http://arxiv.org/abs/1609.08675
https://arxiv.org/pdf/1609.08675v1.pdf
http://dl.acm.org/citation.cfm?id=3045118.3045361
http://dl.acm.org/citation.cfm?id=3045118.3045361


Training Compact Deep Learning Models for Video Classification 285

8. Courbariaux, M., Bengio, Y., David, J.P.: BinaryConnect: training deep neural
networks with binary weights during propagations. In: Proceedings of the 28th
International Conference on Neural Information Processing Systems, NIPS 2015,
vol. 2, pp. 3123–3131. MIT Press, Cambridge (2015). http://dl.acm.org/citation.
cfm?id=2969442.2969588

9. Dai, B., Zhu, C., Guo, B., Wipf, D.: Compressing neural networks using the varia-
tional information bottleneck. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th
International Conference on Machine Learning, Proceedings of Machine Learning
Research, vol. 80, pp. 1143–1152. PMLR, Stockholmsmässan, Stockholm, Sweden,
10–15 July 2018. http://proceedings.mlr.press/v80/dai18d.html

10. Denil, M., Shakibi, B., Dinh, L., Ranzato, M.A., de Freitas, N.: Predicting param-
eters in deep learning. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani,
Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems
26, pp. 2148–2156. Curran Associates, Inc. (2013). http://papers.nips.cc/paper/
5025-predicting-parameters-in-deep-learning.pdf

11. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: Proceedings of the 32nd International Conference
on International Conference on Machine Learning, ICML 2015, vol. 37, pp. 1737–
1746. JMLR.org (2015). http://dl.acm.org/citation.cfm?id=3045118.3045303

12. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In: International
Conference on Learning Representations (ICLR) (2016)

13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
In: NIPS Deep Learning and Representation Learning Workshop (2015). http://
arxiv.org/abs/1503.02531

14. Huhtanen, M., Perämäki, A.: Factoring matrices into the product of circulant and
diagonal matrices. J. Fourier Anal. Appl. 21(5), 1018–1033 (2015). https://doi.
org/10.1007/s00041-015-9395-0

15. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. CoRR abs/1405.3866 (2014)

16. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a
compact image representation. In: CVPR 2010 - 23rd IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 3304–3311. IEEE Computer Society,
San Francisco, June 2010. https://doi.org/10.1109/CVPR.2010.5540039. https://
hal.inria.fr/inria-00548637

17. Jiang, Y.G., Wu, Z., Wang, J., Xue, X., Chang, S.F.: Exploiting feature and class
relationships in video categorization with regularized deep neural networks. IEEE
Trans. Patt. Anal. Mach. Intell. 40(2), 352–364 (2018). https://doi.org/10.1109/
TPAMI.2017.2670560

18. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm.
In: Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-
Nagoya, Japan), vol. 2, pp. 1339–1344, October 1993. https://doi.org/10.1109/
IJCNN.1993.716791

19. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732
(2014)

20. Li, F., et al.: Temporal modeling approaches for large-scale YouTube-8M video
understanding. CoRR abs/1707.04555 (2017)

http://dl.acm.org/citation.cfm?id=2969442.2969588
http://dl.acm.org/citation.cfm?id=2969442.2969588
http://proceedings.mlr.press/v80/dai18d.html
http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning.pdf
http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning.pdf
http://dl.acm.org/citation.cfm?id=3045118.3045303
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/s00041-015-9395-0
https://doi.org/10.1007/s00041-015-9395-0
https://doi.org/10.1109/CVPR.2010.5540039
https://hal.inria.fr/inria-00548637
https://hal.inria.fr/inria-00548637
https://doi.org/10.1109/TPAMI.2017.2670560
https://doi.org/10.1109/TPAMI.2017.2670560
https://doi.org/10.1109/IJCNN.1993.716791
https://doi.org/10.1109/IJCNN.1993.716791


286 A. Araujo et al.

21. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Guyon, I., et al.
(eds.) Advances in Neural Information Processing Systems 30, pp. 2181–2191.
Curran Associates, Inc. (2017). http://papers.nips.cc/paper/6813-runtime-neural-
pruning.pdf

22. Liu, B., Wang, M., Foroosh, H., Tappen, M., Penksy, M.: Sparse convolutional
neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 806–814, June 2015. https://doi.org/10.1109/CVPR.
2015.7298681

23. Mellempudi, N., Kundu, A., Mudigere, D., Das, D., Kaul, B., Dubey, P.: Ternary
neural networks with fine-grained quantization. CoRR abs/1705.01462 (2017)

