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Abstract. This work aims at learning image representations suitable for
event segmentation, a largely unexplored problem in the computer vision
literature. The proposed approach is a self-supervised neural network
that captures patterns of temporal overlap by learning to predict the fea-
ture vector of neighbor frames, given the one of the current frame. The
model is inspired to recent experimental findings in neuroscience, show-
ing that stimuli associated with similar temporal contexts are grouped
together in the representational space. Experiments performed on image
sequences captured at regular intervals have shown that a representation
able to encode the temporal context provides very promising results on
the task of temporal segmentation.
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1 Introduction

As our sensory system is inherently continuous, we experience the world as
an uninterrupted stream of perceptual stimuli. However, sensory information
is automatically segmented by our brain into discrete events that can be under-
stood, remembered and retrieved from the memory. How these event represen-
tations are generated at neural level is a very active area of research in neuro-
science [1–5]. Although firstly questioned more than fifty years ago [1], it was
only in 2007 that the seminal work of Zacks [2] revealed the key role of uncer-
tainty and surprise in determining event boundaries. Later on, Kurby and Zacks
[3] hypothesized that event segmentation might arise as a side effect of inte-
grating information over the recent past to improve predictions about the near
future. More recently, Shapiro et al. [4] have shown that neural representation
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of events are not tied to predictive uncertainty, but arise from temporal commu-
nity structures: items that share the temporal context are grouped together in
a representational space. Focusing more on a higher level processing, DuBrow
and Davachi [5] have argued that event boundaries are generated by changes in
our goals and these goals determine how information is stored and retrieved in
our brain.

Fig. 1. Example of temporal segmentation of a sequence of images.

Besides neuroscience, event segmentation is also receiving an increasing
attention in computer vision [6–10]. Indeed, temporal video segmentation can be
considered the first step towards automatic annotation and recognition of digital
video sequences (see Fig. 1). The growing size of today’s available unconstrained
videos on internet raises the need of automatically detecting, recognizing and
retrieving the type of complex events occurring in them. Typically, state of the
art algorithms for event or action recognition rely on event boundary detection
and visual features extracted at image level or at event level such as seman-
tic features or optical flow. Most recent and promising approaches for event
detection [11,12] use concept scores as intermediate representation, which are
the confidence of the occurrence of the concepts in the video. For example, the
event Having a dinner with friends can be described as the occurrence of food,
laughing, people, bottles ... etc. However, the resulting concept-based event rep-
resentation is highly noisy due to the high variability of concept’s appearance
on the one hand and to the high variability of the concept representation for a
complex event on the other hand. Therefore it is difficult to segment temporally
a video based on semantic features.

Given the relevance of the problem, in this paper, we propose to learn a rep-
resentation for image sequences suitable for the task of temporal segmentation.
Inspired by the theory Shapiro et al. [4], our model aims at embedding the tem-
poral context of images via a self-supervised pretext task consisting in predicting
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the feature vector of neighbor frames given the concept vector of the current
frame.

The reminder of this paper is as follows. In Sect. 2, we present the proposed
approach, while in Sect. 3 we detail and discuss experimental results. We con-
clude the paper with Sect. 4, summarizing its main contributions and findings.

2 Learning Event Representations

Here, we first introduce the concepts underlying the proposed model. Second,
we describe the pretext task that we use to learn the temporal representations
and subsequently present the validation task which is employed to evaluate the
quality of the learned representations (see Fig. 2).

Fig. 2. Modules of the proposed method.

2.1 Underlying Model

Hereafter, we consider a toy example to illustrate the intuition underlying our
model. Let us suppose that we are given a sequence of N images and each image
is represented by a feature vector as shown in Fig. 3(a).

Relying on the feature vector representation, we built a directed graph, where
each vertex corresponds to a feature vector and each direct edge going from, says,
A to B indicates that feature vector B temporally follows feature vector A in
the image sequence. The resulting graph, shown in Fig. 3(b) indicates that the
underlying representation of the image sequence presents two community struc-
tures, with many edges joining vertices of the same community and compara-
tively few edges joining vertices of different communities. Therefore, the directed
graph could be regarded as a more intuitive simplified model that represents the
temporal context of sequence data.

In the next section, we focus on how to automatically learn a feature space,
where temporally nearby frames belonging to the same event lie close to each
other.
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(a)

(b) (c)

Fig. 3. (a) Image sequence representation: the letters indicate the feature vectors iden-
tifier and the numbers represent the temporal order. (b) Directed graph encoding the
temporal relations between feature vectors. (c) Non-classical and non-metric multidi-
mensional scaling of the activation vectors.

