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Abstract. This paper addresses the problem of human body parts seg-
mentation in range images acquired using a structured-light imaging sys-
tem. We propose a solution based on a fully convolutional neural net-
work trained on realistic synthetic data that were simulated in a way
that closely emulates our structured-light imaging system with its inher-
ent artifacts such as occlusions, noise and missing data. The results on
synthetic test data demonstrate quantitatively the performance of our
method in identifying 33 body parts, with negligible confusion between
the front and back sides of the body and between the left and right
limbs. Our experiments highlight the importance of sensor-specific data
augmentation in the training set to improve the robustness of the segmen-
tation. Most importantly, when applied to range data actually acquired
by our system, the method was capable of accurately segmenting the
different body parts with inter-frame consistency in real-time.

Keywords: Human body segmentation · Structured-light imaging ·
Convolutional neural network

1 Introduction

Despite a long history of publications on the matter, human pose estimation
and human body segmentation is still a challenging research subject. Challenges
come from the large variations in pose, shape, viewpoint, lighting and clothing.
Nevertheless, it is a key step in human motion analysis which finds application
in a large variety of fields. In advanced manufacturing, robots or machines need
postural information on the human they are interacting with in order to col-
laborate safely and effectively. In healthcare, physiotherapy can be performed
remotely by examining the kinematics recorded by a marker-less vision system
while a patient is at home doing his/her exercises.
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Range sensors have drawn much interest for human activity related research
since they provide explicit 3D information about the shape, and that is invariant
to clothing color, skin color and illumination changes compared to RGB cam-
eras, and facilitates background subtraction. Among the existing range sensing
technologies, structured-light sensors offer the advantages of high resolution com-
bined with high speed, compared to time-of-flight cameras or stereoscopic recon-
struction systems, making it more practical for real-time applications. Addition-
ally, structured-light systems are typically more affordable.

However, triangulation-based systems (which include structured-light sen-
sors) generate shadows or occlusions in the image when parts of the scene cannot
be seen by both the projector and the camera. Those occlusions depend on the
shape of the object being imaged, but also on the structured-light system design
characteristics (distance between projector and camera, the triangulation angle,
lens focals, etc.). Missing points and measurement noise are also dependent both
on the object characteristics and on the design of the 3D measuring system. For
instance, rapid movements and/or dark or patterned clothes may generate holes
or missing data in the images. These artifacts inherent to this kind of sensor add
a level of difficulty to the task of human body segmentation that is typically not
addressed in the literature.

In this work, we address the problem of real-time human body segmentation
from range images acquired by a high resolution structured-light imaging system.
The challenge toward this goal is to design a segmentation model that is able
to reason about 3D spatial information and, at the same time, is robust to arti-
facts inherent to the structured-light system, such as occlusions or triangulation
shadows, noise and missing data.

To address this challenge, our contributions are as follows. First, we propose
a domain-specific data augmentation strategy that closely simulates the actual
acquisition scenario with the same intrinsic parameters as our sensor and the
artifacts it generates. Second, we adapt the fully convolutional network of [20] to
range images of the human body in order for it to transfer its learning toward 3D
spatial information instead of light intensities. Third, we quantitatively demon-
strate the importance of simulating sensor-specific artifacts in the training set
to improve the robustness of the segmentation of actual range images.

2 Related Work

Most previous work on human pose estimation use as input either a single RGB
image or a RGB video sequence [5,9,15,19,23,24]. Even though these images
contain rich information, the sensitivity of RGB sensors to illumination changes
and the presence of texture that interferes with geometric features affect the
robustness of RGB image-based human pose estimation. With the advent and
wide accessibility of range sensors, research on range image-based or RGBD-
based (color and depth) methods [2,7,8,16,21] has become very active.

