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Abstract. We propose a framework that harnesses visual cues in an
unsupervised manner to learn the co-occurrence distribution of items in
real-world images for complementary recommendation. Our model learns
a non-linear transformation between the two manifolds of source and
target item categories (e.g., tops and bottoms in outfits). Given a large
dataset of images containing instances of co-occurring items, we train
a generative transformer network directly on the feature representation
by casting it as an adversarial optimization problem. Such a conditional
generative model can produce multiple novel samples of complementary
items (in the feature space) for a given query item. We demonstrate our
framework for the task of recommending complementary top apparel
for a given bottom clothing item. The recommendations made by our
system are diverse, and are favored by human experts over the baseline
approaches.
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1 Introduction

Recommendation algorithms are central to many commercial applications, par-
ticularly for online shopping. In domains such as fashion, customers are looking
for clothing recommendations that visually complement their current outfits,
styles, and wardrobe. Traditional content-based and collaborative recommenda-
tion algorithms [1,18] do not make use of the visual cues to suggest comple-
mentary items. Among these, collaborative filtering [16,25] is a commonly used
approach, which primarily relies on behavioral and historical data such as co-
purchases, co-views, and past purchases to suggest new items to customers. In
contrast to these approaches, we address the problem of recommending com-
plementary items for a given query item based on visual cues. Our proposed
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approach is general (modeling visual co-occurrences) and can be applied to dif-
ferent domains such as fashion, home design, etc.

We develop an unsupervised learning approach for Complementary Recom-
mendation using Adversarial Feature Transform (CRAFT), by learning the co-
occurrence of item pairs in real images. Here we assume that the co-occurrence
frequency of item pairs is a strong indicator of the likelihood of their complemen-
tary relationship. We define an adversarial process to train a conditional gener-
ative adversarial network that can learn the joint distribution of item pairs by
observing samples from the real distribution, i.e., image features of co-occurring
items. Instead of direct image synthesis, the generative transformer in CRAFT is
trained in the feature space and is able to generate diverse features thanks to the
input random vector. The transformed feature vectors are used to recommend
images corresponding to the nearest neighbors in the feature space.

The proposed feature transformation approach is novel and unique, with
several advantages over existing image and feature generation methods using
Generative Adversarial Network (GAN) [8]. While the quality of visual image
generation using GANs has improved significantly (especially for faces [13]), it
still lacks the realism required for fashion/apparel recommendation. In contrast
to image transformation approaches using GAN approach [2,12,27,35], which
operate in the image space, CRAFT directly generates features of the recom-
mended items. Therefore, it bypasses the need for generating synthetic images
and enables a simpler and more efficient network architecture. This improves the
stability of CRAFT during training and avoids common pitfalls such as mode
collapse [3]. Another advantage is that our generative model can provide multi-
ple complementary items by learning the joint distribution in the feature space,
rather than a fixed mapping provided by image translation approaches.

Table 1. Similarities and differences between our approach and those that use adver-
sarial loss for training.

GAN input Generative (w/ random seed) Output Example

N/A Yes Image Image generation [8]

Image No Image Image-to-image translation [35]

Image + Attribute No Image Image manipulation [17]

Synthetic image No Image Adding realism [27]

Synthetic image Yes Image Adding realism [2]

Image No Features Domain adaptation [29,31]

Features Yes Features Ours

2 Related Work

Generative Adversarial Networks (GAN): The original GAN [8] and vari-
ants [7] have been presented as a powerful framework for learning generative
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models of complex data distributions for various tasks including image genera-
tion [13,33], image-to-image translation [12,35], domain adaptation [2,27,29,31],
etc. A recent work by Zhu et al. [36] used the GAN framework to generate
new clothing on a wearer. Our approach differs from these methods since we
do not aim to generate an image of the complementary item. Instead, we use
the adversarial training framework to learn the joint distribution between the
source and target features in an unsupervised manner. The GAN paradigm has
also found applications in the areas of image manipulation and image trans-
formation [2,12,27,35]. While such an approach can be applied to transform a
given image into that of a complementary item, it only provides a fixed map-
ping. In contrast, our method adopts a generative model that can provide multi-
ple complementary items by learning the joint distribution in the feature space.
Further, contrary to methods such as CycleGAN [35] and Zhu et al. [36] that per-
form image-to-image translation using raw pixels, our approach works directly
in the feature space. Feature-based domain adaptation approaches attempt to
directly learn a visual encoder for the target domain [29] or a domain-invariant
encoder [31] through optimizing an adversarial loss defined on the source, target
and augmented features. In contrast, our method learns a generative transformer
network that operates in the feature space. Table 1 shows similarities and differ-
ences between our approach and those that use adversarial loss for training.

