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Abstract. The FiLM model achieves close-to-perfect performance on
the diagnostic CLEVR dataset and is distinguished from other such mod-
els by having a comparatively simple and easily transferable architecture.
In this paper, we investigate in more detail the ability of FiLM to learn
various linguistic constructions. Our results indicate that (a) FiLM is
not able to learn relational statements straight away except for very
simple instances, (b) training on a broader set of instances as well as
pretraining on simpler instance types can help alleviate these learning
difficulties, (c) mixing is less robust than pretraining and very sensitive
to the compositional structure of the dataset. Overall, our results suggest
that the approach of big all-encompassing datasets and the paradigm of
“the effectiveness of data” may have fundamental limitations.
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1 Introduction and Related Work

The task of Visual Question Answering (VQA) lies at the intersection of Com-
puter Vision and Natural Language Processing. It generalizes the vision tasks of
object detection and recognition to arbitrary visual-linguistic inferences, limited
only by what can be queried by language.

In reaction to various issues that allowed comparatively naive models – for
instance, a text-only system ignoring visual information and solely relying on
language statistics – to achieve competitive performance on the popular VQA
Dataset [1,6,15], abstract and (semi-)automatically generated datasets were
introduced [10,12,20,22]. Their motivation is to provide diagnostic tasks, with
the aim of analyzing core abilities for visually grounded language understand-
ing, like spatial reasoning or counting. CLEVR [10] is the most widely adopted
of these, and several systems have now achieved near-perfect performance on it
[8,9,11,14,16,18,19,22].

One of the advantages of CLEVR is that it annotates questions from a set of
instance types, like “count” or “compare attribute”, which makes a more detailed
evaluation and model comparison possible. Building on the “unit-testing” pro-
posal of [13] and related work for reading comprehension such as the bAbI tasks
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[21], which take this idea of targeted evaluation further, we analyzed the FiLM
model [16] on the ShapeWorld evaluation framework [12]. In doing so, we aim
to investigate whether its close-to-perfect performance on CLEVR translates
to ShapeWorld data as expected, and to shed more light on the strengths and
weaknesses of FiLM.

Why FiLM? Arguably, it is one of the simplest models on that performance
level for CLEVR. In particular, it does not rely on the semantic program trees
underlying its instances, as compared to [8,11,14]. The first two strictly require
the CLEVR-specific program vocabulary, which is different from the one used
by ShapeWorld to generate data. The latter is agnostic to the vocabulary, but
still sensitive to the size of the vocabulary, which is bigger for ShapeWorld1.
Moreover, the code is open-source, and in our experiments we found that the
model shows robust learning behavior on ShapeWorld data without any tuning
of the CLEVR-based hyperparameters.

While FiLM manages to solve many tasks perfectly, it fails to learn anything
on almost all datasets consisting of relational statements. We investigate how
two approaches – broader training sets including simpler instances, and a version
of curriculum learning [3,5] – can make the difference between no learning at all
and perfectly solving these datasets. However, we find that the first approach is
very sensitive to details of the dataset structure. These results put into question
the common assumption of “the effectiveness of data” [7] underlying datasets
such as the VQA Dataset [2] (or SQuAD [17] for reading comprehension, or SNLI
[4] for language inference): that all necessary abilities for a task can simply be
learned from one big all-encompassing dataset, and that more data should lead to
improved performance. Curriculum learning, on the other hand, shows promise
as a robust approach to solving more complex instances of a task.

2 Experimental Setup

2.1 Task

We look at the task of image caption agreement, that is, given a visual scene
and a statement, decide whether the latter is true for the former. See Fig. 1 for
some examples. The captions here are formal-semantics-style statements and not
necessarily good descriptions, which is a vaguer concept and thus not as useful
for evaluation. Instead, this task corresponds more to yes/no questions in visual
question answering.