Furthermore, the literature related to human body pose estimation can be
categorized into generative and discriminative methods. Generative methods
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consist in fitting a human body shape template or prior to the input data points,
using some optimization procedures, making them considerably time-consuming.
Point clouds obtained by range sensing motivate the use of different variants
of the iterative closest point algorithm, such as in [7]. A subclass of generative
approaches groups methods that use part-based models where the human body is
represented as a skeleton with different body parts connected by joints-imposed
constraints or kinematics constraints, such as the popular pictorial structural
model [5,19] or some Markov Random Field based graphical model to impose
spatial constraints [23].

On the other hand, discriminative methods consist in directly identifying a
mapping between the input image and the body parts or joints. Among these
methods, some aim at detecting the joints by regression methods [22,24], or
identifying and classifying interest points [16], or segmenting the body into its
individual parts using a pixel-level classification [2,11,15,21]. Because it does
not take into account the kinematic properties of the human body configuration,
those methods may result in incoherent body parts segmentation. Nevertheless,
machine learning approaches, either random forests [21,22] or deep convolutional
neural networks [2,8,9,11,15,24] have proved that, with sufficiently large train-
ing datasets, the global distribution of body parts is somehow implicitly learned
by the classification model. The biggest advantage of discriminative methods
over model-based method is in execution time, making them more suitable for
real-time applications.

Machine learning approaches rely heavily on the size and quality of the train-
ing data. Several papers have addressed the limited availability of segmented
range and RGB images of the human body and proposed datasets of synthetic
training data [4,14,21,25,27]. Generally, synthetic range images are generated
using some motion capture sequences with retargeting of different body shapes
and standard computer graphics techniques. While authors emphasize the impor-
tance of having a variety of shapes and poses, they tend to neglect the artifacts
introduced by actual range sensing systems, limiting the generalization perfor-
mance on real data.

However, a better modeling of the sensor characteristics has already been
shown to improve performances of a different learning task applied to RGBD
image. For instance, Planche et al. [17] demonstrated improved performances
in the determination of the position and orientation of isolated rigid objects
using this kind of approach. It should therefore provide gains for body segmen-
tation methods as well since those sensor characteristics can significantly alter
the appearance of body parts in range images. Furthermore, the complex rela-
tionship between occlusions and the changing shape of a deformable object (such
as the human body) might provide insight that a CNN (Convolutional Neural
Network) can use to boost performances.

3 Method

In this section, we first describe our imaging system based on structured light,
the configuration of which is then used to synthetically generate realistic range
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images from existing 3D human body meshes. For those synthetic images to
be realistic, we define and simulate occlusions, noise and missing data. The
labeling of the different body parts is then described, followed by the deep neural
network configuration and its training. Finally, we provide an overview of our
experimental setup for the evaluation of our method on both synthetic and real
data.

3.1 Structured-Light Imaging System

Our structured-light imaging system [6] uses a high-resolution projector and a
Emergent Vision Technologies camera working at 360 fps. The standoff distance
is 2.5 m and the system baseline is 0.75 m. The system was designed to cover the
volume of an adult performing large amplitude movements. The focal lengths are
respectively 12 and 12.5 mm for the projection and collection lenses. The lateral
resolution of the system is 1 mm and the range uncertainty is sub-millimetric.

In our experiments, we configured the system to use 5 phase shift patterns
for range measurements and 7 binary patterns for the phase unwrapping. The
system can generate 2 M points range images at 30 Hz. The configuration of our
system is illustrated in Fig. 1.

Fig. 1. Set-up of our 3D human body imaging system with the structured-light pro-
jector (A), the camera (B) and the real-time body part segmentation projected on a
large screen (C).

The size of the resulting range images is 1920 × 988 pixels, however, in this
work, we down-sampled the images by a factor of 3 for a faster training.

3.2 Building a Realistic Set of Synthetic Data

To generate training data for our model, we used a methodology inspired from
the work of [27] but with a particular emphasis on replicating the output of our
structured-light imaging system.