2.2 Pretext Task

Representation learning aims at building intermediate representations of data
useful to solve machine learning tasks. In self-supervised learning, one trains a
model to solve a so-called pretext task on a dataset without the need for human
annotation by exploiting labeling that comes for “free” with the data.

In our case, similarly to word2vec models in natural language processing [13],
the pretext task is a prediction task, that given a frame, aims at predicting the
temporally neighbor frames corresponding to the temporal context. This leads to
learn a function from a given frame to the frames surrounding it. We considered
two different implementations. The first one is a simple neural network with a
single hidden layer that takes as input the feature vector xi of the frame i and is
trained to output the concept vector xi±n of the frame i±n, with n ∈ {1, ..,m}
by minimizing the Mean Squared Error (MSE) between xi and the estimation of
xi+1, say x̂i+1. After training, the new feature vector x̃i embedding the temporal
context for the image i, is obtained by multiplying xi to the learned weight matrix
W . This procedure is illustrated on Fig. 4.

The second one is a many-to-many encoder-decoder long short term memory
(LSTM) recurrent neural network. The model is trained to predict the feature
vector of the next frame in a sequence based on the n previous ones. This process
is illustrated in Fig. 5. The network is trained by feeding batches of sequential
frames of size n < N randomly extracted, where N is the full length of the video
sequence. The new family of feature vectors x̃ are obtained after training, as
output of the encoder by feeding it the original feature vectors x.

In the case of the toy example illustrated in the previous section, we used
one-hot encoding for the 12 feature vectors and we trained a neural network
to predict the feature vector of the image i + 1 given the concept vector i.
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Fig. 4. Left: Training a single layer neural network to predict the concept vector of the
image i + 1 given the concept vector of the image i as input. Right: Extraction of the
new feature vector for the image i by multiplying the original concept vector by the
weights of the trained neural network.

Fig. 5. Encoder-decoder LSTM layer neural network. The new feature vector is
obtained as output of the decoder (first layer LSTM) after training.

In Fig. 3(c) is shown the multidimensional scaling of the activation vectors
obtained multiplying the original feature vectors by the weight matrix learned
with the prediction task. From this figure we can clearly see how the feature
vectors that on Fig. 3(b) were linked by numerous edges lie close to each other
on this new representational space (A, B, C, D, E on the one side, and G, I, F,
M, H, L, O on the other side).

Since the main objective is to transfer the learned representation to target
task, in the next section we detail how we validate the goodness of the new
learned representation.
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2.3 Validation Task

To validate the goodness of the learned representation we applied a classical
temporal segmentation algorithm to both, the concept vector representation and
the new learned representation. In particular, we used a Binary Partition Tree
(BPT) based approach [14]. BPT is a hierarchical clustering method that itera-
tively merges the most similar temporally adjacent neighbor frames until a single
event is obtained. The initial partition of events is given by all frames. Each time
two neighboring events are merged, the resulting event is modeled as the mean
feature vector of the two original events. The temporal segmentation is obtained
by cutting the binary tree, using as criterion the number of events or a more
complex function that takes into account the similarity of all the merging. Since
the goal of this work is to show that encoding the temporal context is beneficial
for temporal segmentation, we used the most simple criterion.

3 Experimental Results

In the following, we first detail our experimental setup, including the dataset used
in the experiments, the metrics employed in the validation task, how the initial
feature vectors where computed and which type of experiments were performed.
Then, we present and discuss the experimental results.

3.1 Experimental Setup

Dataset. We used a subset of the EDUB-Seg dataset [15,16], consisting of ten
image sequences belonging to five different users and captured by a wearable
photo-camera that takes pictures at regular intervals of 30 s, with an average
of 662 images per sequence. The subset we considered, comes together with the
ground truth event segmentation and concept vectors describing the probability
of each concept in the images.

Evaluation Measure. To evaluate the performance of the temporal segmentation
we used the F-measure. In particular, we considered as true positives (TPs) the
images that the BPT detects as boundaries of an event and that were manually
defined in the GT. The false positives (FPs) are the images detected as events
delimiters, but that were not marked in the GT, and the false negatives (FNs)
the boundaries not detected but present in the GT. In all cases we considered
a tolerance of 5 frames as in [16]. Good event segmentations correspond to F-
measure values close to 1.

