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Abstract. Can an algorithm create original and compelling fashion
designs to serve as an inspirational assistant? To help answer this ques-
tion, we design and investigate different image generation models asso-
ciated with different loss functions to boost novelty in fashion genera-
tion. The dimensions of our explorations include: (i) different Generative
Adversarial Networks architectures that start from noise vectors to gen-
erate fashion items, (ii) a new loss function that encourages novelty, and
(iii) a generation process following the key elements of fashion design
(disentangling shape and texture). A key challenge of this study is the
evaluation of generated designs and the retrieval of best ones, hence
we put together an evaluation protocol associating automatic metrics
and human experimental studies. We show that our proposed creativity
loss yields better overall appreciation than the one employed in Creative
Adversarial Networks. In the end, about 61% of our images are thought
to be created by human designers rather than by a computer while also
being considered original per our human subject experiments, and our
proposed loss scores the highest compared to existing losses in both nov-
elty and likability.
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1 Introduction

Artificial Intelligence (AI) research has been making huge progress in the
machine’s capability of human level understanding across the spectrum of per-
ception, reasoning and planning [1–3]. Another key direction yet relatively under-
studied is creativity where the goal is for machines to generate original items
with realistic, aesthetic attributes, usually in artistic contexts. We can indeed
imagine AI to serve as inspiration for humans in the creative process and also
to act as a sort of assistant able to help with more mundane tasks, especially in
the digital domain. Previous work has explored writing pop songs [4], imitating
the styles of great painters [5,6] or doodling sketches [7] for instance.
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There has also been a growing interest in generating images using GANs,
given their ability to generate appealing images unconditionally [8], or condi-
tionally like from text, class labels, and for paired and unpaired image transla-
tions [9–11]. However, it is not clear how creative such attempts can be considered
since most of them mainly tend to mimic training samples without expressing
much originality. Creative Adversarial Networks (CANs) [12] have then been pro-
posed to adapt GANs to generate original content (paintings) by encouraging
the model to deviate from existing painting styles. Technically, CAN is a Deep
Convolutional GAN (DCGAN) model [13] associated with an entropy loss that
encourages novelty against known art styles. The specific application domain
of CANs (art paintings) allows for very abstract generations to be acceptable
but, as a result, does reward originality a lot without judging much how such
enhanced creativity can be mixed with realism and standards.

In this paper we study how AI can generate creative samples for fashion.
Fashion is an interesting domain because designing original garments requires
a lot of creativity but with the constraints that items must be wearable. In
contrast to most generative models works [14–16], the originality angle we intro-
duce makes us go beyond replicating images seen during training. Fashion image
generation opens the door for breaking creativity into design elements (shape
and texture in our case), which is a novel aspect of our work in contrast to
CANs. More specifically, this work explores various architectures and losses that
encourage GANs to deviate from existing fashion styles covered in the training
dataset, while still generating realistic pieces of clothing without needing any
image as input. To the best of our knowledge, this work is the first attempt at
incorporating creative fashion generation by explicitly relating it to its design
elements.

Contributions. (1) We are the first to propose a novelty loss on image genera-
tion of fashion items with a specific conditioning of texture and shape, learning a
deviation from existing ones. (2) We re-purposed automatic entropy based evalu-
ation criteria for assessment of fashion items in terms of texture and shape; The
correlations between the automatic metrics that we proposed and our human
study allowed us to draw some conclusions with useful metrics revealing human
judgment. (3) We proposed a shape conditioned model named Style GAN and a
concrete solution to make it work in a non-deterministic way. Trained with cre-
ative losses, it results in a novel and powerful model. Our best models manage
to generate realistic images with high resolution 512 × 512 using a relatively
small dataset (about 4000 images). More than 60% of our generated designs are
judged as being created by a human designer while also being considered original,
showing that an AI could offer benefits serving as an efficient and inspirational
assistant.
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2 Models: Architectures and Losses

2.1 Network Architectures

We experiment using two architectures: a modified version of the DCGAN
model [13] for higher resolution output images, and our proposed styleGAN
model as described below. In addition to its real/fake branch classification,
the discriminator in each architecture is augmented with optional classification
branches each for shape and texture classes.

Fig. 1. From the segmented mask of a
fashion item and different random vec-
tor z, our StyleGAN model generates
different styled images.

Fig. 2. From the mask of a product,
our StyleGAN model generates differ-
ent styled image for each style noise.