We collected 3D meshes of the human body from 3 publicly available datasets:
SCAPE [1], MIT [26] and CAESAR [18]. The first one consists of 71 meshes of the
same unclothed subject (labeled as A) in different poses. The second one consists
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of 2 clothed subjects (labeled as B and C) in 4 different motion sequences each
(walking, jumping, crane, squatting, bouncing and hand-standing), for a total of
825 and 850 meshes for B and C respectively. The third dataset comprises the
meshes of 583 minimally clothed subjects in the same canonical posture.

Posture variability is covered by SCAPE and MIT meshes, while inter-subject
variability is mostly covered by CAESAR meshes. Having both clothed and
unclothed subjects adds a level of invariance to clothing.

For each 3D mesh, we simulated 54 different range images: the mesh is placed
iteratively at 2.15 m, 2.55 m, and 2.95 m from the camera along its focal axis and
for each position, the mesh is rendered from 18 different viewpoints around the
model (10◦ rotation between each pair of consecutive views). This enforces an
invariance to distance and viewpoint.

In a real acquisition system, range images are affected by artifacts proper to
the imaging system itself. Using a structured-light sensor, light occlusions are
present when part of the scene is not illuminated by the projector (Fig. 2). On
top of that, the acquisition can be affected by noisy range values resulting from
the calibration of the system. Finally, because of dark patterned clothes and/or
rapid movements, some data might be missing in the range image.

Fig. 2. Light occlusions: top view of a structured-light imaging system with the light
projector (L) and the camera (C). Point p1 is illuminated by L and seen by C, thus
it rendered as a foreground pixel in the range image. Point p2 is seen by C but not
illuminated by L, this occlusion results in a background valued pixel in the range image.

In order for our classification model to be robust to those inherent artifacts,
we simulated the presence of occlusions, missing data, and measurement noise
in our training:

– Light occlusions modeling: For structured-light specific occlusions, we consid-
ered two frame buffers, one that emulates the light projector and the other the
camera, and we considered only the pixels that are rendered in both buffers.

– Measurement noise modeling: To simulate range measurement noise, additive
Gaussian noise is added to the foreground pixels. For each image a standard
deviation is randomly selected between 0 mm (noise) and 100 mm (which is
considerably more then the expected noise on our real data).
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– Missing data modeling: By missing data in range images, we mean pixels
that do not correspond to any light occlusions, but whose value was two
erroneous due to rapid motion or dark patterned clothes and thus discarded
from the range image. To model those “missing data” in a given range image,
we randomly removed a random percentage of pixels from the foreground and
replaced it by background values. The pixel removal rate is randomly chosen
between 0%, 5% and 50%.

To evaluate the effect of each of these artifacts, we created five variations of
the dataset, each one modeling a different combination of artifacts (see Table 1).

Table 1. Description of differences between the datasets used in the experiments.

Dataset Description

Xnone No sensor-specific artifacts modeled

Xocc Only occlusions modeled

Xnoise Only measurement noise modeled

Xmd Only missing data modeled

Xall Occlusions, measurement noise and missing data modeled

In total, we generated 5 sets of 125 766 range images of size 640× 329 pixels
with the range encoded on 16 bits. Figure 3 (top row) illustrates some examples
of the simulated synthetic data.

Fig. 3. Examples of simulated synthetic range images (top row) with their correspond-
ing segmentation into 33 body parts (bottom row). Each color correspond to a distinct
body part. Note the presence of occlusions (for instance the self-occlusion of the left
leg in the first column or the disconnected leg and head in the second column).
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3.3 Annotating the Data

To annotate the different body parts in the range images, we used anatomical
landmarks identified as salient points on the 3D meshes. For the meshes in
CAESAR, the coordinates of 33 anatomical landmarks are provided with each
mesh. For SCAPE and MIT, we manually identified those same landmarks on
one mesh for each of the subjects A, B and C; we then used the fact that the
meshes of each subject in different postures share the same topology to propagate
those landmarks coordinates to the remaining meshes of these subjects.

To define body parts from those anatomical landmarks, we used the fast
marching closest neighbor algorithm [12] that aggregates the vertices that are
the closest to the landmarks in terms of geodesic distance on the triangular
mesh. For each landmark or resulting body part, a distinct label and color are
attributed.

