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Abstract. Typically language models in a speech recognizer just use the
previous words as a context. Thus they are insensitive to context from
the real world. This paper explores the benefits of introducing the visual
modality as context information to automatic speech recognition. We
use neural multimodal language models to rescore the recognition results
of utterances that describe visual scenes. We provide a comprehensive
survey of how much the language model improves when adding the image
to the conditioning set. The image was introduced to a purely text-based
RNN-LM using three different composition methods. Our experiments
show that using the visual modality helps the recognition process by
a 7.8% relative improvement, but can also hurt the results because of
overfitting to the visual input.
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1 Introduction

Multimodal neural language models have been widely utilized for image caption-
ing, but their effectiveness for other language modeling tasks is yet to be stud-
ied. The language modeling module of an automatic speech recognition pipeline
could also benefit from the visual modality if the speaker refers to the visual sur-
roundings. We implemented situated speech recognition by rescoring recognition
results using multimodal language models. Natural language generation models,
such as image captioning, tend to focus on the more frequent events, typically
limiting the vocabulary to be smaller than 10 thousand words. For applications
where the language model is used for estimating the likelihood of natural utter-
ances, it is important to have a good probability estimate for rare events. In our
language modeling experiments we aimed for high lexical coverage.

This work was done while Kata Naszádi was at the Spoken Language Systems group
at Saarland University.
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Using three different neural architectures we explore how much information
image-conditioned models gain from the image. This is achieved by removing
the image as an input while keeping the rest of the architecture as intact as
possible. Creating purely text-based baselines also sheds light on the quality of
image-captioning datasets with respect to the variability of the language used
to describe the images.

2 Models

Two types of neural architectures have been implemented, both of them directly
inspired by successful image captioning models. In one of them the image is only
presented to the recurrent cell once. The other method only feeds textual data to
the recurrent cell, then it uses the image in each time step to rescore the output
of the RNN, so the purely text based distribution P (w|h) coming from the RNN
becomes conditioned on the image P (w|h, i). We tried two different methods for
composing the output RNN-cell with the image feature vector: concatenation
and compact bilinear pooling.

We used the Very Deep Convolutional Network with 16 hidden layers [1]
for image feature extraction. The hidden activations of the last bottle-neck layer
were used to obtain image representations of 4096 dimensions. The image feature
vectors were kept fixed during training.

2.1 Text-Based Baseline (NI)

We trained two uni-modal language models to match the multimodal models
as closely as possible. Both models are single-layer RNN-LSTM networks with
vocabulary-sized softmax output layer. The word embeddings were set to be
the same size as the hidden unit. The only difference between the two baseline
models is the size of the hidden layer: 400 and 800 nodes. The models containing
no image input will be referred to by the acronym NI.

2.2 Feeding the Image to the Recurrent Unit (SaT)

The first architecture we implemented is a slightly adapted version of the Show
and Tell (SaT) model [2]. We only changed the hidden size to be 400 units and
increased the size of the output layer to match our vocabulary. The architecture
builds on a standard recurrent language model with the addition of the image as
the input before the start of sentence symbol. The extra parameters introduced
by this model compared to a unimodal RNN are the weights of the affine trans-
formation Wv ∈ R

d×4096 that maps the image vector v to the input size d. The
input of the RNN before the start of sentence symbol xt−1 can be computed as:

xt−1 = Wvxv (1)

This architecture lends itself to being compared to a version without the image.
In order to test how much perplexity reduction is due to the image, one simply
needs to skip time step t−1 and start with the START symbol that denotes the
beginning of a sentence.
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2.3 Multimodal Composition After the Hidden Unit

Concatenation (Concat). The second group of multimodal architectures com-
pose the image with the output of the recurrent cell in each time step. The first
model within this group implements the multimodal composition of the image
vector and the RNN as concatenation. The concatenated layer is then directly
followed by the softmax output layer. In this case, it is easy to see that the
weight matrix following the activations of the concatenated layer can be split
into two separate matrices.

r = Wvv + Wwht (2)

The weight matrix is decomposed into two matrices, Wv operates on the image
v, while Ww transforms the output of the LSTM unit ht; Wsoftmax = [Wv,Ww].
r contains the scores for each word in the vocabulary before normalization. The
final score can be broken down into the contribution of the image and the textual
input.