2.2 Datasets

We generated various datasets based on existing configurations in the Shape-
World repository. The different datasets are defined by the types of captions
they contain, see Fig. 1 for more details. Each dataset consists of 500k training
instances, plus 10k validation and test instances. Training and validation scenes
1 We ran into memory issues when trying to run this model on ShapeWorld data.
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generally contain 1–4, 6–9 or 11–14 non-overlapping (unless mentioned other-
wise) objects, further constrained depending on the dataset. Test scenes may in
addition exhibit the withheld object numbers 5, 10 and 15, and may also con-
tain withheld object types: “red square”, “green triangle”, “blue circle”, “yellow
rectangle”, “magenta cross”, “cyan ellipse”. Consequently, the test data follows
a slightly different distribution where models is required to generalize to unseen
object numbers and new attribute combinations to achieve a comparable score,
similar to the CoGenT version of the CLEVR dataset2 [10].

Existential: “There is a red square.”,“A red shape is a square.”
Single-shape: same as above, with only one object present
Logical: two existential statements connected by: and, or, if, if and only if
Numbers: zero to five; with modifiers: less/more than, at most/least, exactly,

not
Quantifiers: with modifiers as above: no, half, all, a/two third(s), a/three quar-

ter(s)
Relational: left, right, above, below, closer, farther, darker, lighter, smaller,

bigger, same/different shape/color
Simple-spatial: the first four spatial relations, with only two objects per scene
Relational-negation: relational plus negated relations
Implicit-relational: left, right, upper, lower, smaller, bigger, darker, lighter,

closer, farther (of two potential objects)
Superlatives: superlative forms of the above, of an arbitrary number of objects.

Examples for visual scenes Examples for true or false statements

◦ “There is a cyan square or a circle is green.”
◦ “At least two shapes are green.”
◦ “More than half the pentagons are red.”
◦ “A red cross is to the left of a yellow shape.”
◦ “The left circle is blue.”
◦ “The lowermost yellow shape is a circle.”

Fig. 1. Top: All basic datasets we experimented with, together with their central
words/constructions. Bottom left : Two example images. Bottom right : Some exam-
ple captions of different datasets (logical, numbers, quantifiers, relational,
implicit-relational, superlatives) (Color figure online)

2.3 Models

We focus on the FiLM model [16] here. The image is processed using a six-layer
CNN (stride of two after the third and sixth layer) trained from scratch on the
2 Note, however, that CLEVR CoGenT requires stronger generalization skills, as more

shape-color combinations per shape/color are withheld.
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task. We found that the common approach of using a pretrained ResNet module
did not perform well on our data. The caption as ‘question’ is processed by a
GRU. In four residual blocks, the processed image tensor is linearly modulated
conditioned on the caption embedding. Following global max-pooling, the classi-
fier module produces the ‘answer’, i.e. “true” or “false” in our case. We train the
model for 100k iterations in all experiments, using the default hyperparameters.
Training performance is measured on the validation set every 1k iterations for
the first 10k iterations and every 5k afterwards. We also compare performance on
selected datasets to two common baselines [10]: CNN-LSTM and CNN-LSTM-
SA. We will release the ShapeWorld-adapted FiLM repository and the generator
configurations to create the datasets on acceptance of the paper.

3 Results

Detailed results are presented in Figs. 2 and 3, unless referred to the appendix.

Initial findings, and what did not work.

(a) In a first experiment, we did not explicitly configure data generation to pre-
vent overlapping objects. This turned out to be a major obstacle for learning
in most cases. While FiLM solved existential (99.7%), performance on
numbers stayed at chance level (55.2%) (see Appendix A.1).

(b) We experimented with using a fixed/trainable pretrained ResNet module
instead of a custom CNN. Both versions of the model reached an accuracy
of 65–70% after 100k iterations on existential, which is substantially lower
than our final result of 100% (see AppendixA.1).

(c) The FiLM model successfully solves many of our datasets. existential
is mastered after only 10k iterations and at the same speed as the trivial
single-shape variant. logical, numbers and quantifiers reach close-
to-perfect accuracy after around 60k iterations. The learning curves for these
three tasks look remarkably alike and thus suggest a similar learning com-
plexity for the model.