Unsupervised Learning: Recent applications of unsupervised learning for
visual tasks include object discovery in videos [4]. In addition, there have been
demonstrations of self-supervised learning [6] for the tasks of image colorization,
image in-painting, hole filling, jigsaw puzzle solving from image patches, future
frame prediction using video data [32], etc. In the fashion domain, annotated
data are typically used for predicting fashion-related attributes and matching
street-to-catalog images [14,21]. These approaches involve visual search to find
similar looking items, whereas our approach is focused on finding complementary
items. Furthermore, our approach is unsupervised: we only take as input a set
of images to learn the feature transformation between complementary objects.

Recommendation: There is a rich body of literature on using behavioral
customer data such as browsing and purchasing history to develop recommender
systems [16]. Specific to the fashion domain, McAuley et al. [24] employed con-
volution neural network (CNN) features and non-visual data to build a personal-
ized model of user’s preference. In [10,30], the authors proposed to learn visual
compatibility via a common embedding across categories. In [9], the authors
proposed to learn a bi-directional Long Short Term Memory (LSTM) model in
a supervised manner, to suggest items that complement each other in an entire
outfit.

The aforementioned recommendation approaches use customer’s behavioral
data as training labels. Behavioral signals do not necessarily reflect that items
viewed or purchased together are visually complementary. In contrast, our unsu-
pervised approach learns item co-occurrences from only visual data. In multiple
methods [9,24,30], the recommendation model is non-generative in the sense
that it can only evaluate the compatibility between two given items. In [10],
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the diversity of recommendation is limited by the (fixed) number of embeddings
employed. In contrast, our generative model is not subject to such a constraint,
thanks to its ability to sample an infinite amount of noise vectors.

Fig. 1. Architecture for the CRAFT framework. The transformer component is trained
to generate the target features conditioned on the source features and a sampled noise
vector.

3 Generative Feature Transformer

This section describes our generative recommendation model based on the co-
occurrence of item pairs in real-world images. We hypothesize that learning the
joint distribution of such pairs can be useful for recommending new items that
complement a given query. We adopt an adversarial learning paradigm, where
our transformer network learns to generate features of the complementary items
conditioned on the query item.

3.1 Network Architecture

Figure 1 depicts the overall architecture of the proposed CRAFT network. The
source and the target feature encoders, Es and Et, respectively, are fixed and
are used to generate feature vectors for training and inference. Typically, it is
advisable to use application-specific feature representations, e.g., apparel fea-
ture embeddings for clothing recommendations. However, a general represen-
tation such as one pre-trained on ImageNet [5] or MS-COCO [20] offer robust
alternatives.

Our architecture resembles traditional GAN designs with two main compo-
nents: a conditional feature transformer and a discriminator. The role of the
feature transformer is to transform the source feature sq into a complementary
target feature t̂q. The input to the transformer also consists of a random noise
vector z sampled uniformly from a unit sphere in a dz-dimensional space. By
design, the transformer is generative since it is able to sample various features
in the target domain.
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As discussed, since our approach works in the feature space, we can adopt
a simple architecture for the feature transformer and discriminator. The trans-
former consists of several fully-connected layers, each followed by batch normal-
ization [11] and leaky ReLU [22] activation layers. The discriminator is commen-
surate to the transformer in capacity, consisting of the same number of layers.
This helps balance the power between the transformer and the discriminator in
the two-player game, leading to stable training and convergence.