Compact Bilinear Pooling (CBP). In order to exploit more interactions
between the two modalities, we also implemented bilinear pooling for the multi-
modal composition. Bilinear pooling is an unbiased estimator of the outer prod-
uct. The upper bound of the variance of the estimation is inversely proportional
to the size of the lower order estimation d. We implemented two bilinear pooling
models, the first has d = 400 as the size of the hidden unit and the lower order
estimation, the second has d set to 800 in order to decrease the variance. For
the details of the algorithm please see [3]. Note that compact bilinear pooling
does not add any trainable variables to the model compared to the text-based
baseline model.

3 Experiments

For our experiments, we considered two famous image-captioning datasets:
mscoco [4] and Flickr30k [5]. The vocabulary has been determined indepen-
dently of the captions; it contains the 100 thousand most frequent words from
the 1 Billion Word Language Model Benchmark by Chelba et al. [6].

In order to illustrate the quality of the captions from a language modeling per-
spective, a 3-gram Kneser-Ney smoothed language model has been trained on the
captions. The estimation of the language models was carried out by the KenLM
toolkit [7]. All punctuation symbols were removed and pruning was disabled.

3.1 Perplexity Results

The 3-gram baseline perplexities in Table 1 illustrate that the language of the
captions is very simplistic. As a comparison, the perplexity on a 25M -word
held-out portion of the Gigaword text corpus [8] is 144.6. The predictability of
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Table 1. Perplexity results on different datasets. The number after the name of the
model indicates the size of the hidden layer.

Model Flickr30k mscoco

KN-smoothed 3-gram 63.5 24.7

NI-400 33.2 17

SaT-400 23 12

CBP-400 46.5 16

Concat-400 23.1 11.3

NI-800 32.9 16.8

CBP-800 27.1 14.1

CONCAT-800 23.9 11.2

the language holds especially true for the mscoco even though the size of this
dataset is more twice than that of the Flickr30k dataset.

The results show that on Flickr30k dataset Compact Bilinear Pooling only
reduces perplexity if the size of the lower order estimate is big enough. With
400 hidden units the model without the picture (ni-400) outperforms pooling
(cbp-400). We can see the benefit of using the image once the hidden size is
large enough as in (cbp-800).

On the mscoco dataset there is a slight improvement even when the hidden
size is only 400. The reason for this may come down to the fact that there is
not a lot of variance in the textual vectors to begin with. It could also be the
case that the images only cover a very limited set of visual scenes, but we ran
no experiments in order to prove this point.

It is also clear from the results that concatenation always outperforms com-
pact bilinear pooling. We argued for compact bilinear pooling because it is able to
exploit interactions between all dimensions of the two modalities, but the method
introduces a large estimation error due to the vastly different size of the composed
vectors. The results also suggest that such interactions might not play a crucial
role. The SaT-400 model performs closely to the Concat-400 model, even though
the former is capable of learning non-linear interactions between the modalities.

3.2 Ratio of Loss per Part-of-Speech Tag

The CNN image encoder was trained on an object recognition task, so it would
be reasonable to expect that most of the perplexity reduction is due to nouns.
Table 2 shows the ratio of the loss between the models SaT-400H and NI-400H
broken down to different part of speech categories. The captions were tagged
using the Stanford log-linear part-of-speech tagger [9]. For a specific POS-tag
each row displays the following ratio:

∑
w:POS(w)=pos − log(PWI(w|h))

∑
w:POS(w)=pos − log(PNI(w|h))

(3)
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Table 2. Ratio of loss per part of speech tag category between the models with and
without the image.

adverbs 96%

modals 100%

particles 94%

prepositions 92%

nouns 94%

to 97%

pronouns 96%

adjectives 89%

verbs 92%

determiners 96%

PWI(w|h) is the probability of the word according to the model that uses
the image, and PNI(w|h) is the same probability estimate without the image. As
the results show, the performance is improved across almost all part-of-speech
categories. It may only be the content words that get detected from the image,
but predicting these words correctly will help the language model to make more
accurate predictions for the other word categories too. Given the list of strings,
for example “dog, frisbee”, there is only a limited way to combine these words
into a fully formed sentence. It is also clear to see that the modality of a sentence
can not be decided based on visual input.