(d) The FiLM model successfully generalizes to the test set in most cases. Only
for the simplified variants single-shape and simple-spatial, test perfor-
mance is markedly lower, suggesting that there is not enough incentive to
learn a compositional representation, presumably because their simplicity
makes overfitting a feasible option.

(c) We investigated the performance of two common baselines, CNN-LSTM and
CNN-LSTM-SA. While FiLM consistently outperforms both baselines as
expected, the supposedly superior CNN-LSTM-SA [10,23] does not always
improve upon the results of CNN-LSTM. However, CNN-LSTM-SA in some
cases shows stronger generalization to the test distribution, whereas perfor-
mance always drops for CNN-LSTM (also see Appendix A.2).
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Dataset CNN-LSTM CNN-LSTM-SA FiLM

single-shape — — 100.0 87.2

existential 100.0 81.1 100.0 99.7 100.0 99.9

logical 79.7 62.2 76.5 58.4 99.9 98.9

numbers 75.0 66.4 99.1 98.2 99.6 99.3

quantifiers 72.1 69.1 84.8 80.8 97.7 97.0

simple-spatial 81.4 64.8 81.9 57.7 85.1 61.3

relational — — 50.6 51.0

implicit-rel — — 52.9 53.2

superlatives — — 50.8 50.2

Fig. 2. Left diagram: validation performance of the FiLM model trained on various
ShapeWorld datasets separately (x-axis: iterations in 1000, y-axis: accuracy). Top right
table: final validation (left) and test (right) accuracy of the trained FiLM models, plus
performance of the two baselines on selected datasets (in percent, green: ≥95%, orange:
≥75%, red: <75%) (Color figure online)

Failure to Learn Relational Statements. Surprisingly, we found that, with the
exception of simple-spatial, FiLM struggles to learn anything when trained on
the various datasets requiring some form of relational reasoning: relational,
implicit-relational and superlatives (relational-like below). We also
tried subsets of relations in relational (e.g., only spatial relations), with the
same result. The only exception is the simplistic two-object simple-spatial.
But even here, learning is comparatively slow and only reaches ∼85% after 100k
iterations (although the curve indicates that performance is still improving),
which further emphasizes the complexity of learning relations for FiLM.

Training on a Broader Set of Instances. Datasets like CLEVR consist of a mix
of instances requiring different abilities. Our assumption is that the simpler
instances help to stabilize and guide the overall learning process, so that the
more complex instances are also learned eventually3, hence models are able to
achieve close-to-perfect performance. We tested this assumption in three setups:
First, the FiLM model reaches ∼95% accuracy on a dataset augmenting the com-
plex relational with the ‘pedagogical’ simple-spatial dataset. Second, when
trained on a broader mix of existential, logical, numbers, quantifiers
and either of the relational-like datasets, instances of the latter dataset are
also successfully learned (also see Appendix A.3). Finally, in the failure case of
numbers for images with overlapping objects, training on a combination with
the existential dataset helps the model to also solve instances of the former.

Improvements via Augmenting/Mixing are Unstable. Further investigation
reveals that this ‘synergy effect’ of combining different instances is very sensitive
to the composition of the training set. For instance, an unbalanced distribution

3 When referring to “simple” and“complex” or “difficult” instances here, we always
mean with respect to the ability of the FiLM model to learn these instances.
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of 45% or 60% simple-spatial and 55% or 40% relational shows no improve-
ment above chance level (see Appendix A.5). Similarly, performance stagnates
when training on a combination of simple-spatial and relational-negation
instead. In the second example above, FiLM sometimes fails to learn mixed
datasets with two or more relational-like components (see Appendix A.4).
Of these, relational seems to be the most complex for FiLM.
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Fig. 3. Left diagram: FiLM performance on the relational/existential+numbers
(with overlap) dataset, when pretrained on simple-spatial/existential instances, or
trained on a combination. Bottom right diagram: performance per dataset of the FiLM
model trained on a broader mix of datasets