Finally, for each simulated range map, an image of the same size is generated
with the corresponding labels encoded on 8 bits. The background is set to an
arbitrary value that will be ignored in the remaining process. Some examples of
segmented images are provided in Fig. 3 (bottom row).

3.4 Network Description

We approach the problem of body parts tracking from range images as a pixel
classification problem. Thus, to perform the segmentation, we defined a dense
fully convolutional neural network [20] derived from the Alexnet [13]. The archi-
tecture of our network is detailed in Fig. 4.

To do so, we first removed the final classification layer of the Alexnet and
replaced all the fully connected layers of the Alexnet by convolutional layers
with a stride of 1 and a kernel size of 1. At the end of the network, before the
final classification, we added conv8, a 1 × 1 convolutional layer with 16 outputs
in order to extract for each pixel a 16D features vector and upfeat, a backward
convolution (deconvolution) layer to bilinearly up-sample the coarse outputs to
pixel-wise outputs that are the same size as the input image.

Finally, the last convolutional layer, score, provides for each pixel 33 outputs
corresponding to the 33 body parts considered in our segmentation problem.
Also, because the original Alexnet aims at classifying 3-channel RGB images,
we had to modify the first convolutional layer, conv1 to adapt it so that it takes
only one channel (the range).

3.5 Network Training

From each of the 5 datasets of simulated range images, 97 146 images are selected
as follows and used for training the network: for subject A, we used the first 57
postures for training and the remaining 14 postures for testing, for subjects B
and C, we used the jumping and the squatting sequences respectively for testing
and the remaining for training, for the CAESAR dataset, we used the first 467
subjects for training and the remaining for the test. This way, we ensure that
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Fig. 4. Architecture of the fully-convolutional neural network trained for body parts
segmentation. Starting from the deepest layers at the bottom and going up to shallower
layers. k: kernel size, s: stride, o: number of outputs

all the range images generated from one mesh are considered together either for
training or for testing the network.

Instead of training our network from scratch, we performed a transfer learn-
ing. We started the training with the weights of the Alexnet and we fine-tuned it
by applying a gradient of learning rates: for the deepest layers corresponding to
more generic filters, we applied a smaller learning rate (0.01 times the learning
rate of the last layer), and for the shallowest layers corresponding to application
specific features, we gradually increased the learning rate.

For the first layer of our network, conv1, we averaged the original weights of
the 3-channels in the Alexnet to generate 1-channel filters. And for the additional
layers that are not part of the original Alexnet, we initialized the weights using
a Gaussian distribution with a standard deviation of 0.01. The deconvolution
layer implements a bilinear up-sampling filter and its weights are kept frozen
during the training.

The training is performed using the stochastic gradient descent, with a fixed
last layer learning rate of 10−2, a momentum of 0.99 and a weight decay of
5 × 10−4. At each iteration, we used a gradient accumulation across 20 images.
We run the training over 70 000 iterations. A softmax loss layer computes the
cost function while ignoring all the pixels that belong to the background of the
input image.

We used the Caffe framework [10] to implement the training on an 12 GB
NVIDIA GeForce GTX TITAN X GPU.
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3.6 Experimental Setup

We performed a two-step evaluation of the proposed method. First, to quantify
the classification accuracy on simulated data, we considered the remaining 28
620 images of the Xall dataset as our synthetic test set. To weigh each body
part equally despite their varying sizes, the accuracy is reported as the average
per-class segmentation accuracy, as in [21]. Test images always include random
additive noise, missing data, and occlusions. We also evaluate the relationship
between the confidence probability associated with each classified pixel (obtained
by softmax) and the classification accuracy.

In a second step, we applied our method to real data sequences acquired with
our structured-light imaging system and we qualitatively evaluated the inter-
frame consistency, considering that the processing is performed independently
on each frame. We also report the overall processing time.

