
Knowing When to Look
for What and Where: Evaluating
Generation of Spatial Descriptions

with Adaptive Attention

Mehdi Ghanimifard(B) and Simon Dobnik

Centre for Linguistic Theory and Studies in Probability (CLASP),
Department of Philosophy, Linguistics and Theory of Science,

University of Gothenburg, Box 200, 405 30 Gothenburg, Sweden
{mehdi.ghanimifard,simon.dobnik}@gu.se

Abstract. We examine and evaluate adaptive attention [17] (which bal-
ances the focus on visual features and focus on textual features) in gen-
erating image captions in end-to-end neural networks, in particular how
adaptive attention is informative for generating spatial relations. We
show that the model generates spatial relations more on the basis of
textual rather than visual features and therefore confirm the previous
observations that the learned visual features are missing information
about geometric relations between objects.
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1 Introduction

End-to-end neural networks are commonly used in image description tasks
[17,28,29]. Typically, a pre-trained convolutional neural network is used as an
encoder which produces visual features, and a neural language model is used
as a decoder that generates descriptions of scenes. The underlying idea in this
representation learning scenario [5] is that hidden features are learned from the
observable data with minimum engineering effort of background knowledge. For
example in word sequence generation only some general properties of a sequence
structure [26] are given to the learner while the learner learns from the observed
data what word to choose in a sequence together with a representation of fea-
tures. Recent models such as [17,29] also add to the neural language model a
model of visual attention over visual features which is inspired by the attention
mechanism for alignment in neural machine translation [4]. It may be argued
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that the attention mechanism introduces modularity to representation learn-
ing in the sense of inception modules [27] and neural module networks [2]. The
visual attention is intended to detect the salient features of the image and align
them with words predicted by the decoder. In particular, it creates a sum of the
weighted final visual features at different regions of an image:

ct =
k∑

i=1

αtivi (1)

where at time t, ct represents the pooled visual features, i corresponds to k
different regions of image, vi is the visual representation of a particular region,
and αti represent the amount of attention on the specific region of the image.
This representation provides the features for grounding the prediction of next
word:

logPr(wt+1 = yt+1|w1:t = y1:t, I = v1:k) ≈ f(y1:t, ct) (2)

where f represents the end-to-end neural network for approximating the predic-
tion of the next word in sentence.

However, not all words in natural language descriptions are directly grounded
in visual features which leads [17] to extend the attention model [29] with an
adaptive attention mechanism which learns to balance between the contribution
of the visual signal and the language signal when generating a sequence of words.

ĉt = βtst + (1 − βt)ct (3)

where at time t, ĉt is a combined representation of language features and visual
features in addition to ct of the visual features from Eq. 2. st is obtained from
the memory state of the language model, and βt ranging between [0, 1] is the
adaptive attention balancing the combination of vision and language features.

The performance of the image captioning systems when evaluated on the
acceptability of the generated descriptions is impressive. However, in order to
evaluate the success of learning we also need to understand better what the sys-
tem has learned especially because good overall results may be due to the dataset
artefacts or the system is simply learning from one modality only, ignoring the
other [1]. Understanding the representations that have been learned also gives us
an insight into building better systems for image captioning, especially since we
do not have a clear understanding of the features in the domain. An example of
work in this area is [15] which evaluates visual attention on objects localisation.
[25] developed the FOIL dataset as a diagnostic tool to investigate if models look
at images in caption generation. In [24] they examine the FOIL diagnostic for
different parts-of-speech and conclude that the state of the art models can locate
objects but their language models do not perform well on other parts-of-speech.

The current paper focuses on generation of spatial descriptions, in partic-
ular locative expressions such as “the chair to the left of the sofa” or “people
close to the statue in the square”. Spatial relations relate a target (“people”)
and landmark objects (“the statue”) with a spatial relation (“close to”). They
depend on several contextual sources of information such as scene geometry
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(“where” objects are in relation to each other), properties or function of objects
and their interaction (“what” is related) as well as the interaction between
conversational participants [8,10,11,13,21]. The features that are relevant in
computational modelling of spatial language are difficult to determine simply
by manually considering individual examples and they are normally identified
through experimental work. The representation learning models are therefore
particularly suited for their computational modelling.

However, the end-to-end vision and language models with attention are
implemented in a way to recognise objects and localise their area in an image
[3,18]. To generate spatial relations, [20] propose a combination of visual repre-
sentations from convolutional neural networks and manually designed geometric
representation of targets and landmarks. On quick examination, the representa-
tion of attention over images as in [29] gives an impression that attention cap-
tures both “what” and “where”, especially because the attention graphs resemble
spatial templates [16]. However, [12] argue that due to the design properties of
image captioning networks, attention does not capture “where” as these models
are built to identify objects but not geometric relations between them which they
examine at the level of qualitative evaluation of attention on spatial relations.