Feature Extraction. In our experiments, the original feature vectors are obtained
as in [16] by firstly detecting concepts independently on each image by means of
a concept detector, and then by clustering them in a semantic space by relying
on WordNet [17] (see Fig. 6). The number of clusters found determines the size
of the vocabulary of concepts. Each element of the feature vector corresponds
to the probability of finding a given concept in the image.
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Fig. 6. Semantic feature extraction and generation of concept-based event representa-
tion as in [16].

Experiments. We performed three different class of experiments, with slightly
different prediction tasks. The first one is the most simple forward prediction
(NN forward): given the ith feature vector as input to predict the (i + 1)th

feature vector. The second one is a forward prediction that takes into account the
previous n feature vectors to predict the next feature vector (LSTM forward). In
our experiments we used n = 50. The third one is a forward-backward prediction
(NN forward-backward): given the ith feature vector as input to predict the
neighbor feature vectors inside a window of length n centered at i. We considered
n = {2, 3, 4, 5}. All models were trained by using the MSE of the prediction as
loss function and by using Stochastic Gradient Descent (SGD) as optimizer.
The results reported on Tables 2 and 3 were achieved by setting the learning
rate to 0.1 for the encoder-decoder LSTM model, with momentum to 0.9 for
the NN models. The number of neurons used in the hidden layer was different
accordingly to the prediction task as shown on Table 1. The size of the original
feature vector was 50, extracted following the procedure described in Sect. 2.2.
For each sequence the weights that ensured a better performance were saved for
later generation of the new learned representation. The BPT based approach
described in Sect. 2.3 for event segmentation was applied by relying on both, the
original feature vectors and the new learned representation.
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Table 1. Number of neurons in the hidden layer used in the different prediction tasks.

Prediction task #neurons

NN F 30

LSTM F 20

NN FB 30

Table 2. Results obtained in the different experiments for each sequence.

Baseline NNF
n = 1

NNFB
n = 2

NNFB
n = 3

NNFB
n = 4

NNFB
n = 5

LSTM
F n = 1

User1-1 0.32 0.39 0.51 0.57 0.71 0.47 0.35

User1-2 0.29 0.27 0.36 0.38 0.35 0.39 0.39

User1-3 0.57 0.58 0.56 0.70 0.67 0.53 0.53

User2-1 0.51 0.53 0.56 0.59 0.56 0.50 0.50

User2-2 0.38 0.60 0.61 0.64 0.69 0.67 0.65

User2-3 0.56 0.71 0.79 0.75 0.71 0.75 0.75

User3-1 0.30 0.25 0.33 0.35 0.34 0.27 0.41

User3-2 0.39 0.42 0.33 0.39 0.37 0.37 0.34

User4 0.33 0.42 0.35 0.42 0.34 0.31 0.43

User5 0.38 0.44 0.39 0.42 0.43 0.43 0.47

3.2 Results and Discussion

Table 2 shows the results obtained on each sequence and for each prediction
task. On Table 3, is reported the average over all sequences for each experiment.
As it can be observed on Table 3, the F-measure of the temporal segmenta-
tion obtained relying on a representation that encode the temporal context,
outperforms the baseline, obtained using the original feature vectors, for all
prediction tasks. In particular, the representation learned through the forward-
backward prediction achieves the best performance. Furthermore, the perfor-
mance increases with the size of the temporal window achieving the maximum
value for a window of size 3 and then decreases again. These results have shown
that, although its simplicity, the proposed approach is very effective to learn
event representations, and suggest that encoding the temporal context is crucial
for event learning.

Key issues to be investigated, is what features are most suited as basis for the
temporal embedding in videos, if they can be learned in an end-to-end fashion
and which prediction task would be more effective in the video domain.
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Table 3. Average results for each prediction task and baseline performance.

Validation task F-measure

NN F, n = 1 0.4610

LSTM F 0.4820

NN FB, n = 2 0.4790

NN FB, n = 3 0.5210

NN FB, n = 4 0.5170

NN FB, n = 5 0.4690

Baseline 0.4030

4 Conclusions

To the best of our knowledge, this work has presented the first attempt to learn
image representations suitable for event segmentation. The proposed approach
is inspired to recent experimental findings in neuroscience showing that neural
representations of events arise from temporal community structures. To learn
the temporal embedding, we proposed a pretext task consisting of predicting
the feature vector of neighboring images in a temporal window of fixed size, by
using two different approaches: a simple neural network and an encoder-decoder
LSTM. Experimental results performed on a dataset of image sequences captured
at regular intervals have shown that the new learned representation outperforms
the original feature-based representation on the task of temporal segmentation.
The generalization of the approach to temporal segmentation of video, would
have an important impact in the processing of untrimmed videos.
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