4 Results and Discussion

In this section, we report and analyze the results obtained on both the synthetic
test dataset and the real data acquired by our structured-light 3D imaging sys-
tem. We also evaluate the robustness to noise and missing data as well as the
computational performance of the proposed method.

4.1 Results on the Synthetic Test Set

Over the entire synthetic test set, we report a global average per-class segmen-
tation accuracy of 81.3% when the network is trained using the Xall dataset.
Figure 5 provide an example of the results. Most of the errors are located at the
edges of the segmentation. This is due in part to the ground truth annotations. In
fact, when rendering the annotated faces of the meshes, the 2D projection creates
triangular patterns at the edges of the body parts. However, when computing

Fig. 5. Confidence in the segmentation. From left to right, the ground truth segmen-
tation (GT), the result of the CNN segmentation, the error image (blue for correct,
red for error in the segmentation) and the confidence image computed as a probability
using the softmax function and expressed in percentage. (Color figure online)
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the confidence in the segmentation using the softmax function at the output of
the network for a random test image (Fig. 5), we see that the confidence on the
edges of the segmentation is the lowest. Thus, if we apply a threshold of 70%
on the confidence values, we get an average per-class segmentation accuracy of
97.8% for this image instead of 91.1%, while discarding only 18% of the pixels
in the test set.

Fig. 6. Average ± one standard deviation per-class segmentation accuracy for the
whole test set and the different subsets.

Figure 6 reports the average per-class segmentation accuracy for the whole
test set and for the test subsets corresponding to subjects A, B, C separately
and the CAESAR test set, as well as the per-class accuracy on the whole test
set. The best results are obtained on the CAESAR test set where the variation
is essentially in the human shape, the pose being similar for all subjects in
the database. On the contrary, the segmentation accuracy for the test set from
SCAPE is only of 78.1%, indicating that the model is more robust to inter-
subject shape variations than to intra-subject pose variations.

Unfortunately, because there is currently no unified benchmark for the
anatomic segmentation of full human bodies from range images, it is impossible
to have a fair comparison to previous work. Still, for the sake of comparison,
an average per-class segmentation accuracy of 60% was achieved at best using
handcrafted features and randomized decision forests [21], bearing in mind that
their dataset and their classes are different.

4.2 Robustness to Noise

By adding Gaussian noise randomly on the synthetic test images, we evalu-
ated the robustness of our network to the presence of noise. Figure 7 illustrates
the average segmentation accuracy computed on the whole test set for differ-
ent amounts of simulated Gaussian noise. This result clearly demonstrates that
the system is highly robust to Gaussian noise in the range maps, even when
its standard deviation reaches 40 mm, which is significantly larger than the
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Fig. 7. Robustness to Gaussian noise reported as the average of the segmentation
accuracy evaluated on the synthetic test set based on training with each of the five
training set variations (see Table 1 for details).

range accuracy of our system (<1 mm). This robustness to noise is implicitly
embedded in the architecture of the CNN itself, particularly at the pooling lay-
ers. Furthermore, it appears that simulating sensor-specific artifacts improved
performances at varying levels with missing data simulation and occlusions pro-
viding the greatest individual gains.

4.3 Robustness to Missing Data

By randomly removing data from the range images in the synthetic test set, we
evaluated the robustness of our network to missing data. We trained the net-
work with five variants of the training set presented earlier (see Table 1). Figure 8
illustrates the segmentation accuracy computed on the whole test set for differ-
ent amounts of missing data. This result clearly demonstrates the importance of
simulating missing data and occlusions (to a lesser degree) during the training
to increase the robustness of the network. To our knowledge, no previous work
has analyzed the effects of missing data on the human body parts segmenta-
tion from range and/or RGB images, even though robustness to missing data is
an important feature especially when dealing with real range image acquisition
where rapid movements and/or dark clothes can generate holes in the image.