The Effectiveness of Pretraining. In another series of experiments, we investi-
gated whether pretraining on simpler instances can bootstrap a successful learn-
ing process on more complex datasets, which is the assumption underlying cur-
riculum learning [3,5]. For this, we take the model trained for 100k iterations
on simple-spatial and apply it to other relational-like datasets. For both
relational as well as relational-negation we observe a sharp increase in
performance at the start, reaching ∼95% accuracy after 100k iterations. We par-
ticularly want to draw attention to the fact that the pretrained model reaches and
eventually surpasses its previous performance level of ∼85% after only 20k/40k
iterations, despite the more complex instances. Note also that the model trained
on relational-negation at some point seems to benefit from this dataset’s
increased complexity. Finally, we also confirmed that, in the case of overlapping
objects, the system pretrained on existential is subsequently also able to learn
added numbers instances.

4 Discussion and Conclusion

We have shown how the FiLM model is not able to learn to correctly under-
stand relational statements when trained on a dataset of such statements only.
Furthermore, we have investigated two mechanisms which help alleviate these
difficulties: augmenting training data with instances that are easier to learn, and
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pretraining on such simpler instances before moving to more complex ones. The
first approach turns out to be very sensitive to the precise composition of the
training set, while the second one leads to more reliable improvements.

Augmenting datasets in the limit corresponds to big all-encompassing
datasets for general tasks like VQA, where a variety of skills is assumed to
be learned implicitly from a lot of input-output pairs. While our results con-
firm that this is possible (at least for synthetic data), they strongly question
the robustness of this process. We saw how otherwise successful learning breaks
down when the combined dataset is too complex or the mixing distribution is
chosen wrongly. We emphasize that these findings are based on perfectly clean
and controlled abstract data, while the situation is obviously more complex for
real-world datasets. Such sensitivity of the learning process to such structural
details of the training data is usually not considered, but might be able to explain
some of the instability effects that are generally attributed to hyperparameter
choice and random seeds. Since it is hard to conceive how real-world data could
ever be controlled to the degree possible with synthetic data, we should be far
more skeptical of very complex architectures for only a single dataset, and instead
encourage the reporting of negative instability/transferability results. As a way
forward, our findings suggest the potential of curriculum learning as a more
robust alternative to bigger monolithic datasets.

Acknowledgments. We thank the anonymous reviewers for their constructive feed-
back. AK is grateful for being supported by a Qualcomm Research Studentship and
an EPSRC Doctoral Training Studentship.

A Learning Curves for Other Experiments

A.1 Overlapping Objects and Pretrained ResNet Module
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A.2 Baselines: CNN-LSTM and CNN-LSTM-SA
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A.3 Combinations with Implicit-Relational and Superlatives
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A.4 Combinations with Multiple Relational-Like Datasets
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A.5 Mixing Distribution
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(eds.) Proceedings of the Conference on Empirical Methods in Natural Language
Processing. EMNLP 2015, pp. 632–642. Association for Computational Linguistics,
Stroudsburg (2015)

5. Elman, J.L.: Learning and development in neural networks: the importance of
starting small. Cognition 48(1), 71–99 (1993)

6. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in
VQA matter: elevating the role of image understanding in visual question answer-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. CVPR 2017, pp. 6325–6334. IEEE Computer Society, Washington,
DC (2017)



How Clever Is the FiLM Model, and How Clever Can it Be? 171

7. Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE
Intell. Syst. 24(2), 8–12 (2009)

8. Hu, R., Andreas, J., Rohrbach, M., Darrell, T., Saenko, K.: Learning to reason:
end-to-end module networks for visual question answering. In: Proceedings of the
IEEE International Conference on Computer Vision. ICCV 2017. IEEE Computer
Society, Washington, DC (2017)