In this paper we quantitatively evaluate the model of adaptive attention of
[17] in predicting spatial relations in image descriptions. The resources used in
our evaluation are described in Sect. 2. In Sect. 3 we examine the grounding of
different parts-of-speech in visual and textual part of attention. Furthermore,
in Sect. 4 we investigate the attention on spatial relations, targets and land-
marks. We conclude by providing the possible directions for future studies and
improvements.

2 Datasets and Pre-trained Models

As a part of their implementation [17] provide two different pre-trained image
captioning models: Flickr30K [30] and MS-COCO [14].1 We base our experiments
on spatial descriptions of 40,736 images in the MS-COCO test corpus.

3 Visual Attention and Word Categories

Hypothesis. Our hypothesis is that visual attention in the end-to-end image
captioning systems works as an object detector similar to [3,18]. Therefore, we
expect the adaptive attention to prefer to attend to visual features rather than
the language model features when predicting categories of words found in noun
phrases that refer to objects, in particular head nouns. We expect that both
scores will be reversed: more predictable words by the language model in the
blind test receive less visual attention.

1 https://filebox.ece.vt.edu/∼jiasenlu/codeRelease/AdaptiveAttention.

https://filebox.ece.vt.edu/~jiasenlu/codeRelease/AdaptiveAttention
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Method. We use the pre-trained model of adaptive attention2 to generate a
description for each of the 40,736 images in the MS-COCO-2014 test. All the
attention values are logged (α, β). We apply universal part-of-speech tagger from
NLTK [6] on the generated sentences and report the average visual attentions
on each part-of-speech. We match our results with results on the degree of pre-
dictability of each part-of-speech from the language model without looking at
the image from the blind test of [24]. Note that we do not investigate the over-
all quality of the model on the test set (this has already been evaluated by its
authors) but what kind of attention this model gives to vision and language
features used to generate a word of each category. The evaluation code: https://
github.com/GU-CLASP/eccv18-sivl-attention.

Results. Table 1 indicates that the highest degree of visual attentions is on
numbers (NUM), nouns (NOUN), adjectives (ADJ) and determiners (DET)
respectively. Pronouns (PRON) and particles (PRT) receive the lowest degree
of visual attention. Verbs (VERB) and adverbs (ADV) are placed in the mid-
dle of this sorted list. Spatial relations which are mainly annotated as preposi-
tions/adpositions (ADP) receive the second lowest visual attention, higher only
than pronouns (PRON) and particles (PRT). Our results are different from the
accuracy scores of detecting mismatch descriptions in the FOIL classification
task [24]. For example, the model assigns predicts the mismatch on ADJ eas-
ier than mismatch on ADV. As hypothesised, the part-of-speech that make up
noun phrases receive the highest visual attention (and the lowest language model
attention). The results also indicate that the text is never generated by a sin-
gle attention alone but a combination of visual and language model attentions.
Since some spatial relations are often annotated as adjectives (e.g. “front”), a
more detailed comparison on spatial terms is required.

4 Visual Attention When Grounding Spatial Descriptions

In generation of a sequence of words that make up a spatial description, which
type of features or evidence is taken into consideration by the model as the
description unfolds?

Hypothesis. In Sect. 3, we argued that the generation of spatial relations (preposi-
tions/adpositions) is less dependent on visual features compared to noun phrases
due to the fact that the learned visual features are used for object recognition
and not recognition of geometric spatial relations between objects. Moreover,
the visual clues that would predict the choice of spatial relation are not in one
specific region of an image; this is dependent on the location of the target, the
landmark and the configuration of the environment as a whole. Therefore, our
hypothesis is that when generating spatial relations the visual attention is more
spread over possible regions rather than being focused on a specific object.
2 https://filebox.ece.vt.edu/∼jiasenlu/codeRelease/AdaptiveAttention/model/

COCO/coco challenge/model id1 34.t7.

https://github.com/GU-CLASP/eccv18-sivl-attention
https://github.com/GU-CLASP/eccv18-sivl-attention
https://filebox.ece.vt.edu/~jiasenlu/codeRelease/AdaptiveAttention/model/COCO/coco_challenge/model_id1_34.t7
https://filebox.ece.vt.edu/~jiasenlu/codeRelease/AdaptiveAttention/model/COCO/coco_challenge/model_id1_34.t7


Evaluating Generation of Spatial Descriptions with Adaptive Attention 157

Table 1. The average visual attention (1 − β) for predicting words on each part-of-
speech. The scores from the blind test indicate the accuracy of detecting a mismatch
description in the FOIL-classification task [24].