3.2 Training and Generating Recommendations

Our training data consists of N co-occurring feature pairs C = {(si, ti), i =
1, . . . , N}, where si ∈ R

ds and ti ∈ R
dt denote the features corresponding to the

source and the target images, respectively. Given a sample sq from the source
space, the complementary recommendation task is to generate target features
{t̂q} that maximizes the likelihood that the pair (sq, t̂q) belongs to the joint
distribution pC represented by the training data. Note that the source features fed
into the transformer (sq) and discriminator (si) are generally different from each
other. To this end, we model the composition of layers in the feature transformer
and the discriminator as two functions Tφ(s, z) : (s, z) �→ t̂ and Dθ(s, t) : (s, t) �→
[0, 1], respectively. Here, φ and θ are the learnable parameters of the two players,
transformer and discriminator, respectively, and (s, t) is a pair of source and
target feature vectors, and z is a random noise vector.

The training process emulates an adversarial game between the feature trans-
former and the discriminator, where the discriminator aims to classify feature
pairs as real (co-occurring) or synthetic. On the other hand, the feature trans-
former synthesizes target features {t̂q} conditioned on a given source feature sq.
Its objective is to fool the discriminator into the belief that t̂q co-occurs with sq.
The feedback from the discriminator encourages the transformer to produce a
target feature t̂q so as to maximize the co-occurrence probability of the synthetic
pair.

The adversarial game can be formulated as a mini-max optimization problem.
The optimization approach can be implemented by alternating the training of
the discriminator and the feature transformer. The overall objective function of
the adversarial training process is formulated in Eq. 1.

min
φ

max
θ

L � E(si,ti)∼pC log Dθ(si, ti) + Ez∼pz,sq∼ps
log(1 − Dθ(sq, Tφ(sq, z))),

(1)
where pz and ps are the probability distribution function (pdf) of the random
noise and the source feature.

In the discriminator step (D-step), the discriminator’s goal is to assign a
binary label, i.e., 0 to the synthesized feature pair (sq, t̂q), where t̂q = Tφ(sq, z),
and 1 to an actual pair (si, ti). The discriminator’s goal is to maximizes the
cross entropy loss in Eq. 1. Meanwhile, the feature transformer maximizes the
likelihood that the discriminator recognizes synthetic pairs as belonging to the
data-generating (joint) distribution C, i.e., assigning a label 1 to such pairs.
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Therefore, the transformer step (T-step) aims to minimize the second term on
the right-hand side of Eq. 1.

3.3 Generating Recommendations

The recommendation workflow is depicted in Fig. 2. Here, we retain only the
transformer’s layers shown in Fig. 1 for recommendation. From a given query
image, we first extract its features via a pre-trained source encoder, Es. The
query feature, sq, along with a sampled noise vector, z, is fed to the CRAFT
network to generate the feature vector t̂q for a complementary item. This allows
us to generate a diverse set of complementary recommendations by sampling
the underlying conditional probability distribution function. We then perform
a nearest neighbor search on a pre-indexed candidate subspace with t̂q as the
query vector. Actual recommendation images are retrieved by a reverse lookup
that maps the selected features to the original target images.

Fig. 2. Generating recommendations using the proposed CRAFT network.

4 Experiments

In this section, we describe the experimental setup and results of applying
CRAFT to the problem of complementary apparel recommendation. Specifi-
cally, we train the generative transformer network to synthesize features for top
clothing items that are visually compatible to a given query bottom item.

4.1 Datasets

We trained the proposed CRAFT network from scratch on unlabeled images,
without the need for any human annotation to determine the complementary
relationship. To achieve this, we collected 474,184 full-length outfit images of
fashion enthusiasts, each containing a top and a bottom item. From each out-
fit, we extract the regions of interest (ROIs) of co-occurring pairs of tops and
bottoms for training. We trained a semantic segmentation network [34] on the
“Human Parsing in the Wild” dataset [19] to parse the collected images into
top and bottom segments. We consolidate the original labels in the dataset into
15 labels, where top clothing items correspond to the label “upper-clothes” and
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bottom ones correspond to “pants” and “skirt”. Subsequently, we obtained tight
bounding boxes/regions of interest (ROIs) around the resulting top and bottom
segments. In this manner, the training pairs are obtained automatically without
the need for manual annotations of the complementary relationship.