9. Hudson, D.A., Manning, C.D.: Compositional attention networks for machine rea-
soning. In: Proceedings of the International Conference on Learning Representa-
tions. ICLR 2018 (2018)

10. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C.L., Girshick,
R.: CLEVR: a diagnostic dataset for compositional language and elementary visual
reasoning. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. CVPR 2017. IEEE Computer Society, Washington, DC (2017)

11. Johnson, J., et al.: Inferring and executing programs for visual reasoning. In: Pro-
ceedings of the IEEE International Conference on Computer Vision. ICCV 2017.
IEEE Computer Society, Washington, DC (2017)

12. Kuhnle, A., Copestake, A.: ShapeWorld - a new test methodology for multimodal
language understanding. arXiv e-prints 1704.04517 (2017)

13. Kuhnle, A., Copestake, A.: Deep learning evaluation using deep linguistic pro-
cessing. In: Walker, M., Ji, H., Stent, A. (eds.) Proceedings of the Workshop on
Generalization in the Age of Deep Learning. NAACL 2018, pp. 17–23. Association
for Computational Linguistics, Stroudsburg (2018)

14. Mascharka, D., Tran, P., Soklaski, R., Majumdar, A.: Transparency by design:
closing the gap between performance and interpretability in visual reasoning. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
CVPR 2018. IEEE Computer Society, Washington, DC (2018)

15. Mudrakarta, P.K., Taly, A., Sundararajan, M., Dhamdhere, K.: Did the model
understand the question? arXiv e-prints 1805.05492 (2018)

16. Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.C.: FiLM: visual
reasoning with a general conditioning layer. In: AAAI. AAAI Press, Palo Alto
(2018)

17. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions
for machine comprehension of text. In: Su, J., Duh, K., Carreras, X. (eds.) Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing.
EMNLP 2016, pp. 2383–2392. Association for Computational Linguistics, Strouds-
burg (2016)

18. Santoro, A., et al.: A simple neural network module for relational reasoning. In:
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, pp. 4974–4983. Curran Associates
Inc., Red Hook (2017)

19. Suarez, J., Johnson, J., Li, F.: DDRprog: a CLEVR differentiable dynamic reason-
ing programmer. arXiv e-prints 1803.11361 (2018)

20. Suhr, A., Lewis, M., Yeh, J., Artzi, Y.: A corpus of natural language for visual rea-
soning. In: Barzilay, R., Kan, M.Y. (eds.) Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics. ACL 2017. Association for Com-
putational Linguistics, Stroudsburg (2017)

21. Weston, J., Bordes, A., Chopra, S., Mikolov, T.: Towards AI-complete question
answering: a set of prerequisite toy tasks. arXiv e-prints 1502.05698 (2015)

http://arxiv.org/abs/1704.04517
http://arxiv.org/abs/1805.05492
http://arxiv.org/abs/1803.11361
http://arxiv.org/abs/1502.05698


172 A. Kuhnle et al.

22. Yang, G.R., Ganichev, I., Wang, X.J., Shlens, J., Sussillo, D.: A dataset and archi-
tecture for visual reasoning with a working memory. arXiv e-prints 1803.06092
(2018)

23. Yang, Z., He, X., Gao, J., Deng, L., Smola, A.J.: Stacked attention networks for
image question answering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. CVPR 2016. IEEE Computer Society, Washing-
ton, DC (2016)

http://arxiv.org/abs/1803.06092

	How Clever Is the FiLM Model, and How Clever Can it Be?
	1 Introduction and Related Work
	2 Experimental Setup
	2.1 Task
	2.2 Datasets
	2.3 Models

	3 Results
	4 Discussion and Conclusion
	A  Learning Curves for Other Experiments
	A.1  Overlapping Objects and Pretrained ResNet Module
	A.2  Baselines: CNN-LSTM and CNN-LSTM-SA
	A.3  Combinations with Implicit-Relational and Superlatives
	A.4  Combinations with Multiple Relational-Like Datasets
	A.5  Mixing Distribution

	References