3.3 Automatic Speech Recognition Rescoring Experiments

The automatic speech recognition experiments were carried out using the MIT
Flickr Audio Caption Corpus [10]. 5000 spoken captions were used to tune the
acoustic scale and the interpolation weights between the original background
language model and the recurrent language models trained on the captions. We
report the final results on a test set of 5000 spoken captions.

The first-pass decoding was performed using the HUB4 trigram language
model [11]. As a baseline, the 300 best hypotheses were rescored with the neu-
ral language model that was only trained on the captions, without using the
image (NI-400). This is necessary to account for the effect of the domain-specific
language. For image-sensitive rescoring we used the SaT-400 model (Table 3).

Both the image sensitive and the regular language model perform better when
linearly interpolated with the 3-gram broadcast news language model that was
originally used to generate the 300-best list. The performance of the first-pass
language model sets limitations for the final word error-rate. The HUB4 trigram
model is trained predominantly on news data, which is not similar enough to
the domain of the captions. One could achieve even better performance with a
stronger first-pass decoder.
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Table 3. Word error rates using the model trained exclusively on the captions (NI-400)
and the image-sensitive language model (SaT-400).

WER Acoustic-weight RNN-weight

NI-400 37.04% 0.08 1

SaT-400 36.31% 0.1 1

NI-400 34.80% 0.08 0.9

SaT-400 32.08% 0.1 0.8

Qualitative Analyses of the Decoding Results. Figure 1 shows positive
examples where the image-sensitive model seems to have successfully recognized
objects from the picture, thus helping the recognition process.

True transcript: Mechanics prepar-
ing a plane for departure. Image-
sensitive: Mechanics preparing a
plane for the past. No image: Me-
chanics preparing a clean for the pas-
ture.

True transcript: Two people mak-
ing their way between rocks. Image-
sensitive: Two people making their
way between rocks. No image: Two
people making their way between
walks.

True transcript: A man fishing un-
der an umbrella. Image-sensitive: A
man fishing under an umbrella. No
image: A man fishing under a num-
ber.

Fig. 1. Recognizing objects from the images helps the decoding.

On the downside, the image model is prone to overfitting to the image.
Figure 2 shows a clear example of this effect. The visual setting depicting a dog
gets associated with the word “pizza” during training and rescoring gives too
high probability to the sentence containing this word. This effect can be reduced
by interpolating with a purely text-based language model that was trained on
considerably more data. As illustrated by the optimal interpolation weights, the
image model benefits more from the 3-gram language model. Supporting the
image-sensitive language model with a richer, text-based model reduces, but
does not eliminate this problem.

A dog is standing in front of a
pizza parlor and the man is smiling
looking at him. The pizza maker is
laughing at the white dog watching
him through the window. A small
brown and white dog looks in the
window of Driggs Pizza. A lost dog
trying to find some food in a pizza
restaurant. A dog is looking in the
window of a pizza parlor .

True transcript: A man
on a bench feeds a dog.
Image-sensitive: A man
on a bench pizza. No im-
age: A man on a bench
feeds a dog.

Fig. 2. The image sensitive language model overfits to the training image.
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4 Conclusions

In this paper we set out to explore the possible benefits of introducing the
visual modality to language modeling. We showed that adding the image to the
conditioning set helps reduce perplexity up to 30% relative to the baseline.

Conditioning on the image helped decrease word error rate from 34.8% to
32.08%. In some cases the image-sensitive model fails to identify the participants
and actions in the visual setting and copies training sentences based on superficial
visual similarity. One reason for this is that the datasets are not large enough,
and the model is not presented with a sufficient variety of scene and description
combinations. We also believe that profound image understanding cannot be
achieved by using a global image descriptor and optimizing on maximizing the
likelihood of the descriptions.

Future work could further explore the benefit of using the visual modality
by using a better first-pass decoder and exploring multimodal language models
that achieve a more effective grounding in the visual modality.
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