In our experiments, we extract the global averaging pooling feature of the
pre-trained Inception-v4 model [28] after performing a forward pass on the top
and bottom ROIs. Rather than working in the original 1536-dimensional feature
space, we opt for the top 128 PCA components to stabilize the training and
reduce the computational load.

4.2 Training and Network Parameters

We use the Adam optimizer [15] with starting learning rate of 0.0002 for both
the discriminator and the transformer networks. To improve training stability,
we use one-sided label noise [26]. Each minibatch for training the discriminator
consists of an equal proportion of synthetic and real feature pairs. The trans-
former is composed of 3 fully connected layers with 256 channels in the first two
layers and 128 channels in the third. The discriminator is composed of 3 fully
connected layers with 256, 256, and 1 channel(s), respectively. The noise vector z
is uniformly sampled from the unit sphere in R

128. We use leaky ReLU (α = 0.2)
and batch normalization for the first two layers of both the transformer and the
discriminator.

4.3 Baseline Algorithms

We compare the CRAFT algorithm with the following baseline methods.
Random recommendations: A trivial baseline generates random recom-

mendations from a given set of candidate options, referred to as Random. A
random selection can offer a diverse set of target items, but they may not nec-
essarily be complementary to the query item.

Nearest neighbors of source items: In addition, we consider a relevant
and good baseline method, which operates by finding nearest neighbors of the
query/source feature, and recommend the corresponding target items, i.e. the
one that co-occurs with the neighboring source items in the training data. We
refer to this method as NN-Source.

Incompatible recommendations: Lastly, we illustrate that CRAFT not
only learns to recommend complementary items, but also the concept of visual
incompatibility. The Incompatible recommendation method suggests tops that
are assigned low discriminator scores by the generative transformer of CRAFT.

4.4 Visualization of the Discriminator Output

In this section, we visualize how the learned transformer network dynamically
reacts to given queries in terms of assigning compatibility scores for candidate
tops. To visualize the space of candidate top items, we projected them to a two-
dimensional (2D) subspace using t-SNE [23]. The discriminator output can be
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Fig. 3. Each subplot shows a 2D t-SNE embedding of all the candidate tops (left) with
the corresponding query image (right). The colors represent the discriminator score
for tops conditioned on the query (red: high score, yellow: low score). Note that the
discriminator is able to learn that common bottoms such as blue jeans and gray pants
are compatible with a wide range of tops as compared to rarer query items such as the
patterned skirt shown in the last subplot. (Color figure online)

seen as a proxy for the compatibility score between any top and a given query
item. The left-hand side of each subplot in Fig. 3 shows 2D embedding of all
the tops in the dataset, color coded by the discriminator/compatibility score for
each top with the given bottom item (shown on the right-hand side). Note that
the compatibility scores for candidate tops change with the query bottom. The
yellow colors in the t-SNE plot denote low compatibility, while shades of orange
to red denote high compatibility (see color bar). It is interesting to note how
universal items such as blue jeans or gray pants are compatible with a large set
of candidate tops, while rare bottoms like the richly textured pattern skirt shown
on the bottom row are compatible with only a handful of tops. This illustrates
that our network is able to model the distribution of real item pairs.

4.5 Qualitative Results

Figure 4 shows qualitative results of the different recommendation methods for
two query items. For this experiment, we generated 8 top recommendations
from each algorithm and asked a fashion specialist to identify the top items that
complement the given bottom query. While all of the approaches produce visually
diverse recommendations, not all of them are compatible with the query. For a
common bottom outfit such as dark jeans (Fig. 4(a)), NN-Source perform as well
as our algorithm (CRAFT), while for a less common bottom such as bright pink
skirt (Fig. 4(b)) they perform worse (see Sect. 4.7 for a more thorough analysis).
This is aligned with our intuition that the quality of NN-Source recommendation
highly depends on the proximity of the neighbors of the query. Interestingly, the
Incompatible algorithm demonstrates its ability to learn the concept of visual
incompatibility : it often produces unusual outfit recommendation (e.g., the fur
top as the third item in Fig. 4(a)).