POS Count Mean± std Blind test

NUM 1882 0.81 ± 0.08 -

NOUN 134332 0.78 ± 0.12 0.23

ADJ 23670 0.77 ± 0.14 0.76

DET 96641 0.73 ± 0.12 -

VERB 38381 0.70 ± 0.11 0.57

CONJ 6755 0.70 ± 0.13 -

ADV 184 0.69 ± 0.12 0.18

ADP 64332 0.62 ± 0.15 0.54

PRON 2347 0.53 ± 0.14 -

PRT 6462 0.52 ± 0.21 -

Method. The corpus tagged with POS from the previous section was used. In
order to examine the attention on spatial relations, a list of keywords from [11,13]
was used to identify them, provided that they have a sufficient frequency in the
corpus. The average adaptive visual attention for each word can be compared
with the scores in Table 1 for different parts-of-speech. In each sentence, the
nouns before the spatial relation and the nouns after the spatial relations are
taken as the most likely targets and landmarks respectively. The average adaptive
visual attention on targets, landmarks and spatial relations is recorded.

Results. In Table 2 we report for each spatial relation and its targets and land-
marks the average adaptive visual attention. The adaptive attentions for triplets
are comparable with the figures for each part-of-speech in Table 1. In the current
table, the variance of visual attentions is reported with the max − min measure
which is the difference between maximum and minimum attentions on a 7 × 7
plane representing the visual regions in the model. Lower values indicate either a
low attention or a wider spread of attended area, hence less visual focus. Higher
values indicate that there is more visual focus. For each spatial relation, the
triplets must be compared with each other. In all cases, our hypothesis is con-
firmed: (1) the adaptive visual attention is lower on predicting spatial relations
which means that they receive overall less visual attention, (2) with the exception
of “under”, the difference between maximum and minimum visual attentions are
lower with spatial relations which means that the attention is spread more over
the 7 × 7 plane. Figure 1 shows a visualisation of these results for “under” and
“over”. The results also show that landmarks in most cases receive less visual
attention in comparison to targets. This indicates that after providing a target
and a spatial relation, the landmark is more predictable from the language model
(for a similar observation see [9]).
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Table 2. The average score of adaptive visual attention for target (TRG) relation
(REL) landmark (LND) triplets per each relation in the first column and the average
difference between the highest and the lowest value of visual attention for the same
items in the second column.

Descriptions
Spatial relations

Average (1 − βt)
TRG, REL, LND

Average (max(α̂t) − min(α̂t))
TRG, REL, LND

Under 0.84, 0.73, 0.79 0.0252, 0.0151, 0.0139

Front 0.83, 0.70, 0.82 0.0230, 0.0136, 0.0154

Next 0.82, 0.68, 0.78 0.0224, 0.0136, 0.0138

Back 0.85, 0.68, 0.84 0.0332, 0.0186, 0.0272

In 0.82, 0.68, 0.77 0.0250, 0.0149, 0.0164

On 0.81, 0.68, 0.75 0.0249, 0.0154, 0.0175

Near 0.80, 0.67, 0.76 0.0221, 0.0133, 0.0169

Over 0.77, 0.62, 0.75 0.0205, 0.0133, 0.0193

Above 0.73, 0.64, 0.77 0.0167, 0.0134, 0.0231

Fig. 1. Each square in a box in the first row represents an averaged attention for a
location in the 7×7 grid over all n generated samples (α̂). The colours fade to white with
lower values. The bottom graphs show their average over the entire plane, indicating
the degree of adaptive visual attention (1 − β), also reported in Table 2.

5 Discussion and Conclusion

In this paper we explored to what degree adaptive attention is grounding spatial
relations. We have shown that adaptive visual attention is more important for
grounding objects but less important for grounding spatial relations which are
not directly represented with visual features. As a result the visual attention is
diffused over a larger space. The cause for a wider attended area can be due to
high degree of noise in visual features or lack of evidence for visual grounding.

This is a clear shortcoming of the image captioning model, as it is not able
to discriminate spatial relations on the basis of geometric relations between
the objects, for example between relations such as “left” and “right”. The
future work on generating image descriptions therefore requires models where
visual geometry between objects is explicitly represented as in [7]. The study



Evaluating Generation of Spatial Descriptions with Adaptive Attention 159

also shows that when generating spatial relations, a significant part of the
information is predicted by the language model. This is not necessarily a dis-
advantage. The success of distributional semantics shows that language models
with word embeddings can learn a surprising amount of semantic information
without access to visual grounding. As mentioned in the introduction, spatial
relations do not depend only on geometric arrangement of objects but also func-
tional properties of objects. For example, [9] demonstrate that neural language
models encode such functional information about objects when predicting spa-
tial relations. Since, each spatial relation has different degree of functional and
geometric bias [8], the adaptive attention considering visual features and textual
features is also reflective of this aspect.

Models for explaining language model predictions such as [19] are also related
to this study and its future work.

Our study focused on the adaptive attention in [17] which explicitly models
attention as a focus on visual and language features. However, further investi-
gations of other types of models of attention could be made and this will be
the focus of our future work. We expect that different models of attention will
behave similarly in terms of attending visual features on spatial relations because
the way visual features are represented: they favour detection of objects and not
their relative geometric arrangement. Our future work we will therefore focus
on how to formulate a model to be able to learn such geometric information in
an end-to-end fashion. Methodologies such as [22] and [23] which investigate the
degree of effectiveness of features without attention are also possible directions
of the future studies.
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