24. Miech, A., Laptev, I., Sivic, J.: Learnable pooling with context gating for video
classification. CoRR abs/1706.06905 (2017)

25. Moczulski, M., Denil, M., Appleyard, J., de Freitas, N.: ACDC: a structured effi-
cient linear layer. arXiv preprint arXiv:1511.05946 (2015)

26. Müller-Quade, J., Aagedal, H., Beth, T., Schmid, M.: Algorithmic design of diffrac-
tive optical systems for information processing. Phys. D Nonlinear Phenom. 120(1–
2), 196–205 (1998)

27. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image catego-
rization. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–8, June 2007. https://doi.org/10.1109/CVPR.2007.383266

28. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-net: ImageNet clas-
sification using binary convolutional neural networks. In: Leibe, B., Matas, J.,
Sebe, N., Welling, M. (eds.) ECCV 2016, Part IV. LNCS, vol. 9908, pp. 525–542.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 32

29. Schmid, M., Steinwandt, R., Müller-Quade, J., Rötteler, M., Beth, T.: Decompos-
ing a matrix into circulant and diagonal factors. Linear Algebra Appl. 306(1–3),
131–143 (2000)

30. Sindhwani, V., Sainath, T., Kumar, S.: Structured transforms for small-footprint
deep learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems 28, pp.
3088–3096. Curran Associates, Inc. (2015). http://papers.nips.cc/paper/5869-
structured-transforms-for-small-footprint-deep-learning.pdf

31. Skalic, M., Pekalski, M., Pan, X.E.: Deep learning methods for efficient large scale
video labeling. arXiv preprint arXiv:1706.04572 (2017)

32. Vyb́ıral, J.: A variant of the johnson-lindenstrauss lemma for circulant matrices. J.
Funct. Anal. 260(4), 1096–1105 (2011). https://doi.org/10.1016/j.jfa.2010.11.014.
http://www.sciencedirect.com/science/article/pii/S0022123610004507

33. Wang, H., Zhang, T., Wu, J.: The monkeytyping solution to the YouTube-8M video
understanding challenge. CoRR abs/1706.05150 (2017)

34. Yang, Z., et al.: Deep fried convnets. In: 2015 IEEE International Conference
on Computer Vision (ICCV), pp. 1476–1483, December 2015. https://doi.org/10.
1109/ICCV.2015.173

35. Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank and
sparse decomposition. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 67–76, July 2017. https://doi.org/10.1109/CVPR.2017.
15

36. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
Toderici, G.: Beyond short snippets: deep networks for video classification. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4694–4702 (2015)

http://papers.nips.cc/paper/6813-runtime-neural-pruning.pdf
http://papers.nips.cc/paper/6813-runtime-neural-pruning.pdf
https://doi.org/10.1109/CVPR.2015.7298681
https://doi.org/10.1109/CVPR.2015.7298681
http://arxiv.org/abs/1511.05946
https://doi.org/10.1109/CVPR.2007.383266
https://doi.org/10.1007/978-3-319-46493-0_32
http://papers.nips.cc/paper/5869-structured-transforms-for-small-footprint-deep-learning.pdf
http://papers.nips.cc/paper/5869-structured-transforms-for-small-footprint-deep-learning.pdf
http://arxiv.org/abs/1706.04572
https://doi.org/10.1016/j.jfa.2010.11.014
http://www.sciencedirect.com/science/article/pii/S0022123610004507
https://doi.org/10.1109/ICCV.2015.173
https://doi.org/10.1109/ICCV.2015.173
https://doi.org/10.1109/CVPR.2017.15
https://doi.org/10.1109/CVPR.2017.15

	Training Compact Deep Learning Models for Video Classification Using Circulant Matrices
	1 Introduction
	2 Related Works
	3 Preliminaries on Circulant Matrices
	4 Compact Video Classification Architecture Using Circulant Matrices
	4.1 Base Model
	4.2 Robust Deep Bag-of-Frames Pooling Method
	4.3 Compact Representation of the Base Model
	4.4 Leveraging Architectural Diversity

	5 Experiments
	5.1 Experimental Setup
	5.2 Robust Deep Bag-of-Frames Pooling Method
	5.3 Impact of Circulant Matrices on Different Layers
	5.4 Comparison with Related Works
	5.5 Compact Baseline Model with Different Embeddings
	5.6 Model Size vs. Accuracy

	6 Conclusion
	References