GANs with Optional Classification Loss. Let D be a dataset of N images.
Following [10], we use shape and texture labels to learn a shape classifier and
a texture classifier in the discriminator. Adding these labels improves over the
plain model and stabilizes the training for larger resolution. We are adding to the
discriminator network either one branch for texture or for shape classification,
or two branches for both shape and texture classification and denote the extra
classification output of the discriminator Db. The additional loss is:

LD classif = −
∑

xi∈D
log(softmax(Db(xi)). (1)

StyleGAN: Conditioning on Masks. In this model, a generator is trained to
compute realistic images from a mask input and noise representing style infor-
mation (Fig. 1). We use the same discriminator architecture as in DCGAN with
classifier branches that learn shape and texture classification on real images on
top of real/fake prediction. Training styleGAN with two inputs is difficult, pre-
vious approaches of image to image translation such as pix2pix [17] and Cycle-
GAN [11] create a deterministic mapping between an input image to a single
corresponding one, i.e. edges to handbags for example or from one domain to
another. To make sure that no input is being neglected, we add a �1 loss forcing
the generator to output the mask itself in case of null style input z and thus
ensure the impact of the shape in the generations as shown in Fig. 1.
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2.2 Novelty Losses

Because GANs learn to generate images very similar to the training images, we
explore ways to make them deviate from this replication by studying the impact
of two additional losses for the generator: the CAN loss (as used in [12]), and
an MCE loss that encourage the generator to confuse the discriminator.

– CAN loss: As proposed in [12], the CAN loss is defined as

LCAN = −λ

[∑
i

K∑
k=1

1

K
log(σ(Db,k(G(zi)))) +

K − 1

K
log(1− σ(Db,k(G(zi))))

]
, (2)

where σ is the sigmoid function, and K the number of texture, shape, or both
classes.

– MCE loss: We propose to use as alternative additional generator’s loss the
Multi-class Cross Entropy (MCE) loss between the class prediction of the
discriminator and the uniform probability vector.

LMCE = −λ
∑

i

∑

k

1

K
log softmax(D(G(zi))). (3)

Both MCE and sum of binary cross entropy losses encourage deviation from
existing categories. However, our MCE criterion considers all classes globally in
the softmax unlike the CAN loss which is based on a sum of K independent
binary classification losses.

3 Results

Dataset. Unlike similar work focusing on fashion item generation [15,16], we
choose a dataset containing fashion items in uniform background allowing the
trained models to learn features useful for creative generation without generating
wearer faces and backgrounds. We augment the dataset of 4157 images by a
factor 5 by jittering images with random scaling and translations. The images
are classified into seven clothes categories: jackets, coats, shirts, tops, t-shirts,
dresses and pullovers, and 7 textures categories: uniform, tiled, striped, animal
skin, dotted, print and graphical pattern.

Automatic Evaluation Metrics. Evaluating the diversity and quality of a set
of images has been tackled by scores such as the inception score and variants like
the AM score [18]. We adapt both of them for two labels specific to fashion design
(shape and texture) and supplement them by a mean nearest neighbor distance.
Our final set of automatic scores contains 5 metrics : (1, 2) shape score and texture
score, each based on a Resnet-18 classifier [19] of shape or texture respectively.
(3, 4) shape AM score and texture AM score, based on the output of the same
classifiers. (5) mean distance to 10 nearest neighbors score. We compute the mean
distance for each sample to its retrieved k-Nearest Neighbors (NN), with k = 10,
as the Euclidean distance between the features extracted from a Resnet18 pre-
trained on ImageNet by removing its last fully connected layer.
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Creating Evaluation Sets. We select for each setup (DCGAN or styleGAN
trained with texture, shape, both or none novelty criterion) four saved models
after a sufficient number of iterations. Our models produce plausible results after
training for 15000 iterations with a batch size of 64 images.

Given a set of 10000 generations from a model, we extract different sets of
images with particular visual properties such as (ii) high/low texture entropy,
(iii) high/low NN distance to real images. We also explore random and mixed sets
such as low shape entropy and high nearest neighbors distance. We expect such
a set to contain plausible generations since low shape entropy usually correlates
with well defined shapes, while high nearest neighbor distance contains unusual
designs. Overall, we have 8 different sets that may overlap. We choose to evaluate
100 images for each set.

Automatic Evaluation Results. We set λ = 5 for the MCE loss, and λ = 1
for the CAN loss, as these parameters appeared to work best. All models were
trained using the default learning rate 0.002 as in [13]. Our different models take
about half a day to train on 4 Nvidia P100 GPUs for 256 × 256 models and
almost 2 days for the 512 × 512 ones.

Table 1 presents shape and texture scores, AM scores (for shape and texture)
and average NN distances computed for each model on 4 selected iterations.
Our first observation is that the DCGAN model alone seems to perform worse
than all other tested models with the highest NN distance and lower shape and
texture scores. The value of the NN distance score may have different meanings.

Table 1. Quantitative automatic eval-
uation. High scores appear in bold.