4.4 Results on a Real Data Sequence

The results on the synthetic datasets demonstrate quantitatively the perfor-
mance of the proposed segmentation network. We are also interested in evalu-
ating qualitatively the performance in a real scenario, with real range images
acquired using our own structured-light imaging system. The effect of consider-
ing the sensor-specific artifacts on real data in practice is illustrated in Fig. 9 for
3 range images acquired with our structured-light imaging system. Qualitatively,
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Fig. 8. Robustness to random missing data, reported as the average of the segmentation
accuracy evaluated on the synthetic test set. Training was performed using the five
training set variations (see Table 1 for details).

the worst segmentation results are obtained when no occlusions and no missing
data are considered in the training set. These results on real test data emphasize
even more the importance of a good modeling of the sensor’s characteristics in
the simulation of training data, and hence in the training of the CNN.

A video illustrating the real-time body parts segmentation on a live full
motion sequence is available at: https://youtu.be/2aEbHqwKlmg. The subject
performs successively a jump, a squat, two 360◦ rotations, and ends in a final
posture with crossing arms on the chest. Qualitatively, the different body parts
are accurately segmented in most frames with remarkably little jitter. Even in
the two full 360◦ rotations, the performance in differentiating the front and the
back sides of the body, as well as the left and right limbs is very satisfactory,
discarding the need for a tracking algorithm as opposed to the conclusions in [21].
During the full rotations, when the subject is perpendicular to the baseline of
the system, the arms are correctly segmented even though there is self-occlusion
with the rest of the body. However, one evident segmentation error is noted in
the crossed arms final posture where the forearms are vanishing in the chest
in the segmented images. This particular failure mode has also been raised in
previous work [21] and we believe that this is partly due to the lack of similar
postures in the training set.

4.5 Processing Time

We evaluated the performance of the network on the same hardware as the
training, an 12 GB NVIDIA GeForce GTX TITAN X GPU. We recorded the
processing time required to perform a segmentation, considering the data already
loaded on the memory. We recorded an average of 61 ms (±1.2 ms) on the whole

https://youtu.be/2aEbHqwKlmg
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Fig. 9. For each image (a, b and c), the results of the segmentation using the CNN
trained on each of the 5 training set variations (see Table 1 for details) are illustrated
from left to right respectively. In the absence of ground truth for those actual range
images, a template body segmentation is provided on the right (d) to qualitatively
compare the segmentation results.

test set with the average image size being 640 × 329 pixels. This results shows
that method would be suitable for real-time applications.

5 Conclusion

We presented in this paper a deep learning approach for human body parts
segmentation from range images. Not only did it yield semantically accurate
results in synthetic test data, but we demonstrated its performance in a real
scenario with images acquired with a high-resolution structured-light imaging
system. We have also demonstrated the importance of having a realistic sensor-
specific training set to improve the robustness of the segmentation to artifacts
such as occlusions, noise and missing data which affect the range images acquired
by a structured-light system in particular.

The proposed data-augmentation strategy is specific to structured-light imag-
ing systems. Of course, depending on the acquisition system, sensor-specific arti-
facts are quite different. Time-of-flight sensors, for example, suffer from the mul-
tiple paths problem, whereas passive stereo systems deal with non-uniform noise
depending on the texture of the object being imaged.

Compared to previous work, we considered a segmentation of the body into
33 parts, which is a finer granularity than most of the previous work [2,8,11,15].



742 L. Seoud et al.

In the future, we aim at further refining the granularity to identify a dense
mapping between the range images and a 3D body template.

Among the remaining challenges are the self-occlusions, such as the crossed-
arms posture and the postures that are very different than the one used for the
training. However, since our objective is to segment image sequences, it would
be interesting to investigate some temporal constraints to regularize the segmen-
tation especially for the frames where the posture is unseen by the network.

In its current implementation, the segmentation of a single frame of size 640×
329 requires around 60 ms which is suitable for almost real-time applications. In
future work, we plan on using the full resolution images from our high-resolution
sensor (1920×988), which will require more attention to the processing time. The
combination of high resolution, high accuracy and high speed of our acquisition
system and our segmentation module will open the door to the analysis of tiny
and rapid movements, which is currently a challenge for existing commercial
range sensors [3].
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