4.6 User Study Design

When recommendations are provided from an open ended set, they are difficult to
evaluate in absolute terms. For subjective domains such as fashion, it is preferable
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Fig. 4. Top to bottom: recommendations for two queries by CRAFT, NN-Source and
the Incompatible algorithms. Highlighted in green are the items accepted marked by a
fashion specialist as complementary to the query input, whereas rejected items are in
red. Best viewed in color. Our approach generates better and diverse recommendations.
(Color figure online)

to obtain input from domain experts who are familiar with nuances involved
in making style-appropriate recommendations. We adopt A/B testing as the
main methodology to compare our proposed approach to the baselines. Here,
we evaluate the relevance of recommendations generated by each algorithm by
measuring their acceptance by domain experts.

We approached a panel of four fashion specialists (FS) to provide feedback
on recommendations generated by various algorithms. Each FS was presented
with 17 recommendations for a given query (bottom) item, for each of the four
algorithms. Among these recommendations, the FS were asked to select those
that they judge to be complementary to the query. We used a total of 64 different
query bottoms in this study, ranging for popular bottoms such as blue jeans to
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less common bottoms such as richly patterned skirts. The images were presented
to FS in a random order to eliminate any bias for the algorithm or query items.
Since some FS are in general more selective than others, we need to normalize
for their individual bias. To achieve this, we add the actual top worn by the user
in the query outfit to the set of 17 recommendations at a random location. We
normalize the FS acceptance scores by their likelihood of selecting the actual
top as an acceptable recommendation. Note that we only perform analysis on
the newly recommended tops, and exclude the original top from our results.

(a) Overall acceptance rates (b) Binned acceptance rates

Fig. 5. Mean acceptance rate of recommendations by fashion specialists (error bars
indicate 95% confidence intervals). (a) Overall acceptance rating for each algorithm.
(b) Acceptance ratings binned according to the density (high, medium, low) of query
items.

4.7 Quantitative Analysis

Figure 5(a) shows the average rate of acceptance of generated recommendations
for all FS for the four algorithms. As discussed, acceptance rates were normalized
by the probability of each FS accepting the actual top for the given query bottom.
The error bar denotes the 95% confidence interval for each of the results. Non-
overlapping error bars indicate that the differences between the two results are
statistically significant. The NN-Source algorithm has the overall acceptance
score of 66.5 ± 1.4 and outperforms the Random and Incompatible baseline
algorithms as expected. The CRAFT approach generates recommendations with
the highest FS acceptance score (70.3 ± 1.4).

Stratification by Feature Space Density. It is even more interesting to
break down the analysis of the results in terms of the density of the query items
in the feature space. To this end, we approximate the density of each query point
by taking the average distance to K = 25 nearest neighbors and bin the queries
into low, medium, and high density regions, respectively. Figure 5(b) shows the
average recommendation acceptance rate provided by FS for each algorithm in
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each density region. Again, the error bars denote the 95% confidence interval
for each result. For queries that fall in the high density regions, the difference
between CRAFT and the NN-Source algorithm is statistically insignificant (error
bars overlap). This is expected since nearest neighbor search is a good estimator
of the joint top-bottom density for high density regions, where a large number
of samples are available. This is expected since nearest neighbor search is a good
estimator of the conditional distribution of tops given a bottom for high density
regions, where a large number of bottoms are available. However, the NN-Source
algorithm starts to degrade at the medium density level, and eventually degener-
ates to similar performance as the Random and the Incompatible recommenda-
tion algorithms for low density regions. In contrast, the performance of CRAFT
is consistent across all regions and is better than baseline algorithms for mid
and low density regime. Thus, the proposed conditional transformer is able to
generalize well irrespective of the density of the neighborhood surrounding the
query item.

5 Conclusion and Future Work

We presented CRAFT, an approach to visual complementary recommendation
by learning the joint distribution of co-occurring visual objects in an unsuper-
vised manner. Our approach does not require annotations or labels to indicate
complementary relationships. The feature transformer in CRAFT samples a con-
ditional distribution to generate diverse and relevant item recommendations for
a given query. The recommendations generated by CRAFT are preferred by the
domain experts over those produced by competing approaches.

By modeling the feature level distributions, our framework can potentially
enable a host of applications, ranging from domain adaptation to one- or few-
shot learning. The current work could be extended to incorporate the end-to-end
learning of domain-related encoders as part of the generative framework.
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