Method/Score Shape tex. AM sh AM tx NN

Dataset 6.25 3.76 20.4 12.6 5.65

GAN 4.70 2.74 13.3 8.92 14.4

GAN classif 5.31 2.86 14.8 9.68 13.1

CAN shape 5.27 2.77 14.7 8.92 13.1

CAN tex 5.24 3.01 14.4 9.48 13.5

CAN shTex 5.20 3.24 14.7 10.0 13.1

MCE shape 5.07 2.80 13.6 8.90 13.0

MCE tex 5.14 3.33 14.4 9.30 13.6

MCE shTex 4.98 3.04 13.3 9.52 13.2

Table 2. Human evaluation ranked by
decreasing overall score (higher is better).

Method/

Human

Method

Overall Shape

nov.

Shape

comp.

Tex.

nov.

Tex.

comp.

Real

fake

DCGAN

MCE shape

3.78 3.58 3.57 3.64 3.57 60.9

DCGAN

MCE tex

3.72 3.57 3.52 3.61 3.58 61.1

StyleGAN

CANtex

3.65 3.37 3.31 3.44 3.21 49.7

StyleGAN

MCE tex

3.61 3.38 3.29 3.50 3.37 53.4

StyleGAN 3.59 3.28 3.21 3.27 3.15 47.2

DCGAN

MCEshtex

3.49 3.40 3.24 3.40 3.31 61.3

DCGAN

CANshtex

3.47 3.28 3.18 3.33 3.16 63.8

DCGAN

classif

3.42 3.32 3.32 3.37 3.29 52.7

DCGAN

CANtex

3.37 3.23 3.12 3.35 3.09 59.7

DCGAN

CANshape

3.33 3.28 3.16 3.27 3.12 55.0

DCGAN 3.22 2.95 2.78 3.24 2.83 60.4
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A high value could mean an enhanced “creativity” of the model, but also a
higher failure rate. The two models having high shape score, AM shape score,
AM texture score and NN distances scores are DCGAN with creativity losses
models.

Human Evaluation. Each image was rated by 5 persons asked to answer 6
questions: Q1: how do you like this design overall on a scale from 1 to 5? Q2/Q3:
rate the novelty of shape (Q2) and texture (Q3) from 1 to 5. Q4/Q5: rate the
complexity of shape (Q4) and texture (Q5) from 1 to 5.Q6: Do you think this
image was created by a fashion designer or generated by computer? (yes/no).

Table 2 presents the average score obtained by each model on each human
evaluation question for the RTW dataset. From this table, we can see that using
our novelty loss (MCE shape and MCE tex) performs better than the DCGAN
baseline. While the two proposed models with MCE originality loss rank the
best on the overall score, we observe that the preferred images have low nearest
neighbor distance. This means that generations which are not close to their
nearest neighbors are not always pleasant. It is indeed a challenge to obtain
models able to generate novel (high nearest neighbor distance) and at the same
time pleasant generations. However, we observe that the models that score better
in the high nearest neighbors distance set are clearly the ones with our novelty
loss(MCE). Figure 3 shows how well our approaches worked on two axis: likability
and real appearance. The most popular methods are obtained by the models
employing an originality loss and in particular our proposed MCE originality
criterion, as they are perceived as the most likely to be generated by designers,
and the most liked overall.

Fig. 3. Evaluation of the dif-
ferent models on the RTW
dataset by human annotators
on two axis: likability and
real appearance. Our models
reach nice trade-offs between
real appearance and likability.

We are greatly improving the state-of-the-art
here, going from a score of 64 to more than 75 in
likeability from classical GANs to our best model
with shape creativity. We display images which
obtained the best scores for each of the 6 ques-
tions in Fig. 4. Our proposed Style GAN (See
Fig. 2) is producing competitive scores compared
to the best DCGAN setups. In particular, Style-
GAN with originality loss is ranked in the top-3.

We computed correlation scores between our
automatic metrics and human ratings. The metric
that correlates the most with the overall score is
the NN distance. There is also a negative correla-
tion of NN dist with real appearance.
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Fig. 4. Best generations as rated by annotators. Left: Q1: overall score, Q2: shape nov-
elty, Q3: shape complexity; Right: Q4: tex. novelty, Q5: tex. complexity, Q6: Realism.

4 Conclusion

We introduced a specific conditioning of GANs on texture and shape elements for
generating fashion design images. While GANs with such classification loss offer
realistic results, they tend to reconstruct the training images. Using an MCE
originality loss, we learn to deviate from a reproduction of the training set. We
also propose a novel architecture named StyleGAN model, conditioned on an
input mask, enabling shape control while leaving free the creativity space on
the inside of the item. All these contributions lead to the best results according
to our human evaluation study. We manage to generate accurately 512 × 512
images, however we seek for better resolution, which is a fundamental aspect of
image quality, in our future work. Finally, while our results show visually pleasing
textural novelty, it will be interesting to explore larger families of novelty loss
functions, and ensure wearability constraints.
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